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Abstract—In this work, we investigate the benefits of incorpo-
rating saliency maps obtained with visual attention computational
models into three image quality metrics. In particular, we
compare the performance of simple quality metrics with quality
metrics that incorporate saliency maps obtained using three
popular visual attention computational models. Results show that
performance of simple quality metrics can be improved by adding
visual attention information. Nevertheless, gains in performance
depend on the precision of the visual attention model, the type
of distortion, and the characteristics of the quality metric.
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I. INTRODUCTION

Objective visual quality metrics can be classified as data
metrics, which measure the fidelity of the signal without
considering its content, or picture metrics, which estimate
quality considering the visual information contained in the
data. Customarily, quality measurements in the area of image
processing have been largely limited to a few data metrics,
such as mean absolute error (MAE), mean square error
(MSE), and peak signal-to-noise ratio (PSNR), supplemented
by limited subjective evaluation. Although over the years data
metrics have been widely criticized for not correlating well
with perceived quality measurements, it has been shown that
such metrics can predict subjective ratings with reasonable
accuracy as long as the comparisons are made with the same
content, the same technique, or the same type of distortions.

One of the major reasons why these simple metrics do not
generally perform as desired is because they do not incorporate
any human visual system (HVS) features in their computation.
It has been discovered that, in the primary visual cortex of
mammals, an image is not represented in the pixel domain, but
in a rather different manner. Unfortunately, the measurements
produced by metrics like MSE or PSNR are simply based on
a pixel to pixel comparison of the data, without considering
what is the content and the relationships among pixels in an
image (or frames). In the past few years, a big effort in the
scientific community has been devoted to the development of
better image and video quality metrics that incorporate HVS
features (i.e. picture metrics) and, therefore, correlate better
with the human perception of quality [1][2].

A recent development in the area of image quality consists
of trying to incorporate aspects of visual attention in the design
of visual quality metrics[3], mostly using the assumption that

visual distortions appearing in less salient areas might be less
visible and, therefore, less annoying [4], [5]. This research
area is still in its infancy and results obtained by different
groups are not yet conclusive, as pointed out by Engelke et al
[6]. Some researchers have reported that the incorporation of
saliency maps increases the performance of quality metrics,
while others have reported no or very little improvement.
Among the works that have reported some improvement, most
use subjective saliency maps, i.e. saliency maps generated
from eye-tracking data obtained experimentally [7]. But, al-
though subjective saliency maps are considered as the ground-
truth in visual attention, they cannot be used in real-time
applications.

To incorporate visual attention aspects into the design of im-
age quality metrics, we have to use visual attention computa-
tional models to generate objective saliency maps. This raises
the question of how the metric performance is affected by the
“precision” of the saliency map and the integration model.
Another open question is how the distortion type affects the
saliency map and, consequently, the metric performance. Very
few works tested the incorporation of specific computational
attention models into image quality metrics [8]. Up to date,
there has been no work that compared the incorporation of
visual attention computation models versus subjective saliency
maps.

In this work, we investigate the benefit of incorporating
objective saliency maps into full-reference and no-reference
image quality metrics. We compare the performance of the
original quality metrics with the performance of quality met-
rics that incorporate objective saliency maps. Also, we study
the effects that different types of degradations have on the
computational model and, consequently, on the performance
of the final metric.

II. INCORPORATION OF VISUAL ATTENTION MODELS

Visual attention is a feature of the HVS that is responsible
for defining which areas of the scene are relevant and should
be attended. There are two visual selection mechanisms:
bottom-up and top-down. The bottom-up mechanism is an
automated selection that is controlled mostly by the signal.
It is fast and short lasting, being performed as a response
to low-level features that are perceived as visually salient.
The top-down mechanism is controlled by higher cognitive
factors and external influences, such as semantic information,



viewing task, and personal preferences, context. It is slower
and requires a voluntary effort.

In this work, we consider three popular bottom-up visual
attention computational models: Itti’s model [9], Achanta et
al.’s model [10], and GAFFE model (Gaze-Attentive Fixation
Finding Engine) [11]. For a given image, these models gener-
ate a gray-scale saliency map indicating image regions that are
most likely to attract attention. In the saliency maps, higher
luminance values correspond to higher saliency pixels, while
lower values correspond to lower saliency ones. Figs. 1(a)
and (b) depicts the images ‘Rapids’ and ‘Caps’, respectively,
while the corresponding saliency maps generated using Itti’s,
Achanta’s, and GAFFE models are depicted in Figs. 1.(c)-
(h). Notice that the saliency maps are able to capture the most
salient areas of the images: the colorful caps and the boat. But,
the several saliency maps are very different from each other.
We used the subjective saliency maps from the TUD LIVE Eye
Tracking database as our visual attention ground-truth [12].
These saliency maps were collected in a subjective experiment
that used twenty-nine source images from the LIVE database
[13]. Figs. 1(i) and (j) depict the subjective saliency maps
corresponding to the images ‘Rapids’ and ‘Caps’.

