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Fig. 1. Visualization of the velocity field of a lid-driven cavity experiment through Lattice Boltzmann fluid simulation.

Abstract—This work focus on scientific visualization techniques
and fluid simulation via Lattice Boltzmann Method (LBM). The
LBM is based on the fundamental idea of constructing simplified
kinetic models of fluids, which incorporates the essential physics
of microscopic processes so that the macroscopic averaged prop-
erties satisfy macroscopic equations. In this work, we developed a
fluid simulator based on 3D LBM. We incorporate the simulation
kernel in a software with GLUI user interfaces and traditional
fluid visualization techniques implemented through OpenGL re-
sources. The simulations can be controlled through the interfaces
as well as the parameters of visualization. We present two
fluid simulation examples and describe the capabilities of the
computational system developed.

Keywords-Fluid Simulation; Lattice Boltzmann; Scientific Vi-
sualization; Software Development.

I. INTRODUCTION

The study of fluid flow and its computational simulation
is extremely important from the scientific and technological
viewpoint, since there is a wide range of natural phenomena
that can be modeled through fluid theory. Some common en-
gineering examples are pumps, fans, turbines, airplanes, ships,
rivers, windmills, pipes, and more recently, the hemodynamics
of the arterial system. For computer graphics, the motivation
for such interest relies in the potential applications of these
methods for visual effects and in the beauty of the natural
phenomena that are involved [1], [2]. In particular, techniques
in the field of computational fluid dynamics (CFD) have been
applied for fluid animation in applications such as virtual
surgery simulators [3], visual effects [4] and games [5].

The traditional fluid animation methods rely on a top-
down viewpoint that uses 2D/3D mesh-based approaches mo-

tivated by the Eulerian methods of Finite Element and Finite
Difference in conjunction with Navier-Stokes equations for
fluids [6], [7]. Alternatively, lattice methods comprised of the
Lattice Gas Cellular Automata (LGCA) and Lattice Boltzmann
(LBM) can be used. The basic idea behind these methods is
that the macroscopic dynamics of a fluid are the result of the
collective behavior of many microscopic particles. The LGCA
simplifies the dynamics through simple and local rules for
particle interaction and displacements. On the other hand, the
LBM constructs a simplified kinetic model, a simplification
of the Boltzmann equation, which incorporates the essential
microscopic physics so that the macroscopic averaged prop-
erties obey the desired equations [8]. The LBM method has
developed into an alternative and promising numerical scheme
for simulating fluid flows in applications involving interfacial
dynamics and complex boundaries.

Once performed the fluid simulation, scientific visualization
methods can be applied in order to identify patterns of
scientific interest inside the fields. Scientific Visualization is
a computer-based field concerned with techniques that allow
scientists to create graphical representations from the results of
their computations, as well as to visualize features of interest
in a data set obtained through imaging instruments [9].

Despite being computational expensive, visualization tech-
niques have become essential in interpreting data because it
exploits the dominance of the human visual channel (more
than 50 percent of our neurons are devoted to vision) that
makes humans experts at using their highly developed pattern-
recognition skills to look anomalies. That is way visualization
techniques are so important for scientific data analysis.



Contributions: In this work, we developed a computa-
tional system that incorporates a 3D LBM simulator and scien-
tific visualization capabilities to analyze the generated fields.
Specifically, we implemented the D3Q19 LBM model [8] with
application for the simulation of a lid-driven cavity, a known
benchmark in computational fluid dynamics [10]. The obtained
fields (density and velocity) can be visualized using traditional
techniques (color map and oriented arrows), available in the
OpenGL library. Besides, GLUI user interfaces were designed
for parameters choice, fluid domain setup and simulation
control. Other visualization capabilities will be incorporated
in the system soon. The development of this software is the
contribution of this work.

The article is organized as follows. Section II reviews
related works. Section III describes the Lattice Boltzmann
technique and explain the D3Q19 LBM model. Section IV
presents the software developed. In section V we present the
simulation tests. Finally, section VI we offer final comments
and future works.

