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Fig. 1. a) CT and b) MR images of a patient, and their automatic c) registration and d) fusion (CT and MR voxels on red and green channels respectively).
Also, e) CT and f) PET images of another patient and their automatic g) registration and h) fusion (CT in red and PET in green).

Abstract—Mutual information from Information Theory has
been found to be quite effective in medical image registration. The
efforts of neuro-scientists in specializing this measure in specific
information measures have been recognized by Bramon et al.
and they show that the specific information measures constitute
a promising tool for choosing more informative data for each
voxel in the fusion of images from different modalities. Aiming
at information-preserved multimodal visualization, we present a
proposal1 to align and to combine multimodal images with a
unified mutual information framework. As outcome, a control
volume, which identifies the origin of each voxel, is generated
and can be used e.g. for GPU-based volume rendering. Our
experiments with CT, MRI and PET images modalities confirm
the potential of our proposal to pre-process data for multimodal
visualization.

Keywords-Specific Information; Mutual Information; 3D Med-
ical Image Fusion; 3D Medical Image Registration; Multimodal
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I. INTRODUCTION

In many image based medical studies, it is interesting to
evaluate data acquired by different technologies or with vary-
ing parameters. This is because they provide complementary
information useful for diagnosis or surgical planning. For
example, X-ray based computed tomography (CT) is able to
reproduce bone structures in detail, while magnetic resonance
(MR) provides good contrast and discrimination of soft tissue.
Positron emission tomography (PET) from nuclear medicine
indicates areas where metabolism is higher, consisting of a
functional image. Many other modalities are available, and
clinicians are trained to examine all this information as sepa-
rate images, mentally reconstructing spatial correspondences,
a challenging task that can also often incur in precision errors.

Over the past decades, advances in acquisition technologies
and digital image processing have been providing clinicians
with better material and assistive tools to perform routine
tasks. One of the possibilities is to simultaneously visualize
different datasets in 3D, in a way that the different modalities
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in use can still be distinguished. This is the goal of multimodal
volume visualization, a volume rendering technique that has
been actively researched [1]–[4]. To successfully carry out this
visualization of distinct modalities, the 3D images need to be
aligned in the same spatial domain, and also a fusion criterion
has to be defined. This work focuses on both these steps.

It is necessary to spatially align the images because of
different patient positioning in each acquisition. We focus on
images of the head, therefore rigid alignments are suficient
due to the neurocranium structure. This can be automated
with an image registration algorithm. Among the variety of
techniques that have been proposed, maximization of mutual
information (MMI) has received much attention for effectively
handling multimodal images without preprocessing or seg-
mentation steps [5]. Recently, researchers have applied the
same information theoretic approach to define multimodal data
fusion criteria [6], [7]. This suggests the possibility of better
integrating both registration and fusion steps.

Our work is motivated by the need to both register and
fuse a pair of 3D images before sending them to the graphics
pipeline for rendering. Differently from previous works, we
present a unified architecture for registration and fusion on
top of the same mutual information background, so that the
outcome is a 3D information-preserved fused volume data.

II. RELATED WORK

The problem of integrating information from multiple image
modalities acquired from the same patient is handled by
performing two independent methods [8]: registration and
fusion.

Diverse more or less automated approaches for image
registration have been proposed for medical image registra-
tion [9]. For example, some are based on fiducial marker
correspondence, which cannot be applied retrospectively. Oth-
ers use geometrical features extracted from the images either
interactively or automatically, and thus rely on the accuracy
of this preprocessing task. A last class of methods aims at
optimizing similarity measures computed directly from image
intensities, which can be computationally expensive but more
robust. Since the seminal works conducted in parallel by
Collignon et al. [10] and Viola and Wells [11], the use of
mutual information (MI) as a similarity measure for intensity
based registration has become increasingly popular [5]. It is
well suited for multimodal inputs because it assumes only
a statistical relationship between intensities from different
images, whereas e.g. cross correlation assumes a linear re-
lationship. A series of works has been dedicated to mitigate
its limitations w.r.t optimization [12] and extend it to consider
spatial correlation [13]. We calculate mutual information using
joint histograms as proposed by Collignon in order to reuse it
on the fusion stage, as it is detailed in Section IV-B.

