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Abstract—This paper describes an algorithm for finding a scale
that should be used to improve the performance of face detection
framework if image resizing would be applied as a pre processing
step. The algorithm is based on a supervised machine learning
approach. It iteratively resizes the image until it reaches the
scale which most closely satisfies certain desirable conditions.
The impact of interpolation kernels on finding a scale was also
empirically analyzed. A set of experiments for the calibration
method proposed using a face detection framework is presented.
We also showed in our experiments that our method reduced the
occurence of false positive detections in comparison to the usual
non-resizing detections.

Keywords-face detection; optimization; object-detection frame-
work; computer vision

I. INTRODUCTION

Object detection is one of the most studied problems in
Computer Vision. Some solutions are widely used in several
number of applications ([1],[2]). A large number of them deals
with a vast amount of data, e.g. social networks featuring
users image processing, or simply applications that perform
real-time detections on large images, e.g. security systems,
augmented reality applications. Therefore, any performance
improvement on the detection time drastically affects the
development of such applications.

Also, there is an increasing evolution in camera resolution
which implies that there is an increase of object detection
time. This justifies adjustments on the actual object detection
framework to follow the growth of the resolution of input
images.

One of the shortcomings of the validation of this work was
the use of a well behaved data set, where images did not differ
much from each other. The results for this data set were more
expressive than for a data set of a heterogeneous image which
showed a better performance for small groups of objects to be
detected.

Contributions: We explored the following problem:
”Given a set of images of same resolution and a object
detection framework, to find a stable scale such that applying
a pre and post-scaling in all the images, it reduces the total
detection time with no loss of robustness.”

We present a calibration method that attempts to solve
the problem stated above. We also compared the influence

of the performance and of the robustness of four different
interpolation kernels in the resizing steps. In our experiments,
we evaluate gains of robustness and performance of our
method using a face detection framework in two different data
sets.

A. Related work

The method presented in this work may be applicable to
several object detection approaches which may be affected by
the image resolution. For this work we chose a face detection
framework. In this section we discuss several strategies already
proposed to improve the performance of face detection and
face recognition systems. Analogously, their theory is also
applied to general object detection framework.

In [3], a new interpolation kernel is proposed: the so-called
Decimation Algorithm. The authors propose a method for
finding a unique scale reduction value for every image in a
dataset. A Gaussian pyramid [4] is used to find an optimal
resolution which achieves the best performance. Every image
in the dataset is associated with its best resolution scale. Our
approach, on the other hand, calculates the best resize scale
using only one image in the set that is used for all the images
of the set.

An opposite approach for face recognition optimization is
proposed in [5]. In this case, a solution was proposed for the
problem of adapting a system designed for low resolution im-
ages to accept high resolution images as input. This approach
is very effective for high resolution videos and their results
are a success case of gains of performance and robustness by
varying the input image dimensions.

In [6], an analysis of the effects of image resolution on the
performance of face recognition algorithms is presented. It is
concluded that the image dimension is inversely proportional
to the performance of the object detection framework. In order
to find the optimal scale it was proposed a feature descriptor
that is scale-robust in which could be a possible approach. Al-
gebraically, the problem is reduced to a minimization problem
and it requires modifications in the object detection frame-
work. In our solution we treat the object detection framework
as a “black-box.” Our approach only performs a pre and post
processing in images.
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Fig. 1. The overview of the proposed technique. The resized image is
processed by the framework and the coordinates of the faces detected are
mapped to the original image.

B. Technique overview

The input image is resized by a scale s and the detection
occurs on the resized image. The detections coordinates given
as output are inputs of a linear transformation that maps
the coordinates back to the original image. This scheme is
illustrated in Fig. 1.

The scale s has to satisfy a gain in performance and
guarantee no loss of robustness. Its calculation occurs only
once for a selected image from a set of images. The selected
image is such that the detection is more sensitive to scale
variations. We call this the “worst-case” image of the set. The
scale s is calculated by an iterative algorithm which converges
under certain assumptions over the object detection framework
properties.

II. TECHNICAL BACKGROUND

In this section, we detail some definitions that we use to
build our algorithm to find the best scale s.

Let φ be a function φ : R+ → N. It is an immediate
conclusion that:

Lemma 1. Let φ be a function such that φ : R+ → N then φ
is a non-differentiable function.