II. RELATED WORKS

This work focuses on the simulation and visualization
of three-dimensional fluids. The former involves numerous
works that can be coarsely classified into nonphysically and
physically-based models [1], [2]. Our work belongs to the
latter class, which can be subdivided into PDEs and lattice-
based techniques [11], [2]. PDE methods include continuous
fluid equations, like Navier-Stokes, and numerical techniques
based on discretization approaches, like Smoothed Particle
Hydrodynamics (SPH) [12], method of characteristics [13],
Moving-Particle Semi-Implicit methods [14], or Finite Ele-
ment ones [6].

Lattice-based techniques, like HPP, FHP, and Lattice Boltz-
mann, work from a different viewpoint [11], [15]. For ins-
tance, the LBM method is based on the fundamental idea
of constructing simplified kinetic models that incorporate the
essential physics of microscopic processes so that the macros-
copic averaged properties satisfy macroscopic equations. The
LBM is especially useful for modeling complicated boundary
conditions and multiphase interfaces [8]. Recent extensions of
this method are described, including simulations of fluid tur-
bulence, suspension flows, and reaction diffusion systems [16].

Lattice models have a number of advantages over more tra-
ditional numerical methods, particularly when fluid mixing and
phase transitions occur [17]. Simulation is always performed
on a regular grid, and can be efficiently implemented on a
massively parallel computer. Solid boundaries and multiple
fluids can be introduced in a straightforward manner and the
simulation is done efficiently, regardless of the complexity of
the boundary or interface [18]. In the case of LGCA, there
are no numerical stability issues because its evolution follows
integer arithmetic. For LBM, numerical accuracy and stability
depend on the Mach number (max-speed/speed of sound). The
computational cost of the LGCAs is lower than that for LBM
and PDE-based methods. However, system parametrization
(e.g., viscosity) is difficult to do in LGCA models, and the

obtained dynamics is less realistic than for PDE-based models
and LBM.

Real-time is a fundamental requirement for some appli-
cations, like games. So, in this case, the trade-off between
realism and frame rate becomes the main challenge. Therefore,
some authors proposed Navier-Stokes equation solvers based
on finite difference approaches, with special care regarding
stability and speed [19], as well as Lattice Boltzmann methods
(LBM) for graphics hardware [20].

Finally, scientific visualization techniques must be applied
to identify patterns of scientific interest inside the fields.
The techniques in scientific visualization can be classified
according to the data type they manage: scalar fields (F :
D ⊂ <3 → <), vector fields (F (x) is a vector, x ∈ D ⊂ <3)
and tensor fields compose the usual range of data types
in this field. Henceforth, we have methods for scalar fields
visualization (isosurface generation and volume rendering,
colormap, among others), vector fields visualization (field
lines generation, particle tracing, topology of vector fields,
LIC, among others) and techniques for tensor fields (topology
and hyperstreamlines) [9]. In this paper we have applied the
traditional methods of color map, for density field visualization
and oriented arrows for vector field visualization. Particle
tracing and streamlines will be implemented soon.

III. THE LATTICE BOLTZMANN METHOD

In recent years, Lattice Boltzmann Methods (LBM) have
taken the attention of the scientific community, due to their
ease of implementation, extensibility and computational ef-
ficiency. Specifically in computational fluid dynamic, LBM
has been applied due to its ease implementation of boundary
conditions and numerical stability in wide variety of flow
conditions with various Reynolds numbers [21]. The LBM
has evolved from the Lattice Gas Cellular Automata (LGCA),
which, despite its advantages, has certain limitations related to
their discrete nature: the rise of noise, which makes necessary
the use of processes involving the calculation of average values
and little flexibility to adjust the physical parameters and initial
conditions [21].

The LBM was introduced by [22], where the authors showed
the advantage of extending the boolean dynamics of cellular
automata to work directly with real numbers representing
probabilities of presence of particles. In the LBM, the domain
of interest is discretized in a lattice and the fluid is considered
as a collection of particles. These particles move in discrete
time steps, with a velocity pointing along one of the directions
of the lattice. Besides, particles collide with each other and
physical quantities of interest associated with the lattice nodes
are updated at each time step. The computation of each node
depends on the properties of itself and the neighboring nodes
at the previous time step [21], [8]. The dynamic of this method
is governed by the Lattice Boltzmann equation:

fi(~x+ ∆x~ci, t+ ∆t)− fi(~x, t) = Ωi(f), (1)

with i = 1, ..., z and where fi is the particle distribution
function, ~x is the lattice node, ~ci is one of the lattice directions,



∆x is the lattice spacing, ∆t is the time step, Ωi(f) is the
collision term, and z is the number of lattice directions.

