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Fig. 1. Teasing result of our method: from this data input and the human benchmark (first two images at left), the result of
classical edge detection and MM-Frac (middle), producing effective result (the rightmost image).

Abstract—This work proposes a new unsupervised method for
boundary detection in colored natural scenes, consisting of two-
stage sequential processes of integration. The first stage performs
region extraction, where two different techniques measure the
color-texture homogeneity in a region-growing method and they
are combined by two different control algorithms. One control
algorithm is based on a local property and the other is based on
a global statistical property (the shape of the power spectrum
of the image being analyzed). One homogeneity measure is
the J-value and the second is a multifractal descriptor. In the
second integration, edge information is extracted by a classical
method, and integrated with region information. This process
eliminates false boundaries in the region-map, guided by the
edge-map, and reduces the noise in the edge-map as well,
now guided by the region-map, thus taking advantage of their
complementary nature. It integrates the two maps into a single
final result, enhancing the coincident information of both maps.
Each phase of integration improves, progressively, the detection
of the boundaries. Experiments on a large dataset of natural
color images BSDS suggest that the results for this approach
proposed are closer to the human perception, quantitatively and
qualitatively, than the individual methods.

Keywords-boundary detection, multifractal measurement, J
value, 1/f spectrum, region-growing, edge detection.

I. INTRODUCTION

Boundary detection is one of the most important tasks in
computer vision. To propose a fully automated and unsuper-
vised boundary detection system is a complex task, since it
is not known a priori what types of regions (uniform, with
smooth color gradation and texture variations) exist in an
image, or even how many regions a given scene contains.
Examples of the variety and complexity of natural images are
given in Fig. 2. In the teaser image (Fig. 1, showing a feline
in a tree), the tangle of branches is an example of complexity.

In Fig. 2(a) (a snake in a desert) the central element and the
background have almost the same color, causing a ill-defined
border. In Fig. 2(b) there is a mixture of artificial and natural
textures (the bridge has geometric patterns, quite unlike the
natural texture of the hill and the trail of smoke produced by
the locomotive). Fig. 2(c) (the eagle) presents varying shades,
specially in the corners, due to illumination.

(a) (b) (c)

Fig. 2. Image examples (extracted from [1]).

Traditionally, the image segmentation techniques are clas-
sified as region or edge approaches. Region-based techniques
rely on common patterns in intensity values within a cluster
of neighboring pixels. The cluster is referred to as the region,
and the goal of the segmentation algorithm is to group regions
according to their anatomical or functional roles. Region-
approach results tend to be over-segmented, with inaccurate
boundaries. On the other hand, edge-based techniques rely
on discontinuities in image values between distinct regions,
and the goal of the segmentation algorithm is to accurately
demarcate the boundary separating these regions. However,
there may exist gaps and noisy edges in edge-approach results.

There are many proposals combining the outputs of region-
growing and edge detection methods to improve the quality of
their results. Muñoz et al. [2] show seven different strategies
for combining similarity (region) and discontinuity (edge)
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information. They were grouped in two classes: embedded
integration and post-processing integration. Embedded integra-
tion produces, in general, a single complex algorithm to avoid
errors in the results. The post-processing strategy works with
a set of many algorithms. This approach accepts faults in the
elementary algorithms, and the posteriori integration module
tries to correct these errors.

A. Technique overview

In this work, these two classes are considered in two
sequential levels, thus building the whole process, which is
shown in Fig. 3.

Fig. 3. Simplified architecture.

In the first level of integration we propose a new idea by
combining the multifractal descriptor with a JSEG algorithm,
thus enhancing the detection of boundary regions.