In order to explore the graphical properties of φ we need
the following definition:

Definition 1. (Step function) A function f : D → C is called
a step function if it can be written as:

f(x) =

n∑
i=0

αiχAi
(x),∀x ∈ D.

where n ≥ 0, αi ∈ D, Ai are intervals, and χA is the
indicator function of A:

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A

Now, we want to define the domain and the counter-domain
of φ in a given positive interval. Let R+(s) be the closed
real interval [0, s] and N(d) the closed natural interval [0, d].
Finally, we claim that φ is a decreasing function. So we have
the following:

Lemma 2. Let φ be a decreasing function such that φ :
R+(s)→ N(d) and s 6=∞, d 6=∞ then φ is a step function.

Proof: As N(d) is a finite discrete set and φ is a decreasing
function, we have φ(s1) ≤ φ(s2), s1 < s2. Therefore, we can

Fig. 2. An example of a φ function illustrating its decreasing step function
form. The x-axis represents the scale factor which is used to reduce the original
image. The y-axis represents the number of detections provided by the given
detection framework.

define the limited intervals Ai = [ai−1, ai[, such that ai−1 ≤
ai and φ(ai) = i+ 1. Hence, we can write φ as:

φ(x) = 1χA1(x)+2χA2(x)+· · ·+dχAd
(x)

Informally, there are more elements in R+(s) than in N(d),
so if φ is a decreasing function, by the pigeonhole principle
∃x, y ∈ R+(s), x 6= y, such that φ(x) = φ(y). Hence as the
counter-domain is discrete and φ is a decreasing function,
φ must be a step function. An example of a function φ is
sketched in the Fig 2.

A. Training Images

In order to state our algorithm in the next section, we define
the concept of training image.

Definition 2. (Training image) Let I be a set of images of
same dimension, and di be the greatest distance between an
object to be detected in the scene and the camera that produces
i ∈ I . So i is a training image ī if {∀j ∈ I − {̄i} | dj < dī}.

Informally, a training image is the “worst-case” to be de-
tected in the set of images I . In general, ī contains the smallest
object (in dimension) to be detected in comparison to all the
objects present in the other images of I . Our experiments show
that if I is homogeneous in di, i.e. |di − dj | < θ, for a small
θ, a random image can be chosen as a training image.

III. NEW TECHNIQUE

In this section we present our calibration method.

A. Formulation

Initially, we define one necessary property that the object
detection framework must satisfy:

• Decreasing property: the number of object detections
must be inversely proportional to the image dimension.

This property is very common since most kind of features
extracted from the image are scale variant. For example, we
can shrink an image enough that an object becomes no longer
detected.

The key is to find an image scale such that there is no
decrease of robustness, informally, the image is not reduced
enough to vanish an object. In order to solve this problem,



the relation between the number of detections and the image
scale has to be explored.

For a given input image, object detection framework, by def-
inition, always return a unique natural number of detections.
Hence we can infer that the relation between the number of
detections and image scales is a function. Considering that
the framework satisfies the decreasing property, we claim that
the function that maps the scale of a image resolution to
its number of object detections is a decreasing step function
φ : R+(s)→ N(d) as defined in Section 2.

B. Solution

Our algorithm explores iteratively the φ function. We look
at the φ function generated by the training image ī as defined
in Section 2. At this point, a supervised step is required, and
the number of objects detected D, excluding false positives
from ī must be provided. According to the conventions stated
in Section 2, we are interested in:

φ−1(D) = AD = [aD+1, aD[

which our algorithms uses to return the best scale s as:

s =
aD+1 + aD

2

We consider the best scale the mean value of the interval
represented by φ−1(D) for stability matters. Any other value
on the extremes are susceptible to generate false positives or to
vanish one of the correct detections. Therefore, s is the scale
rate used to resize all the images in I , i.e. length and width
are divided by s.

IV. IMPLEMENTATION

Algorithmically, we calculate the limits of AD using an
iterative approach. Basically, we start by s = 1, increasing it
at each iteration by a constant ε. At every iteration, we call
the object detection framework and compare the number of
detections with the desirable value D. We save the first and
the last occurence of D, and then we take the average.

As a trade-off, if ε is too small, the convergence will take
more time, but the precision will be increased. If ε is too large,
the convergence will be quick but the precision may not be
granted.

Formally, the pseudo-code 1 states our calibration method.

V. EXPERIMENTS

A. Image datasets

For experiments, we used two datasets. First, we applied our
method on the Caltech frontal face dataset [7]. This database
was collected in 1999. It contains 450 frontal face images
of 896 × 592 pixels in a JPEG format. There are pictures
of 27 individuals under different lighting, expressions and
backgrounds.