There is also a wide range of proposals for image fusion
techniques. Wang et al. provide [14] an extensive review and a
comprehensive unifying framework in the context of satellite
imaging. Generally, some methods perform the combination
in the spatial domain and others in a transform domain (e.g.

using wavelets). Recently, Bramon et al. [7] propose to simply
compose the fused image with selected voxels from the input
sets, preserving original details and presenting unaltered infor-
mation to clinicians. The voxel by voxel classification relies
on a measure that is a decomposition of mutual information
called specific information.

Most works deal with the registration and fusion stages
separately, but the availability of techniques that have a
common information theoretic background leads us to propose
a unified procedure for generating a fused volume data from
multiple single-valued volume data. The benefits are the reuse
of calculation steps in the process and less intermediary data
resampling.

III. TECHNICAL BACKGROUND

In this section, we summarize some important concepts that
are necessary to understand our proposed paradigm.

A. Mutual information

Originated from the Information Theory field, mutual in-
formation (MI) is a measure of how much information a
random variable (RV) contains about another [15]. In the
context of image registration and fusion, the RVs are the image
intensities. By definition, the mutual information I between
two RVs A and B is

I(A,B) =
∑
a,b

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
(1)

where pA(a) and pB(b) are the marginal probability distri-
butions of A and B, and pAB(a, b) the joint distribution.
Should A and B be independent, pA(a)pB(b) = pAB(a, b) and
I(A,B) = 0. Therefore, MI measures the mutual dependency
between the RVs.

Mutual information can also be expressed in terms of
entropy, another basic concept from Information Theory. The
entropy H of a RV measures the uncertainty associated with
it, which can be interpreted as a measure of information.
It also represents the dispersion of the probability distribu-
tion. We use the Shannon entropy definition of H(A) =
−
∑
a pA(a) log pA(a), for a given RV A. The MI between

two RVs A and B can be expressed as either

I(A,B) = H(A) +H(B)−H(A,B) (2)

or

I(A,B) = H(B)−H(B|A) (3)

where H(A,B) and H(B|A) are the joint and conditional
entropies, based on the joint and conditional distributions,
respectively. Eq. (3) expresses the decrease in uncertainty in
B once A is known, and Eq. (2) illustrates that MI increases
as the joint distribution dispersion decreases.

Among other properties, mutual information is symmetric
(I(A,B) = I(B,A)) and nonnegative (I(A,B) > 0).



B. Image registration

The determination of a geometric transformation that maps
corresponding points between the images may be formulated
as an optimization problem

θ̂ = argmax
θ
J(M(x),F (Tθx)) (4)

where M is a moving image (whose points are transformed),
F is a fixed image, T is a geometric transformation with
parameters θ applied to a point x, and J is a cost function that
measures the alignment. The estimated θ̂ parameters define
the geometric transformation that we look for. Our work is
restrained to rigid transformations, which have 6 parameters:
3 translations and 3 rotations.

Mutual information is commonly used as a similarity cost
function when multimodal images are used, giving rise to
the maximization of mutual information criterion (MMI) [10].
This criterion postulates that there will be maximum depen-
dency between images when their intensity values are correctly
aligned. Its validity comes from the fact that if the same
material is observed by two different acquisition techniques,
there will be some dependency between the measurements.
Given the same sample, the knowledge of its value in an image
provides insight about its value in another image.

C. Specific Information Measures

Mutual information only measures the average information
one obtains about one RV A from observing another RV B, or
vice-versa. Nevertheless, in some neuro-scientific applications,
it would be interesting to know the information gained from
a specific observation, or specific information to a particular
event ai, such that the average information gained over all
possible events bi is equal to mutual information. In this way,
we may tell which events are more semantically important
than others. Indeed, a specific information is derived from
the decomposition of the mutual information, measuring the
contribution of each outcome of an RV to the information
gained about another RV.

There exists a variety of attempts to measure the specific
information. In [7] three information-based measures have
been applied to make informativeness comparison between the
intensity values a and b assigned to the same voxel:

• Surprise or Specific Surprise (I1): it can be viewed as
a measure of the contribution of each intensity value b
to the total information. Observations of bi changes the
probability distribution of the image A from pA(a) to
pA|B(a|b) [16]

I1(b, A) =
∑
a

pA|B(a|b) log
pA|B(a|b)
pA(a)

. (5)

• Predictability or Specific Information (I2): it amounts
to the reduction in uncertainty about A when one ob-

serves b [16]

I2(b, A) = H(A)−H(A|b)
= −

∑
a

pA(a) log pA(a)

+
∑
a

pA|B(a|b) log pA|B(a|b). (6)

• Entanglement or SSI (I3): it is the average reduction in
uncertainty about A when one observes b [17]

I3(b, A) =
∑
a

pA|B(a|b)I2(a,B). (7)

These measures are used in the fusion stage to choose the
voxels whose intensities carry more information than others.