Four different integration architectures were implemented
and tested along this research. The first two, Fractal-only
and Fractal-JSEG, were presented in [3], [4]. Fractal-only
computes the homogeneity map using only the multifractal
value and the Fractal-JSEG mixes the first attempt and the
original J-image, using a maximum function to combine them.
The third system, called I-Frac [5], uses a more intelligent
heuristic to combine the values of the two different mea-
surements, instead of using the maximum function. In the
fourth architecture, MM-Frac [6], the integration is based on
a global image statistical property. Such statistical property is
also used to calibrate the threshold of the merging process.
This last system presented better results, decreasing the over-
segmentation, and, therefore, just the results of MM-Frac will
be considered in this paper.

The region-growing result of MM-Frac and edge infor-
mation are independently extracted, in a parallel way. Our
strategy is to put the two maps together, eliminating the false
boundaries in the region map, based on edge information,
and eliminating the noisy edges in the edge map, based on
region information. Such method is hereinafter referred to as
KoSS [7]. In the sequel, we show that the resulting image is

closer to human perception than any of the two images used as
input for the post-processing integration. Finally, it deserves
mentioning that KoSS algorithm is an improved version of the
KSS algorithm [8], previously proposed by the same authors.

II. THE PROPOSED METHOD

A. First-Level of Integration

1) J value: The essence of the JSEG method is to separate
the segmentation process in two independently processed
stages: color quantization and spatial segmentation. The result
of color quantization is a class-map which associates a color
class label to each pixel belonging to a class.

In the spatial segmentation stage, a criterion to measure
the distribution of color classes, the J measure, is calculated.
Essentially, it measures the distances between different classes,
divided by the distances between the members within each
class, an idea similar to the Fisher’s multi-class linear dis-
criminator. The J value can be calculated by using a local
area of the class-map. Multi-scale J-images are calculated
changing the local window size. In the J-image, the higher
the local J value is, the more likely the pixel is part of a
boundary region, like a 3-D terrain map containing valleys
and mountains. Then, a region growing method is used to
segment the image. Finally, to overcome the over-segmentation
problem, regions are merged based on their color similarities,
by directly applying a Euclidean distance measure.

2) The Multifractal Measurement: In this work, we will use
the differential box-counting method, proposed by Chaudhuri
and Sarkar [9], to estimate the multifractal measurement (MM)
of the original image.

The MM of a single pixel is calculated in a small window
surrounding it, generating a Fractal-image for each channel
in Luv color space. The Fractal-images are also a 3D terrain
maps, that is because the MM in the border regions of a texture
is lower than the MM of a homogeneous region [10]. Each
value in Fractal-image is converted to be higher in boundary
regions and to have the same limits applied to a J-image.

3) 1/f Spectra of Natural Images: Statistics of natural im-
ages have been found to follow particular regularities. Torralba
and Oliva [11], studying the statistics of real-world images,
observed that the energy spectra of such images falls, in
average, into a form 1/fα with α ∼ 2. They also show that
the shape of the power spectrum can be used to categorize the
different semantic of scenes (single objects, rooms, places,
large outdoors and panoramic scenes).

Here α represents the slope of the decreasing energy spec-
trum values, from low to high spatial frequencies, varying with
the scene complexity. Fig. 4 exemplifies a 3D power spectrum,
where the slope is emphasized in red. Fig. 5 shows the slope
(red) in a 2D graphic and the interpolated slope (the dotted
black line). The estimated −α value is then −2.31, or α value
is then +2.31.

Pentland [10] showed that fractal natural surfaces (as moun-
tains, forests) produce a fractal image with an energy spectrum
of the form 1/fα, where α is related to the fractal dimension
of the 3D surface (e.g., its roughness). Slope characteristics



Fig. 4. Graphic of one image power spectrum 3D.

Fig. 5. Graphic of one image power spectrum 2D.

may be grouped in two main families, a slow slope (α ∼ 1), for
environments with textured and detailed objects, and a steep
slope (α ∼ 3), for scenes with large objects and smooth edges.
Thus, the slower the slope is, the more textured the image is.