The Caltech dataset was interesting for our experiments
because all the faces are not cropped and the background of the
images contribute to a considerable number of false positive
detections. Some examples of images from the dataset are in

Algorithm 1: Calibration method
input : A training image ī, the number of objects to be

detected D and an iterative step constant ε.
output: A scale rate

s← 1
left← 1
right← 1
left defined = false
d = number of detections(̄i)
while d ≥ D do

if d = D and left defined = false then
left← s
left defined = true

if left defined = true then
right← s

s← s+ ε
ī← scale(̄i, s)
d = number of detections(̄i)

return (left+ right)/2

Fig. 3. 20 of 592 images of the Caltech Dataset

Fig 3. We verified improvements proposed by our theory using
this dataset.

The second dataset we used was The Images Groups Dataset
[8] provided by Cornell University. It contains a collection
of people images from Flickr images in “real” situations. By
real, we mean that the pictures represent a variety of back-
grounds, size and number of faces with different iluminations
and rotations. They were ramdomly chosen from personal
collections to build this dataset. The dataset is divided into
several categories. We used only the “Group” category for
our experiments. It contains 2, 231 photos of different groups
of people with different backgrounds. The files have different
sizes and resolutions. Some examples of images from the
dataset is in Fig 4. We validated our method using this dataset.

B. Formulation

First experiment: The first experiment measures the be-
havior of variations of the image dimension and its detection
times. Robustness was not analyzed in this experiment.

Four inteporlation kernels were chosen. The linear (LIN-
EAR), the bi-cubic (CUBIC), the nearest-neighbor (NN) and



Fig. 4. 20 of 2231 images of the Cornell Dataset

the one based on pixel area relation (AREA). [9]
2576× 1932 pixels JPG images were used with 5 faces to

be detected, only for this experiment.
Second experiment: The second experiment explores

the calibration method. A comparison between a non-scaling
detection and performing our algorithm is made. Performance
and robustness were analyzed.

The training image chosen was the image 0328.jpg from
the Caltech dataset.

Third experiment: The third experiment explores the
performance of our algorithm in a dataset with groups of
different numbers of people. Using the Cornell dataset [8],
we performed a series of detections over groups of these im-
ages. The images vary over illumintation conditions, rotations,
filesize and resolution. We analyzed the impact of variances
in our results.

VI. RESULTS AND DISCUSSION

For all the experiments, we used the object detection frame-
work proposed by Viola and Jones in [1]. The tests were
implemented using the OpenCV Library [10] performing a
face detection sequentially on every image from the datasets.
The OpenCV Library also provides image resizing procedures
with different interpolation kernels. All the tests were run on
an Intel Core 2 Duo processor 2GHz, 3GB RAM and a Linux
Kernel 2.6.32-32-generic 64-bits.

A. Performance

The relation between the scale and detection time has an
exponential decay as we can see on the graph in Fig 5. The
behavior of all the other interpolation kernels is quite similar.

From that, we can conclude that if the performance has to
be improved on an object detection framework, there is always
a limit for substantial gains. Values of scale s where φ(s) lies
in the exponential “tail” will not improve the detection time
substantially as long as s increases, even for different kernels.

The calibration method’s output is presented in the Table
I for the four interpolation kernels used. Average scales are
calculated by choosing different ε ∈ [0.005, 0.150] as inputs
for the calibration algorithm.

As expected by the results on Fig 5, the average detection
times of the whole dataset for the 4 kernels are close to each
other. This total average time is 2m15.979s.

Fig. 5. Kernel comparisons

TABLE I
AVERAGE SCALES (LEFT) AND COMPLETE DETECTION TIMES (RIGHT)

Kernel Average Scale

AREA 2.35

CUBIC 2.26

NN 2.42

LINEAR 2.28

Method Detection Time

No-scaling 8m28.998s

Scaling 2m15.979s

TABLE II
NUMBER OF DETECTIONS FOR SCALES OF THE TABLE I

Kernel 0 faces 1 face 2 faces 3 faces 4 faces 5 faces

(none) 6 387 51 4 2 0

AREA 4 426 17 2 0 1

CUBIC 5 428 15 2 0 0

NN 4 430 15 1 0 0

LINEAR 4 429 17 0 0 0

The complete detection time using the calibration method
is about 3.76 better than the detection without using scale
reduction, as it is shown in Table 5.