We combine the information from the saliency maps into
three different full-reference (FR) image quality metrics: Mean
Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity (SSIM) index [14]. The MSE and PSNR
error maps are calculated using the following equations:

MSE(x, y) = (Io(x, y)− It(x, y))
2
, (1)

and

PSNR(x, y) = 20 log10

(
MAXi/

√
MSE(x, y)

)
(2)

where Io(x, y) is the original image pixel, It(x, y) is the test
image pixel, MAXi is the highest intensity level of the pixels,
and x and y are the horizontal and vertical coordinates.

The third metric, SSIM, is a more complex and robust full-
reference (FR) image quality metric [13]. The general equation
for SSIM is:

SSIM(Io, It) =
(2µoµt + C1)(2σot + C2)

(µ2
o + µ2

t + C1)(σ2
o + σ2

t + C2)
, (3)

where µ is the average intensity, σ is the standard deviation,
and σot is the covariance between the original image (Io) and
the test image (It). The variables C1, C2, C3 are control con-
stants used to avoid problems when the denominator reaches
values close to zero.

The combination or integration process consists of using
the gray-scale pixel values of the saliency maps as weights
for the error maps generated by the three quality metrics. The
modified saliency-based quality metrics for the corresponding
FR metrics are given as

SM-MET =

∑M

x=1

∑N

y=1
MET(x,y)·SAL(x,y)∑M

x=1

∑N

y=1
SAL(x,y)

, (4)

where SAL(x, y) is the saliency map pixel and MET(x, y)
is the error map pixel calculated using one of the FR quality

(a) Original image ‘Rapids’ (b) Original image ‘Caps’

(c) Itti’s map of ‘Rapids’ (d) Itti’s map of ‘Caps’

(e) Achanta’s map of ‘Rapids’ (f) Achanta’s map of ‘Caps’

(g) GAFFE map of ‘Rapids’ (h) GAFFE map of ‘Caps’

(i) Subjective map of ‘Rapids’ (j) Subjective map of ‘Caps’

Fig. 1. Saliency maps corresponding to the images ‘Rapids’ and ‘Caps’.

metric (SSIM, PSNR or MSE). This particular combination
process was used because it was the simplest solution that
allowed that the same model was used for all metrics. This
approach makes it easier to compare the performance of the
different metrics tested. Other combination models can be
found in the work of Redi et al. [15].

III. SIMULATION RESULTS

The performance of an image quality metric is measured
by how well its output scores (quality estimates) correlate
with the Mean Observer Scores (MOS) given by observers in
a subjective experiment. To compare the performance of the
three original quality metrics with the saliency-based quality
metrics (Eq. 4-), we used the LIVE database [13] which
contains 779 images with the following degradations: JPEG
(175 images), JPEG2k (169 images), Gaussian Blur (GB,
145 images), Fast Fading (FF, 145 images), and White Noise



TABLE I
SPEARMAN CORRELATION COEFFICIENTS FOR MSE METRIC.

Model JPEG JPEG2k GB FF WN All
MSE 0.90117 0.88872 0.78249 0.88549 0.98564 0.87270

Su-MSE 0.91891 0.91338 0.81171 0.90894 0.98526 0.89080
Io-MSE 0.91702 0.90620 0.80246 0.90200 0.98530 0.88650
It-MSE 0.91895 0.90500 0.80360 0.90250 0.98550 0.88620

Ao-MSE 0.91187 0.90757 0.80522 0.90432 0.98548 0.88650
At-MSE 0.91170 0.90470 0.79640 0.90180 0.98560 0.88480
Go-MSE 0.91670 0.91020 0.79140 0.90510 0.98530 0.88790
Gt-MSE 0.91780 0.91150 0.79030 0.90430 0.98520 0.88830
Sw-MSE 0.90091 0.89250 0.74067 0.87540 0.98497 0.86860

TABLE II
SPEARMAN CORRELATION COEFFICIENTS FOR PSNR METRIC.