IV. TECHNIQUE

Fig. 2 gives an overview of the control flow of our proposed
technique. We start out with a pair of image volumes as
input and an initial guess of their alignment, denoted by
transformation T0. The mutual information between these vol-
umes is estimated from their joint histogram, and maximized
w.r.t. a geometric transformation Ti by an iterative search
algorithm. When the search converges, the volumes are said
to be registered.

After registration, we select between corresponding voxels
which one is more relevant for a fused dataset by a criterion
based on specific information. This classification is stored on
a control volume, which can be used to render a combination
of the input volumes preserving their original intensities.

The techniques chosen for the registration and fusion stages
share the same information theoretic background. This enables
us to reuse calculations along the pipeline and to better inte-
grate the process by avoiding unnecessary resampling steps.
The main piece of calculation that gets reused is the joint
histogram.

Construction
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Fig. 2. Overview of the techniques applied to process input volumes into a
fused dataset.

The joint histogram is the basis for the calculation of the
mutual information metric used in registration and the specific
information measures used in the fusion criterion. We now



discuss its construction algorithm and its application in the
optimization process. We then detail the measures and criteria
used in fusion that are able to reuse it.

A. Joint histogram and MI calculation

The fundamental part of calculating MI is the estimation
of the probability densities, in particular pAB . We adopt
the proposal by Collignon [10] to estimate it using joint
histograms. They are constructed with a specific technique
named partial volume interpolation (PVI). This technique
is necessary to avoid abrupt changes when different image
alignments are tried during registration, which could cause
unwanted local maxima in the mutual information metric.

The basic joint histogram between two images F and M
is a matrix h(f,m), where f and m are intensity bin intervals
from images F and M respectively. Each position (f,m)
denotes how many times that pair of intensities occurs in cor-
responding positions in each image. The joint distribution can
be estimated by normalizing the histogram as in pFM (f,m) =
h(f,m)/

∑
h(f,m). Marginal histograms are obtained by

summing over a variable as in pF (f) =
∑
m pFM (f,m).

During registration, intensities from the moving image
M(x) are paired with intensities from the fixed image
F (Tθx), that need to be interpolated. This introduces new
values to the histogram in each optimization iteration, caus-
ing fluctuation in successive mutual information calculations,
which leads to local maxima.

To avoid this, the PVI algorithm chooses to increment
the histogram bins that correspond to the nearest neighbors
of F (Tθx). To guarantee the consistency of the histogram,
the sum of all increments should equal unity. Each neighbor
ni would contribute with a certain weight wi to a linear
interpolation of F (Tθx), such that

∑
wi = 1. Therefore, these

weights are conveniently used to increase the corresponding
histogram entries. For a 3D image, there are 8 neighbors, so
a total of 8 updates are made:

∀i : h(ni,m)← h(ni,m) + wi (8)

However, even if the PVI technique is used, there can still be
unwanted oscillations in the metric. In particular, grid aligning
transformations will cause less weight distribution between the
bins and alter the MI calculation at that point.

To minimize these oscillations, Pluim [12] recommends a
small resampling of the moving image as a preprocessing
step. This guarantees different voxel sizes between the images,
turning grid aligning transformations improbable.

A variation of MI also suggested by Pluim [13] was used
to improve the registration of PET images (e.g., Fig. 1f). It
consists in evaluating the alignment of the image gradients
for each pair of corresponding points, and using it to weight
the original MI. This favors alignments where borders in both
images are in corresponding positions. The content of PET
images is different than that of anatomical images such as CT
or MR, but the head contour is still discernible. Its borders
provide therefore good queues for alignment.

B. Fusion criteria

At the end of the registration process, the joint histogram
of the aligned images is available. The suggested fusion
equations (5)-(7) depend only on the marginal and condition
probabilities, which can both be extracted from this histogram.
Since obtaining it is a computationally intensive task, we
choose to reuse it in the fusion stage by integrating the
modules.