In the work presented in [23], the authors proposed to
linearize the collision term Ωi around its local equilibrium
solution:

Ωi(f) = −1

τ

(
fi(~x, t)− feqi (ρ, ~u)

)
, (2)

where τ is the relaxation time scale and feqi is the equilibrium
particles distribution that is dependent on the macroscopic
density (ρ) and velocity (~u). The parameter τ is related
to diffusive phenomena in the problem, in this case with
the viscosity of the fluid [8]. The general equation of the
equilibrium function is given by [21]:

feqi = ρωi

[
1 +

(~ci · ~u)

c2s
+

(~ci · ~u)2

2c4s
− (~u · ~u)

2c2s

]
, (3)

where ωi are weights and the c2s is the lattice speed of sound,
which is dependent on the lattice.

There are different LBM models for numerical solutions of
various fluid flow scenarios, where each model has different
lattice discretization. The LBM models are usually denoted
as DxQy, where x and y corresponds to the number of
dimensions and number of microscopic velocity directions (~ci)
respectively. In this work we implement a 3D LBM model
known as D3Q19. This model has 18 possibilities of non-zero
velocities, as shown in Fig. 2, given by:

~c0 = (0, 0, 0),

~c1 = (1, 0, 0)v, ~c2 = (0, 1, 0)v, ~c3 = (−1, 0, 0)v,

~c4 = (0,−1, 0)v, ~c5 = (0, 0,−1)v, ~c6 = (0, 0, 1)v,

~c7 = (1, 1, 0)v, ~c8 = (−1, 1, 0)v, ~c9 = (−1,−1, 0)v,

~c10 = (1,−1, 0)v, ~c11 = (1, 0,−1)v, ~c12 = (0, 1,−1)v,

~c13 = (−1, 0,−1)v, ~c14 = (0,−1,−1)v, ~c15 = (1, 0, 1)v,

~c16 = (0, 1, 1)v, ~c17 = (−1, 0, 1)v, ~c18 = (0,−1, 1)v,

where v is the particle velocity related to each direction ~ci.

Fig. 2. The D3Q19 LB model, with 18 non-zero velocities.

The lattice speed of sound and the weights for the lattice
of the D3Q19 LBM model are given by:

c2s =
1

3
, ω0 =

1

3
, ω1−6 =

1

18
, ω7−18 =

1

36
, (4)

where ω0 is related to the rest particle. Replacing (4) in (3),
gives us the equilibrium function for the D3Q19 LB model:

feqi = ωi

[
ρ+ 3

(~ci · ~u)

v2
+

9

2

(~ci · ~u)2

v4
− 3

2

(~u · ~u)

v2

]
, (5)

where i = 0, ..., 18.
Our interest relies on the macroscopic scale, where the

physical macroscopic quantities seem to show a continuous
behavior. Then, the macroscopic density (ρ) and velocity (~u)
are calculated from the respective moments of the density
distribution, as follows:

ρ(~x, t) =

18∑
i=0

fi(~x, t), (6)

~u(~x, t) =
1

ρ(~x, t)

18∑
i=0

fi(~x, t)~ci. (7)

The main steps of the simulation algorithm can be summa-
rized as follows:

Algorithm I: D3Q19 LBM Model
1) Initialization (t = 0):

a) ρ(~x, 0) = 1.0
b) ~u(~x, 0) = (0, 0, 0)
c) fi(~x, 0) = feqi (ρ, ~u)

2) Main Loop (t = 1 to tmax):
a) Stream Step (8)
b) Update macroscopic density (6) and velocity (7)
c) Collision Step (9)

The Lattice Boltzmann equation (1) contains the two steps
of the simulation, namely: stream and collision. These two
steps can be computed separately, through the following
expressions:

f∗i (~x, t+ ∆t) = fi(~x−∆x~ci, t), (8)

and

fi(~x, t+ ∆t) = (1− τ)f∗i (~x, t+ ∆t) + τfeqi (ρ, ~u). (9)