4) MM-Frac: In this new proposal, the integration of two
measurements, J-image and Fractal-image, is controlled by
the value of α as in the work of Côco, Salles, Sarcinelli-Filho
[12]. Fig. 6 shows a simplified architecture of the proposed
MM-Frac system. The global estimated value α controls two
process:

1) the local integration of the J-value and Multifractal
Measurement (MM). Each pixel of the 3D terrain map
is now calculated as:

mapij = J-value× αnorm + (1− αnorm)×MM, (1)

where αnorm = α/max(αi), i indexing the 200 images
used as training set (provided by BSDS). For low α val-
ues, the image presents more texture, and the multifractal
weight is greater than that of the J-value, as multifractal
models textures in a better way than the J-value;

2) the threshold used in region merging is (0.4αnorm),
where 0.4 is the default value for the JSEG method. The
lower the threshold is, lesser regions will be merged,
and the segmentation result will present more regions

with a lower threshold, compared to a higher threshold.
An image with high α value presents large objects and
smooth edges, so it is expected that the segmentation
result will present just a few regions.

Fig. 6. Simplified archtecture of MM-Frac.

B. Second-Level of Integration

1) Edge Detection: We considered here some classical
edge detectors (Sobel, Prewitt, Laplacian and morphological
gradient), which generates an output known as a soft boundary
map, with each pixel valued from zero to one, where higher
values mean greater confidence in the existence of a boundary.
To choose a good edge detector, it was made a preliminary
test and the morphological gradient presents the overall F-
measure slightly better than the other detectors. Therefore, it
was chosen as the edge detection method.

It is quite usual to smooth the image to eliminate noise
before the edge detection. We choose a classical non-linear
edge-preserving-smoothing filter, the Kuwahara filter with 5×
5 mask size. To process a color image, each of three color
channels, RGB, is processed separately, and then all results
are added into one image.

2) KoSS: The integration method is independent of how
the edge-map and region-map are processed. However, it is
necessary that the region-map be a binary image and the edge-
map be a soft map. Fig. 7 shows a simplified architecture of
the proposed KoSS system and the algorithm is presented as
a pseudocode in Algorithm 1.

In step 2, we should detect the weak edges from the edge
map. This step is basically a binarization process in the edge



map, where each pixel with a low gray level value corresponds
to a weak edge pixel. To automate the threshold value, we use
the results of [13], where the threshold value is based on the
histogram h of the edge-map, given by

thresholdweak =

∑50
i=0 hi∑200
i=50 hi

, (2)

where i = [0, 255] is the value of a pixel in a gray-scale image.
A noisy edge map will result in low thresholdweak val-

ues, while a strongly defined edge map will result in high
thresholdweak values. So, when the image is noisy, most
information from the region map is preserved. Therefore,
equation (2) represents the degree of confidence of the edge
detection result, pointing when edge map information is more
reliable than region map information.

In Step 3 of Algorithm 1, the region map is divided in a
list of edge lines. Actually, the region map can be viewed as
an skeleton, whose elements can be classified as end points,
normal points and branch points [14]. In a 3×3 neighborhood,
end points have only one neighbor element, normal points have
exactly two and branch points have more than two. An edge-
line (or skeleton branch) is a subset of the skeleton entirely
consisting of normal points except for the extremes, that are
end points or branch points.

Algorithm 2 shows the code correspondent to such step,
in Matlab. In line 1, the goal is to find all branch points in
an image, and erase all of them (see step 2 of Algorithm 2),
thus resulting an image having a set of edge-lines with only

Fig. 7. Simplified archtecture of KoSS.