Conditional probabilities may be obtained from the his-
togram h(f,m) as p(m|f) = h(f,m)/h(f) or p(f |m) =
h(f,m)/h(m), where h(f) =

∑
m h(f,m) and h(m) =∑

f h(f,m) are the marginal histograms from images F and
M respectively.

With this quantities, the I1, I2 and I3 maps are generated by
a straightforward implementation of its equations. Each voxel
has a measure associated with its intensity value, so voxels
from different images can be compared to specify the fused
data set.

We chose two fusion criteria proposed by Bramon et al. [7]
which, based on our tests, provided the best results:
• Symmetric I2 fusion:

f =

{
a, I2(a,B) > I2(b, A)
b, otherwise. (9)

• Asymmetric I2I3 fusion:

f =

{
a, I2(a,B) > I3(a,B)
b, otherwise. (10)

V. IMPLEMENTATION

We restrain the alignment to a rigid transformation with
6 parameters, consisting of 3 translations in each axis, tx,
ty and tz , and 3 rotations, θx, θy and θz . This restriction is
reasonable for intrapatient head image registration because of
the neurocranium rigid structure.

The joint histogram size is 256 × 256, and the image
intensities are first quantized to these many levels. The
histogram construction is a computationally intensive task,
therefore some methods to improve the overall efficiency were
employed.

Firstly, a parallel approach based on reduction techniques
is used to calculate the histogram. Each thread i calculates a
histogram hi(f,m) for a portion Mi of the moving image
M . Subsequently, the final histogram is given by h(f,m) =∑
i hi(f,m).
Secondly, during registration, a multi-resolution strategy is

adopted to improve the optimization efficiency. An initial
estimate is obtained with less processing by working with
less data and simpler transform models. This coarse estimate
acquired quickly is fed to later stages, where more processing
power can be better aimed at finding fine estimates. A two-
level pyramid was created by subsampling the images by an
integer factor, usually 4 or 2 for lower resolution images.
Also, nearest neighbor interpolation was used, so that no
new intensities are introduced. Also, some transformation
parameters tend to be smaller due to the patient’s positioning,



e.g., rotation in non-axial planes. They are discarded in the
first level to speed up optimization. The second level used all
available data and optimized the 6 tranform parameters.

The NEWUOA search algorithm developed by Powell [18]
was employed to perform the optimization. It is a nonlinear
unrestricted gradient free local minimization algorithm. The
mutual information gradient calculations using histograms are
expensive to compute, so generally a gradient free optimizer
is used in literature.

The optimization robustness is influenced by the order in
which the parameters are considered. It is recommended [19]
to first align the images in the transversal plane by optimizing
the in-plane translation and rotation parameters tx, ty and θz ,
and after that the out-of-plane parameters.

The fusion measures are calculated using the same joint
histogram that is obtained during registration. Our implemen-
tation differs from that of Bramon et al. [7] because we use
a reduced histogram and no preprocessing steps are taken,
such as segmentation. This didn’t interfere with the results, as
demonstrated by the experiments reported in Section VI.

VI. EXPERIMENTS

We validate our technique through a series of experiments.
The registration algorithm implemented in C++ and the fusion
stage is currently prototyped in MATLAB. The experimenta-
tion platform was a desktop Intel R©Core i5 2.8 GHz CPU with
4GB RAM and a NVIDIA GeForce GTS250, 1GB VRAM.

First experiment: The aforementioned registration tech-
niques were implemented in C++ and validated with the Ret-
rospective Image Registration Evaluation (RIRE) [20] project.
This database provides axial CT, MR and PET image pairs
that were divided in three datasets named I-III detailed in
Table I. Datasets I and II contain CT-MR pairs. Dataset
II has slightly higher resolution but external artifacts appear
in the CT images. Dataset III contains PET-MR pairs, with
smaller resolution for the PET images. Gold standards for the
rigid registration of these pairs were obtained by clinicians
by aligning fiducial markers (later removed from the images).
Submitted registration attempts are assessed by comparing the
alignment of volumes of interest (VOIs), determined by these
fiducial markers.

A separate set of high resolution CT, MR and PET images
was provided by our university hospital. It is specified as
dataset IV in Table I. They were registered in pairs, and we
assessed the results visually to guarantee they could be used in
the next experiments regarding fusion and visualization. The
MR study was sagittally oriented, while CT and PET images
were oriented axially.