B. Quality

We analyzed the robustness achieved by our algorithm.
In the Caltech Database, all the images have only one face
to be detected. The images can also provide false positives
detections, that is verified by the first line of column II. The
Viola and Jones framework without any dimension reduction
had a total of 51× (2− 1) + 4× (3− 1) + 2× (4− 1) = 65
false positives detections.

As we can see in Table II, the calibration method was more
robust than the classical no-scaling method. Among the 4
kernels analyzed, the LINEAR kernel achieved best results
with a total of 17×(2−1) = 17 false positives detections and
only 4 images where none detection was found, representing
a gain of 25.37% of robustness.

Table III shows how the robustness behaves on the variation
of the scale. Note that when the scale is higher than 3, the
number of detection misses increase, even though the number



TABLE III
SCALE IMPACT ON ROBUSTNESS FOR THE LINEAR KERNEL

Scale 0 faces 1 face 2 faces 3 faces 4 faces 5 faces

1.5 4 413 32 1 0 0

2.2 4 429 17 0 0 0

3.0 4 437 9 0 0 0

4.0 6 440 4 0 0 0

5.0 13 433 4 0 0 0

6.0 15 435 0 0 0 0

TABLE IV
DETECTION NUMBERS FOR SCALE 3 AND FOR THE CUBIC KERNEL

Scale 0 faces 1 face 2 faces 3 faces 4 faces 5 faces

3.0 6 437 6 1 0 0

of false detections decrease. In fact, the calibration method
avoids ”0 faces” detections over a small number of false
detections.

The value of 3.0 for scale has a better result than the scale
found by our calibration method: 2.2. On the other hand,
the value 3.0 is closer to one of the limit of this closed
interval φ−1(1), 3.442 than 2.2. That means that the scale
3.0 is more likely to have loss of robustness than 2.2. In fact,
for the CUBIC kernel, a scale of 3.0 results in a loss of 1
correct detection as shown in Table IV. Note that the “0 faces”
detections increased by 1, showing a worse detection than the
2.2 scaling.

C. Groups of people

Our third set of experiments evaluated the performance of
our method in a set of heterogeneous images. By heteroge-
neous, we mean images with different number of people, under
different illumination conditions, rotations, filesize, etc.

As a first result, we noticed that the performance improves
if we separate the dataset into groups with the same number
of faces to be detected. If we perform our calibration method
on these groups we calculate an optimized scale that better
represents each group. For example, considering the whole
dataset, the scale is equal to the minimum scale of the groups,
which, in our results is 1. If we apply our method separately
to each group with its own scale rate, we achieve better
performance, and also better robustness.

In order to evaluate the impact of the variation of the scale,
we used only image files larger than 140KB. It represents
more than half of the Cornell dataset and it showed improved
gains. Small filesize images do not support a considerable
resizing and therefore the gains are not substantial.

The Cornell dataset provides the eyes position of the faces of
the images. So given face detection coordinates, we considered
it a false positive (FP) if it does not surround a pair of
corresponding left and right eye coordinates.

The dataset provides images of groups of 2, 3, · · · , 37
people. We used our method in images larger than 140KB.
The training image was the image with minimum distance
between the eye coordinates provided. We claim that in

TABLE V
RESULTS FOR THE GROUPS OF THE CORNELL DATASET WITHOUT NO PRE

AND POST PROCESSING

#Faces #Detections Time Detections FP

2 70 50.59s 69 27

3 153 80.43s 108 35

4 1156 468.43s 1078 160

5 735 239.75s 659 69

6 564 148.03s 494 61

7 399 87.23s 350 31

8 472 95.66s 446 41

9 558 98.37s 532 71

10 340 51.99s 326 35

11 451 59.27s 420 30

12 468 57.32s 435 47

13 182 20.41s 158 8

14 350 38.79s 333 27

15 330 33.39s 317 18

16 192 17.59s 182 11

17 136 11.98s 122 4

18 198 16.18s 185 6

19 171 13.39s 157 10

20 180 12.94s 170 11

21 126 8.90s 115 11

22 66 5.02s 60 2

23 23 1.51s 19 1

24 48 3.06s 47 2

25 50 2.94s 47 1

26 52 3.09s 52 1

28 84 4.71s 83 9

29 87 4.35s 79 4

30 90 4.12s 71 0

33 66 2.96s 57 4

37 37 1.29s 24 2

real applications this step is human supervised. We used a
calibration step ε = 0.01.