Algorithm 1 KoSS
1: Inputs: edge-map and region-map
2: Build a weak-edge-map from edge-map
3: Build a list-of-edge-lines from region-map
{Part I}

4: for each edge-line in the list-of-edge-lines do
5: set count-weak-edge = 0
6: for each edge-unit in the edge-line do
7: if (majority of neighborhood of edge-unit position in

weak-edge-map) is marked then
8: increment count-weak-edge
9: end if

10: end for
11: if (count-weak-edge > length(edge-line)/3) then
12: erase edge-line from region-map
13: end if
14: end for
{Part II}

15: for each weak-edge-unit on weak-edge-map do
16: if (weak-edge-unit position is not marked on region-

map) then
17: erase weak-edge-unit from edge-map
18: end if
19: end for
20: Set image-result = adjustLimit(edge-map + region-map)

Algorithm 2 Step 3 of Algorithm 1 in Matlab
1: Ipoints = bwmorph(MMFracImage, ’branchpoints’, 1);
2: MMFracImage(Ipoints) = 0;
3: lineStats = regionprops(MMFracImage, ’PixelList’, ’Pix-

elIdxList’);

end points as extremes. The result of line 3 is the variable
lineStats, containing the list of edge-lines.

In the rest of Algorithm 1, the logic is to eliminate or to
reduce false information. Part I (lines 4-14) eliminates edge-
lines which are considered weak by the edge detection. The
condition of line 11 was empirically defined after analyzing
the results of several experiments. In Part II (lines 15-19), the
weak information of the edge map is eliminated. All pixels
not belonging to an edge line on region-map and considered
weak edge on weak-edge-map are erased. In step 20, the sum
operation will enhance all boundary pixels that match in the
two different processed maps.

Thus, KoSS erases some edge information of the region map
and does not preserve weak information for the edge map. The
result seems cleaner, preserving and enhancing only the strong
edges of both maps.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We tested our proposed method with natural colored images
provided by the The Berkeley Segmentation Dataset and
Benchmark (BSDS) [1], applying it to all one hundred images
of the test dataset. The BSDS binarize the boundary map at



many levels, according to the threshold parameter (the chosen
value is 10).

Fig. 8 shows some results, where (a) shows the input image,
(b) the human benchmark and the segmentation result of
(c) corresponds to JSEG, (d) MM-Frac, (e) morphological
gradient edge detection and (f) result of KoSS process, already
binarized in the best threshold computed by the BSDS. Each
result has its computed F-measure metric.

In a qualitatively comparison, the original JSEG algorithm
tends to over-segment images, splitting objects into several
smaller regions. The MM-Frac approach, by its turn, signifi-
cantly decreases over-segmentation. For an example, the trees
in the background in the first image are not segmented as in
the JSEG result. Moreover, the results present more accurate
boundaries when compared to the human benchmark. In the
second line, the boundary encompasses the entire body of the
snake and not fragments.

In the fifth column, the results of edge detection are pre-
sented. The results are very noisy and this is mainly due to the
fact that edge detection techniques rely entirely on the local
information available in the image. The edge-map responds to
all contrast variations over the texture regions, like in the sand
area on the second line of Fig. 8. At the same time, the method
of edge detection is responsible for highlighting details such
as the stick in the left in the snow area in the first line of
Fig. 8 and the insect near to the snake in the second image
of Fig. 8. The results for the KoSS method are presented in
the last column. Details detected using edge detection method
are kept, but the noise was attenuated and disappears after
the binarization computed by BSDS. Now, the boundaries are
more accurate and are closer to the human perception.

Deng and Manjunath [15] pointed out that the major prob-
lem they observed in JSEG result is caused by the varying
shades due to the illumination. For instance, the color of a sky
can vary in a very smooth transition as in the image BSDS
image 42049, the third line of Fig. 8. Visually, there is no
clear boundary. However, the JSEG result presents a circle
region in the image. The human perception does not perceive
this smooth varying of color as a different region. The result
after KoSS does not present this false boundary. The smooth
is not perceived by the edge detection, and then the boundary
is erased by the KoSS method.

The false boundaries elimination can be observed in the
fourth line of Fig. 8. The edge-line in the sky over the smoke
in the MM-Frac result, which is not perceived by human
peception, is fully erased in the KoSS result.