Second experiment: After obtaining the spatial mapping
between image pairs in the last experiment, we applied the
fusion criteria based on specific information to them. Currently
we have prototyped the fusion measures in MATLAB to test
them out in different combinations for evaluation purposes.
We simulate the construction of the joint histogram generated
during the registration algorithm and calculate the measures
from it according to Section IV-B.

TABLE I
IMAGES USED THROUGHOUT THE EXPERIMENTS.

Dataset Modalities Dimensions Voxel size (mm) Pairs

I CT 5122 × (27–34) 0.652 × 4.0 41MR
T1/T2/PD 2562 × (20–26) 1.252 × 4.0

II CT 5122 × (40–49) (0.40–0.45)2 × 3.0 21MR
T1/T2/PD 2562 × (51–52) (0.78–0.86)2 × 3.0

III PET 1282 × 15 2.592 × 8.0 35MR 2562 × (24–26) 1.252 × 4.0

IV
CT 5122 × 110 0.492 × 1.5

3MR T1 2402 × 180 1.02 × 1.0
PET 2562 × 110 1.332 × 1.5

TABLE II
REGISTRATION RESULTS FOR THE RIRE DATABASE (ERRORS IN MM).

errors
Dataset mean maximum median failures

I 1.721 5.179 1.469 0
II 1.923 3.480 1.879 0
III 2.644 6.827 2.399 1

The same images from the previous experiment were used.
Since there is no meaningful quantitative measure of the fusion
results, we assess it visually by combining the selected voxels
from each image in different color channels.

VII. RESULTS AND DISCUSSION

Quantitative tests based on gold standards were used to
validate the registration step, while fusion and visualization
were evaluated by visual assessment, as detailed below.

A. Quality

The validation of the registration algorithm with the RIRE
database is summarized in Table II, where the errors in the
alignment of VOIs are reported. The accuracy of the results
is directly related to the images’ resolution. We consider a
registration successful if the average distance of corresponding
VOIs is smaller than the greater slice thickness. The average
error throughout the database is acceptable, and there was only
one failure case for PET registration. Fig. 1 and Fig. 3 show
examples of combined images in a checker board pattern after
registration from each dataset.

(a) (b)

Fig. 3. Registered images on a checkerboard pattern from datasets a) I and
b) III.



Fusion results are illustrated in Fig. 1. Fig. 1d) is an
asymmetric I2I3 fusion between CT and MR images from
dataset II with CT as reference. It can be seen that bone
structures are mostly selected from CT. This is desirable
since they have better contrast in this technology. Remaining
structures correspond to soft tissue areas and are selected from
MR. Fig. 1h) is an asymmetric I2I3 fusion between CT and
PET images from dataset IV with PET as reference. Similarly,
bone structures are selected from CT, while brain activation
areas from PET. This would provide a clinician with an image
that shows both functional information and anatomical cues.

B. Performance

The registration of images from dataset I takes under 1
minute, and under 2 minutes for dataset II using the hard-
ware detailed in VI. This is consistent with some results in
literature [21] but can still be improved.

The fusion stage was implemented as a prototype in MAT-
LAB, and, after the joint histogram was built, each measure
took in the order of hundreds of milliseconds to be computed.
The actual fusion criteria took in the order of tens of millisec-
onds. An implementation in C++ would surely deliver real
time responsiveness.

C. Limitation

The registration accuracy is dependent on the volumes’
spatial resolution, and there are also efficiency figures that
can be improved. The fusion criteria and tuning parameter
still must be chosen interactively. While this can be viewed
as an additional step moving away from the task automation,
it can be considered an opportunity for a trained operator to
contribute to the final result and tailor it to his needs.

VIII. CONCLUSION

In this paper, we presented a unified framework for aligning
and combining multimodal images with mutual information
based measures. Prototyping with MATLAB has been suc-
cessfully conducted. Both registration’s and fusion’s quality
can be considered satisfactory. Currently, we are porting all
algorithms to C++ and, as reported in Section V, performance
is an important issue.

Our experiments have been performed in view of computa-
tional resources and non-expert subjectiveness. Nevertheless,
to assess its practical usefulness the outcome must be validated
clinically by the experts in the medical field. We plan to realize
this validation when we conclude the code porting and the
integration of an information-preserved volume render that is
under development.
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