Boundary conditions are fundamental features for fluid
simulation. The standard boundary conditions for LBM simu-
lations are no-slip walls [10]. It means that close to the
boundary the fluid does not move at all. Hence, each cell
next to a boundary should have the same amount of parti-
cles moving into the boundary as moving into the opposite
direction. This will result in a zero velocity, and can be
imagined as reflecting the particle distribution functions at
the boundary. The reflection process is shown in Fig. 3.
For the implementation, boundary and fluid cells need to
be distinguished. Thus, in the streaming step, the previous



algorithm must check the type of the cells: if the neighboring
cell is a boundary, the opposite distribution function from the
current cell would be taken, instead of applying the standard
stream calculation (8).

Fig. 3. No-slip obstacle cells directly reflect the incoming distribution
functions. (Source: [10])

External forces can be added to the LBM model [10]. To
introduce these, a force can be applied to all fluid cells through
the following expression:

~u = ~u+ τ ~F , (10)

where ~u is the macroscopic velocity, τ is the relaxation time
scale and ~F is the external force. For the implementation,
the previous algorithm must update the macroscopic velocity
given by (7) adding the external forces calculated by (10).
Thus, one may add a constant force such as gravity acting on
the particles.

IV. COMPUTATIONAL SYSTEM

The software developed incorporates the D3Q19 LBM
model for fluid simulation and scientific visualization tech-
niques. The implementation follows the steps of Algorithm I,
described in section III. For the LBM, initial conditions are
usually specified in terms of macroscopic variables such as
density and velocity. These macroscopic variables are trans-
lated into the corresponding microscopic particle distribution
values for each node of the lattice, which is done by solving
the equilibrium equation. Hence, the initial values for the
density and velocity of each node are plugged into equation (5)
and the equilibrium distribution values are set as the initial
particle distribution values for each node.

The LBM simulation generates the density (scalar) and the
velocity (vector) fields. The visualization of the density is
performed through a color map for each cell of the lattice:
we map the density range into a color scale and draw a
single point. Therefore, the field is rendered as a color field in
the display. The velocity field is visualized through oriented
arrows for each cell, which size is scaled according to the
velocity field intensity. Besides, the latter can be visualized
using a color map, likewise performed for the density field.

The computational system was developed in C/C + + lan-
guage, using the object oriented paradigm. The visualization
was implemented in OpenGL [24], [25], a traditional library
for computer graphics. The GLUT [26] programming interface
was used to implement the interactions between OpenGL and

the window system of our application. With GLUT we can use
the graphical resources of OpenGL and access the window
system functionalities of both Unix and Windows operating
systems. The graphical user interface, composed by buttons,
checkboxes, spinners, among others controls, is generated
using the GLUI [27], [28] API, which is a GLUT-based C++
user interface library also portable for Unix and Windows
systems. Therefore, the computational system developed can
be executed in any platform running OpenGL.

When using the application, the first step is to define the
fluid domain otherwise the interface controls will not be
available. The Fig. 4 shows the main window of the application
with a panel, in the right-hand side, that groups text boxes for
inputting integer values to set up the domain dimensions and
start the LBM simulation.

Fig. 4. Main window of the computational system.

The Fig. 5.(a) shows details of the controls for defining
domain dimensions and the LBM initialization. Once the
domain dimensions are defined, the user just press the button
Create LBM in order to initialize the simulation. Therefore,
a D3Q19 model is instantiated with constant density and
velocity fields (1.0 and (0, 0, 0), respectively, for any lattice
node). Besides, the relaxation time scale is set to 1.6.

(a) (b)

Fig. 5. (a)Menu to define the dimensions of the fluid domain and LBM
instantiation. (b) Control panel for initial fields and relaxation time scale
redefinition.



Fig. 6. Main window with density field visualization.

Then, the system displays a visualization of the density
field, which is pictured on Fig. 6. Also, a new panel grouping
text boxes for changing the initial fields and the relaxation
time scale as well as to define the gravity intensity, becomes
available, as shown in Fig. 5.(b).