Quantitative performance comparison requires ground truth
and well defined metrics. Both requirements can be found in
BSDS. For each image in the BSDS, there are at least five
hand-labeled segmentations made by human beings, which
constitute the ground truth. The standard metrics of BSDS
are precision, recall and F-measure, determining how well
the boundary map approximates the human ground truth
boundaries [16]. The metrics recall, precision and F-measure
of each method computed by the BSDS are tabbed in the
superior part of Table I.

TABLE I
PRECISION, RECALL AND F-MEASURE METRICS CALCULATED BY BSDS.

Recall Precision F-measure
JSEG 0.61 0.56 0.58
Edge Detection 0.65 0.49 0.56
MM-Frac 0.63 0.56 0.59
KoSS 0.69 0.54 0.61
Human 0.70 0.89 0.79

BSDS computes the maximum F-measure value across the
precision-recall curve, for which each point corresponds to an
image in the test dataset. MM-Frac approach improves the
recall metric without decreasing precision, thus raising the F-
measure score a little bit. Edge detection looses in terms of
precision, because of the noisy pixels. After KoSS method,
the F-measure increases to 0.61, this is the closest value,
comparing to the human perception.

IV. CONCLUSION

This work proposes a new two-level approach to boundary
detection for natural color images. In the first level we embed-
ded a MM in the classical JSEG algorithm. The integration,
called MM-Frac, is controlled by the slope of the image power
spectrum. One conclusion is that the MM improves the sensi-
tivity to boundary regions, thus providing segmentation results
that match the human perception better than the segmentation
results associated with the original JSEG algorithm.

In the second-level, the post-processing integration, the
main goal is to integrate the region-growing result from MM-
Frac and edge information. Our strategy, called KoSS, is to
put together the two maps, eliminating the false boundaries in
region-map, based on edge information, and eliminating the
noisy edges in the edge-map, based on region information. It
integrates the two maps into a single final result, enhancing
the coincident information of both maps.

The KoSS algorithm works well and solves the problem
of false boundaries pointed out in other works. Furthermore,
all strong edges of both input maps are held, improving the
boundary detection. Unfortunately, the KoSS results present
broken edges, not keeping the contour closed.

The conclusion is that the two-level approach proposed here
improves the boundary detection results, generating segmented
images that match the human perception better than the results
associated to the individual methods used in the architecture.
Each phase of integration improves, progressively, the detec-
tion of boundaries.
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[12] K. F. Côco, E. O. T. Salles, and M. Sarcinelli-Filho, “Topographic in-
dependent component analysis based on fractal and morphology applied
to texture segmentation,” Lecture Notes in Computer Science, vol. 5441,
pp. 491–498, 2009.

[13] O. Rotem, H. Greenspan, and J. Goldberger, “Combining region and
edge cues for image segmentation in a probabilistic gaussian mixture
framework,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2007), 2007.

[14] D. Attali, G. Sanniti di Baja, and E. Thiel, “Skeleton simplification
through non significant branch removal,” Image Processing and Com-
munications, vol. 3, no. 3-4, pp. 63–72, 1997.

[15] Y. Deng and B. S. Manjunath, “Unsupervised segmentation of color-
texture regions in images and video,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800–810, August
2001.

[16] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 5, pp. 530–549, 2004.

http://urlib.net/sid.inpe.br/sibgrapi@80/2009/08.17.19.03
http://urlib.net/sid.inpe.br/sibgrapi@80/2009/08.17.19.03
http://urlib.net/sid.inpe.br/sibgrapi/2011/07.08.22.19

	Introduction
	Technique overview

	The Proposed Method
	First-Level of Integration
	J value
	The Multifractal Measurement
	1/f Spectra of Natural Images
	MM-Frac

	Second-Level of Integration
	Edge Detection
	KoSS


	Experimental Results and Discussion
	Conclusion
	References