Model JPEG JPEG2k GB FF WN All
PSNR 0.90120 0.88872 0.78249 0.88549 0.98564 0.87270

Su-PSNR 0.91891 0.91338 0.81159 0.90894 0.98523 0.89080
Io-PSNR 0.91696 0.90620 0.80246 0.90200 0.98530 0.88240
It-PSNR 0.91696 0.90500 0.80370 0.90250 0.98550 0.88620

Ao-PSNR 0.91187 0.90757 0.80522 0.90432 0.98548 0.88650
At-PSNR 0.91170 0.90470 0.79640 0.90180 0.98560 0.88480
Go-PSNR 0.91670 0.91020 0.79140 0.90510 0.98530 0.88790
Gt-PSNR 0.91780 0.91150 0.79030 0.90430 0.98520 0.88830
Sw-PSNR 0.90091 0.89250 0.74070 0.87550 0.98500 0.86860

TABLE III
SPEARMAN CORRELATION COEFFICIENTS FOR SSIM METRIC.

Model JPEG JPEG2k GB FF WN All
SSIM 0.96958 0.95060 0.92506 0.93681 0.96410 0.92210

Su-SSIM 0.97029 0.95188 0.92709 0.94480 0.96889 0.93250
Io-SSIM 0.96874 0.94850 0.92657 0.94287 0.96760 0.93090
It-SSIM 0.95795 0.95060 0.92730 0.94360 0.96960 0.93200

Ao-SSIM 0.96821 0.95000 0.93663 0.94462 0.96473 0.93320
At-SSIM 0.96830 0.94840 0.93580 0.94370 0.96700 0.92990
Go-SSIM 0.96990 0.95560 0.92770 0.94660 0.96860 0.93350
Gt-SSIM 0.96880 0.95410 0.92550 0.94580 0.96940 0.93300
Sw-SSIM 0.96388 0.94593 0.89801 0.93302 0.95786 0.91700

(WN, 145 images). The LIVE database was chosen because it
contains different kinds of distortions that reflect a broad range
of image impairments commonly found in image processing
applications. Also, this database is the same used by the
researchers in TuDelft to generate a database of subjective
salience maps [7][12]. Therefore, using this database allows
us to compare differences in performance of the metrics
caused by the incorporation of subjective maps versus the
incorporation of ‘computed’ salience maps.

For each image in the database, we evaluate its quality
using the original quality metric and the saliency-based quality
metrics. The database contains the DMOS (Differential of
MOS) for each image, which is the difference between the
score given by a subject to the original image and the score
given by a subject to the degraded image. To understand if
metric performance improves with the saliency information,
we calculate the Spearman correlation coefficient between the
metric output values and the DMOS [16]. The correlation
coefficients are calculated separately for each degradation type
and for the set containing all degradation types.

Although the saliency map is generally estimated using the
original images, since we want to analyze how the perfor-
mance of the saliency-based metrics is affected by the use
of degraded maps, we estimate saliency maps using both
the original and test images . We test the incorporation of
subjective (su) saliency maps and the saliency maps obtained
with the tested computational models. To make sure that the
differences in performance are not by chance, we also test the
performance with incorporation of ‘switched’ (sw) saliency
maps, which consisted of picking a random saliency map
corresponding to another image in the database. To identify
the different models, we substitute the initials SM in Eq. 4
by the first letter of the saliency map used (‘I’ for Itti, ‘A’
for Achanta, and ‘G’ for GAFFE) followed by ‘o’ (original)
or ‘t’ (test), indicating whether the saliency map is obtained
using the original or test image . In Tables I-III, we present
the Spearman correlation coefficients for MSE, PSNR and
SSIM and their saliency-based versions. Correlation values of
saliency-based metrics that represent a gain in comparison to
the original metrics are depicted in bold.



For saliency-based MSE and PSNR metrics, when we
consider each individual distortion (columns 2-6 of Tables I
and II), the correlation coefficients improve for almost all
distortions, with performance gains varying from 1.2% to
2.1%. The only exception is the degradation White Noise for
which the performance decreases with the incorporation of
any type of saliency map. Because of the similarity between
PSNR and MSE, the correlation values of their corresponding
saliency-based metrics are very similar. The best gains are
obtained for the subjective maps (1.7% to 2.5%) and GAFFE
objective maps (1.6% to 2.2%). Achanta’s model presents the
best performance for the degradation Gaussian Blur.

For saliency-based SSIM, considering again only the indi-
vidual distortions (columns 2-6 of Table III), the performance
improves when subjective and GAFFE saliency maps are
used. Although GAFFE is the computational model with the
best performance, the gains in performance vary with the
distortions. The gain for JPEG is only 0.03%, while for other
distortions they range from 0.2% to 1%. When Achanta and
Itti models are used there is no improvement for JPEG and
JPEG2k. For the other degradations, using Itti and Achanta
models provides improvement gains from 0.06% to 1.2%. The
degradation corresponding to the worst performance is White
Noise, with gains from 0.06% to 0.4%. For Gaussian Blur,
Achanta’s model incurs in a higher performance gain (1.2%)
than Itti’s model (0.16%) or GAFFE (0.28%).