Table V shows the results of not using any processing except
for the Viola and Jones face detector. Table VI shows the
results for our method. In both tables, each line represent a
detection run over a group with same number of “#Faces”. The
total number of detection is given by “#Detections”. These
information is given in a metadata file by the Cornell dataset.

In most part of the groups, we achieved an increase of
performance and robustness. For some groups there were no
increase of performance. The training image, which contains
the smallest faces of the group, could not be resized more than
a 1 + ε rate. For other groups (> 12), our method showed a
small loss of robustness exposing a limitation. This is caused
by the interference of false positive detections. During a resize
process, false positives may appear. In our experiment, this
situation was rare, occuring only 16 times over 7, 260 correct
face detections. For groups of a large number of people, our
method did not express substantial gains, most parts of the
time, the appearance of false positives reduced the robustness.
On the other hand, the performance for groups with small



TABLE VI
RESULTS FOR THE GROUPS OF THE CORNELL DATASET USING OUR

METHOD

# Faces # Detections Scale Time Detections FP

2 70 1.225 37.95s 70 23

3 153 1.125 67.12s 117 25

4 1156 1.105 420.29s 1080 133

5 735 1.03 226.91s 661 85

6 564 1 148.90s 494 61

7 399 1.05 83.18s 353 35

8 472 1.115 77.29s 472 38

9 558 1.135 83.24s 533 52

10 340 1.115 41.20s 340 29

11 451 1.01 57.32s 421 33

12 468 1.085 50.17s 430 39

13 182 1.025 19.22s 164 9

14 350 1.105 31.65s 333 31

15 330 1.075 28.78s 330 16

16 192 1.1 14.48s 181 12

17 136 1.05 10.76s 123 4

18 198 1.03 15.15s 187 8

19 171 1 13.41s 157 10

20 180 1 12.99s 170 11

21 126 1.145 6.82s 112 7

22 66 1.105 4.15s 59 1

23 23 1.06 1.33s 19 1

24 48 1.03 2.81s 47 3

25 50 1.055 2.60s 46 1

26 52 1.13 2.41s 52 52

28 84 1.075 3.83s 83 6

29 87 1 4.41s 79 4

30 90 1 4.22s 71 0

33 66 1.015 2.91s 56 3

37 37 1.015 1.21s 20 2

number of people per image were remarkable.
In sum, the total gain in performance was 10.26%. The in-

crease of correct detections was only 0.34% and the reduction
of false positives was 0.67%. Our method showed significant
gains in performance maintaining a stable robustness validat-
ing our theory.

D. Limitations

The main limitation of our algorithm is the step of finding
the training image ī of a given image set I . This image is re-
sponsible for the maintenance of the robustness. Considering a
heterogeneous set of images as we showed in our experiments,
we only have significant gains if we split the set into groups of
homogeneous images (same number of objects to be detected),
otherwise the gains may not be considerable.

Another limitation is the definition of a general scale for
groups of images with a big number of objects to be detected.
The experiments showed that for groups of images with a
large number of objects, there is no scale such that resizing
every image can guarantee the robustness. This is due to image
quality and resolution or even the influence of false positives.

Finally, a limitation in our approach is on the setup of the
iterative step ε. Very small values can extend the running time
of the algorithm in great proportions that could invalidate the
use of this approach. We plan to find different solutions for
finding the closed interval AD and the mean value.

VII. CONCLUSION

A calibration method was presented for reducing the detec-
tion time of object detection framework. This method did not
change in any aspect the framework itself. All the gains in
performance were achieved by a pre and post processing. Our
results showed, in most part of the cases, a gain of performance
and a gain of robustness by supressing false positives. The
comparison of 4 different 2D interpolation kernels was made
for the proposed method using the Viola and Jones face
detection framework. The LINEAR interpolation kernel was
the most robust one with gains of 25% in detections performed
in the Caltech Dataset. Our results using the Cornell Dataset,
showed limitations in our method. Nevertheless, we achieve
substantial gains in performance and robustness for most parts
of the groups. In average, we achieve a gain of 10% in
performance.

An application for future work is to study how a real-
time object detection framework would adapt the calibration
method presented in this work. Consider an enviroment where
a user has a camera with a face detection software. The
challenge for this kind of application is to define the training
image ī to calculate the best scale because there is no fixed
image set I .
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