Bellow the visualization area in the main window, there is
a panel with text boxes to set visualization parameters, such
as: arrow size, density point size, domain position, among
others. Through the mouse the user can change the camera
position for change the viewpoint, using transformations such
as translation, rotation or zoom effects. Besides, it is possible
to control the simulation by using the buttons:

• Start/Pause: This button starts and pauses the actual LBM
instance.

• Step by Step: Advances the simulation one step further
when pressed.

• Reset: Restart the simulation with the last initial condi-
tions defined.

V. RESULTS

In this section we describe some experiments using
the LBM model of section III for fluid simulation and
the software described in section IV for visualization of the
velocity and density fields. We show the behavior of the fluids
in two different set ups and highlight relevant aspects with
the visualization. As explained in section IV, macroscopic
view of the fields is via simple features such as colored points
and arrows. However, such 3D visualization is uncomfortable
and difficult to see. Thus, for the results above we chose to
generate 2D images of a defined section of the lattice. We
are visualizing the velocity field intensity using a color map
that goes from the black (smaller velocities) to red (velocity
intensity equal to one).

First experiment: the first example is the lid-driven
cavity, a benchmark test for two-dimensional fluid solvers, but
can be directly transferred to 3D. It consists of a rectangular
domain, like the one presented on Fig. 4, filled with fluid
and no-slip boundary conditions at the walls of the domain
boundary. The top wall is moving with a constant velocity

which transfers momentum for the fluid particles nearby the
upper wall. After some simulation steps, a vortex in the
middle of the domain is visible as well as smaller vortices
in the corners which rotate in the opposite direction of the
center vortex [10]. We initialize all cells with the equilibrium
function (5), using ρ = 1 and ~u = (0, 0, 0). Following the
reference [10], in the implementation of the lid-driven cavity
we add to the fluid cells with y = (SIZE − 2) a constant
velocity of (0.01, 0, 0)T during all simulation, where SIZE is
the y resolution. These lattice cells are called accelerator cells
and, once their density does not change, we do not have mass
conservation, which is a disadvantage of this implementation.
The Fig. 7 shows some snapshots of the lid-driven cavity simu-
lation with the following setup: domain dimensions 128×128,
τ = 1.9, ρ = 1.0, initial velocity far from the upper wall
is null, accelerator cells velocity (0.1, 0.0, 0.0). As expected,
after some simulation steps (6700, in this case), we do observe
a vortex in the middle of the domain as well as the smaller
vortices in the corners of the fluid domain. The visual patterns
observed agree with the results presented elsewhere [10].

Fig. 7. Lid-Driven cavity results for time steps 700, 2700, 6700 and 10700.

Second experiment: the next experiment shows another
example using a discontinuous density field. We define the
fluid domain dimensions as 128 × 128 and an inner region
with dimensions 32 × 32 located at the center of the fluid.
Thus, we set to the inner lattice cells the initial density value
2.0 and for the other cells 1.0 as the initial density value. The
other parameters are τ = 1.9 and ~u = (0, 0, 0) for all cells.
In a discontinuous density field, the region of higher density
tends to spread to the region of lower density. As we can see
in Fig. 8, the first two images show the propagation of the fluid
before colliding with the boundary. From the third image we
can see the result after the collision with the boundary, and
as the simulation evolves, we realize that the velocity field



tends to an equilibrium (softer colors), as seen in the last two
images. Besides, we can observe that the simulation creates a
velocity field with symmetric patterns. This happens because
of the geometry of the lattice that tends to create major streams
according to their directions.

Fig. 8. Density gradient results for time steps 40, 80, 100, 140, 180, 200,
980 and 1280.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we describe a 3D fluid simulator based on
the D3Q19 LBM model. This simulator is integrated into a
computer system with GLUI user interfaces and traditional
fluid visualization techniques implemented through OpenGL
facilities. Two fluid configurations was simulated and genera-
ted fields visualized using color map for scalar fields and
arrows for velocity field. The visual patterns observed agree
with the qualitative behavior expected. Further directions for
this work will be to quantify the precision of our simulator.
This can be done by comparing the simulation result with an
analytic solution of Navier-Stokes equations. Besides, other
visualization techniques must be incorporated in the software
using the functionalities of VTK library.
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