For the set containing all types of distortions (‘All’ – column
7 of Tables I-III), the correlation coefficients of saliency-based
metrics show gains raging from 1.1% to 1.9%. The subjective
saliency maps show the highest gain in performance, followed
by the GAFFE saliency maps generated from original images.
The saliency maps obtained from test images presented an
inferior performance for both GAFFE and Itti models, but
a better performance for Achanta. For the switched saliency
maps, the performance was worse than with any other saliency
map. These results seem to point out that the precision of the
saliency map has an impact on the performance of the metrics.
The correlation values are comparable to the values found by
other researchers [7].

Overall, the performance gains for MSE and PSNR were
higher than for SSIM. This is expected since SSIM already
includes some of the same parameters (e.g. contrast and
texture) that are taken into account by attention models. The
computational model that presents the best performance is
GAFFE. Although the results of GAFFE for SSIM are not as
significant as for PSNR and MSE, the gains in performance are
close (sometimes higher) than what is obtained with subjective
saliency maps.

For Gaussian Blur, the best performance model is Achanta’s
– the simplest of the three models tested. Blur removes image
details making it easier for simpler models to find salient areas.
Most models shows no or very small gain in performance for
White Noise. Noise adds more details to the saliency map,
making more difficult to find salient areas. These results are in
agreement with other studies that show that the importance of
saliency maps depends on the type of distortion. To exemplify

this effect, in Fig. 2 the saliency maps corresponding to the
images ‘Caps’ with 2 levels of blur are depicted. It can be
observed that the saliency maps do not change significantly
with the increase in blur, from level 1 to level 2. On the other
hand, in Fig. 3 the saliency maps corresponding to the images
‘Caps’ with 2 levels of noise are depicted. It can be observed
that the saliency maps change significantly with the increase
in noise, from level 1 to level 2. In this particular case, the
salient areas have increased.

(a) Blur level 1 (b) Blur level 2

(c) Itti’s saliency map of (a) (d) Itti’s saliency map of (b)

(e) Achanta’s saliency map of (a) (f) Achanta’s saliency map of (b)

Fig. 2. Saliency maps of the image ‘Caps’ with two levels of blur, obtained
using Itti’s and Achanta’s model.

IV. WORK UNDER PROGRESS ON NO-REFERENCE
METRICS

Requiring the reference image or even a small portion of it
becomes a serious impediment in many real-time transmission
applications. For such applications, it is important to develop
ways of blindly estimating the quality of an image using
No-Reference (NR) image quality metrics. It turns out that,
although human observers can usually assess the quality of an
image without using the reference, designing a NR metric is
a difficult task because it is hard to differentiate the natural
content from the defects that cause impairments. One of the
possible approaches to this problem consists of taking a mul-
tidimensional feature extraction approach by recognizing that
the perceived quality of an image can be affected by a variety
of artifacts and that the strengths of these artifacts contribute to
the overall annoyance. The assumption here is that it is easier
to detect artifact signals and estimate their strength because
we know their appearance and the type of process which
generates them. The next step of our work consists of trying
to incorporate saliency maps into NR metrics. In particular,



(a) Noise level 1 (b) Noise level 2

(c) Itti’s saliency map of (a) (d) Itti’s saliency map of (b)

(e) Achanta’s saliency map of (a) (f) Achanta’s saliency map of (b)

Fig. 3. Saliency maps of the image ‘Caps’ with two levels of noise, obtained
using Itti’s and Achanta’s model.

we tested two artifact strength NR metrics: a blurriness and a
blockiness metrics.

Most of the existing blurriness metrics are based on the
idea that blur makes the edges larger or less sharp [17]. In
this work, we have implemented a NR blurriness metric which
makes use of this very simple idea. The algorithm estimates
the amount of blurriness by measuring the width of the edges
in the frame. The first step consists of finding strong edges
using the Canny edge detector algorithm [18]. The output of
the Canny algorithm gives the magnitude of the edge pixels,
M(i, j), and their orientation, O(i, j). We select only the
strong edges of the frame and estimate the width of a particular
edge by measuring the distance (in pixels) between two local
extreme values of the function M(i, j) in the direction given
by the orientation of the edge. The blurriness measure for an
image is obtained by averaging widths over all strong edges
of this frame, as given by:

Blur =
N,M∑

i=0,j=0
M(i,j)>25

width(i, j)
L

. (5)

To integrate the saliency maps with the described blurriness
metric, we create a blurriness map where each pixel corre-
sponds to its border width. If the pixel is not a border pixel, its
border width is set to zero. Therefore , to integrate the saliency
maps with the described blurriness metric, we use the same
combination process described in the previous section (see eq.
4).

The blockiness metric used in this work calculates the
blockiness strength by estimating luminance differences in

the image. We assume that the blocks used by the coding
algorithm have bs x bs pixels, with bs = 8. The first step of
the algorithm consists of calculating vertical and horizontal
spatial differences in the luminance component of the image.
Given the luminance component Y (i, j) of an image of size
MxN , the map of horizontal differences is given by:

Dh(i, j) = Y (i, j)− Y (i+ 1, j); (6)

while the map of vertical differences is given by:

Dv(i, j) = Y (i, j)− Y (i, j + 1); (7)

To calculate the blockiness strength, the algorithm selects the
pixels in the map of differences corresponding to the borders
of the blocks, i.e. the pixels located at spatial positions that
are multiples of bs, resulting in difference maps Dbs

v and Dbs
h .

Then, the sum of the new horizontal and vertical difference
maps are normalized, using the following equations

Mv =

∑M/bs
i=1

∑M
j=1(D

bs
v (i, j))∑M

i=1

∑M
j=1(Dv(i, j))

(8)

and

Mh =

∑M
i=1

∑M/bs
j=1 (Dbs

h (i, j))∑M
i=1

∑M
j=1(Dh(i, j))

. (9)

Finally, the blockiness metric is calculated taking an average
of the above expressions:

Block =
Mv +Mh

M ·N
. (10)

Since this blockiness metric does not generate an ‘error’ map
as a final step, we use as error maps the individual horizontal
and vertical luminance difference maps of the selected pixels
on the borders of the image (Dbs

v and Dbs
h ). To incorporate

saliency information, we combine the saliency maps with the
horizontal and vertical difference maps individually and, then,
calculate the blockiness metric as described above.

TABLE IV
SPEARMAN CORRELATION COEFFICIENTS FOR NO-REFERENCE METRICS.

Model JPEG JPEG2k GB FF
Block 0.9336 0.5650 0.6103 0.6761

Su-Block 0.9317 0.5798 0.3169 0.6399
Blur 0.4775 0.3527 0.7052 0.4922

Su-Blur 0.7548 0.2459 0.7680 0.6575

Table IV shows the Spearman correlation coefficients for
the blockiness and blurriness metrics, with and without the
addition of subjective saliency maps. The results are separated
by distortion type, since for the two artifact metrics used in
this work it does not make sense to test the complete set or
the white noise dataset. The only image dataset that contains
blockiness is the JPEG one. As expected, the blockiness
metric ‘Block’ shows a good correlation only for this dataset.
Unfortunately, the addition of the subjective saliency maps
did not improve its performance. The only case for which the
performance improved was for the distortion JPEG2k. But, in



this case the correlation values for the metric without saliency
maps was not big.

All datasets contain some type of blurriness. But, the
Gaussian Blur dataset is, obviously, the one with greatest
amount of blurriness. As expected, this is dataset for which the
blurriness metric performed the best. The addition of saliency
information did improve the performance. Interestingly, the
addition of saliency maps was also able to improve the
performance for two other datasets: JPEG and FastFading.

This is still a work under progress and the results obtained
may be improved if different approaches are used to combine
the saliency information with the NR metrics. Also different
results may be obtained for other NR artifact metrics. In
particular, the results obtained with the tested blockiness
metrics were not good. The reason for this was probably
the fact that its performance was already good for images
with blockiness. Therefore, adding the saliency information
interfered with the calculation of blockiness. On the other
hand, metrics like the blurriness metric tested that do not have
very good performance can benefit the addition of saliency
information.

V. CONCLUSIONS

Our results show that the computational models were able to
improve the performance of the image quality metrics tested.
The computational model that presented the best performance
was GAFFE with gains slightly lower than the subjective
saliency maps. Nevertheless, the improvement in performance
was higher for the simpler metrics (PSNR and MSE) than for
the more complex metric (SSIM). The results also showed
that the performance depended on distortion type, with White
Noise presenting the lowest gains. We also tested the com-
bination of saliency information with NR metrics. Although
the initial results were not as good as for FR metrics, the
performance seems to depend on the artifact type, the metric’s
algorithm, and the combination model.
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