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Abstract—In the past few years, hyperspectral images have
been considered as one of the most important tool in land cover
classification due to its capability to obtain rich information of
materials on earth surface. Such amount of information can
lead one to a deeply investigation, and thus a more precise
interpretation. However, this task is still a challenge and pro-
ducing an accurate thematic map is a common goal among
researchers. In this work, we perform a combination among
several classification schemes in order to improve the overall
accuracy and hence build a more correct thematic map. Three
types of feature representation and two learning algorithms (Sup-
port Vector Machines (SVM) and Multilayer Perceptron Neural
Network (MLP)) were used yielding six classification approaches
to perform the combination. Our combination proposal is based
on Weighted Linear Combination (WLC), in which weights are
found using a Genetic Algorithm (GA) - WLC-GA. Experiments
were carried out with two well-known datasets: Indian Pines and
Pavia University. They have shown that our WLC-GA achieves
the highest accuracy among traditional Conscious combiners,
Majority Vote (MV) and Weighted Majority Vote (WMYV) for
both datasets.
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I. INTRODUCTION

Remote Sensing (RS) is a field of study for gathering data
and information by measuring signals from objects at long
distances. In RS field, the land cover classification problem
is concerned to identify different coverages on the earth
surface and has been used for many purposes, such as urban
planning and management, forestry, environmental monitoring,
agriculture, etc. [1]]. Hyperspectral is considered an extension
of Multispectral imagery. It has spectral information expressed
on hundreds of narrow bands, or channels, where each of
these channels are related to a specific wavelenght. Hence, for
each pixel in the image, we have a very detailed “signature”
of the object [2]]. Due to its rich information, hyperspectral
data have shown suitable for the land cover classfication
task [1]. However, with the scarce referenced data and the
large amount of information, the classification task becomes
more complex [3]. This scenario brings some issues, one
of them is known as “curse of dimensionality” or Hughes
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effect [3]. Another one refers to density estimation. It is
even more difficult to build this estimation when data are
in high-dimensional space because this hyperspace is mostly
empty [3]. In order to surmount such difficulties, it is very
usual to apply some feature extraction/selection/representation
techniques [4], [S], [6]. Among several works, most of them
emphasize the fusion of both spectral and spatial informa-
tion in their classification systems. Extended Morphological
Profiles (EMP) is a simple and effective approach to encode
spectral-spatial information [[7], [8], [9]. The use of segmenta-
tion algorithms have also been successfully applied to this task,
such as watershed and Minimum Spanning Forest (MSF) [10]],
[11]. Newer works use Markov Random Fields (MRF) for
spectra-spatial classification [12]], [[13]] and have demonstrated
promising results in terms of accuracy.

Recent advances in RS field have shown kernel-based
learning algorithms more effective than traditional classifi-
cation algorithms [14]], [3], [15], [16l]. In particular, Support
Vector Machines (SVM) has shown suitable for hyperspectral
image classification task [14]. This classifier algorithm has
been pointed out by many researchers for dealing well with
high-dimensional data and small training sets [14] and its
effectiveness is considered as the baseline accuracy in many
works [4], [2], [12], [11].

Since 2006, an important event, called Data Fusion Contest
(DFC), has been organized aiming to provide data and results
as reference for the entire remote sensing community [17].
In DFC’2008, the problem tackled was information fusion
using multiple classification approaches for hyperspectral data.
The five best methods were combined using a majority voting
(MV) rule to produce a more accurate map as possible.
Despite advances, the use of more sophisticated techniques can
still improve classfication results and produce more accurate
thematic maps.

Inspired by this idea, this work aims to perform a more elab-
orated combination among different classification approaches.
In the literature [[18]], [[19]], we can found several methods on
combining classifiers. In this work, we investigate the advan-
tage of using a weighted linear combination (WLC) of multiple
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classification approaches for the land cover classification task
using remoted sensed hyperspectral images (A short version
of this work have been accepted for publication [20]). We
use a global optimization search technique based on Genetic
Algorithms (GA) to find the weights and build the final
decision. We employ three feature representation techniques
(two spectral-based and one spectral-spatial) with two dif-
ferent learning algorithms (SVM and Multilayer Perceptron
Neural Network (MLP)). Thus, we obtain six classification
approaches to perform the combination. Experiments were
carried on two well-known datasets: Indian Pines and Pavia
University obtained by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) [21] and the Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) [22] sensors, respectively.
Moreover, we compare our proposed combination method
(WLC-GA) with traditionals conscious combiners (Maximum,
Minimum, Product and Average), Majority Vote (MV) and
Weighted Majority Vote (WMV).

II. GENETIC ALGORITHMS

Genetic Algorithms (GA) is an abstraction of nature bi-
ological evolution in which the concept of “adaptation” is
dressed in computer systems. Since its creation, GA has been
used to solve many optimization, search, and also machine
learning problems [23]]. GA is capable of finding sub-optimal,
or optimal, solutions in large search space with an acceptable
time [23]]. This evolutionary process evolves a population of
“individuals” to a new one, in which its individuals represent
a potential solution for a given problem. Usually, individuals
are represented by strings of “genes” which are usually called
as “chromosomes”. Chromosomes are changed by genetic-
inspired mechanisms, such as recombination, mutation and
selection [23]. A fitness function evaluates each individual and
thus provide the “quality” of a candidate solution. Hence, we
must design proper individual representation and fitness func-
tion according to our problem domain. After some generations
we expected to find an acceptable solution for our problem.

III. FEATURE REPRESENTATION SCHEMES

In this section we briefly describe two spectral-based and
one spectral-spatial feature representation techniques that are
used in this work.

A. Pixelwise Representation

The pixelwise feature representation is the most simplest
one. It is composed of all hyperspectral bands, i.e., the raw
data. Note that the so-called pixelwise type of representation
does not take into account any spatial information. That is, it
only uses all spectral responses/bands, or features, of the pixel.
In other words, the prediction (classification) happens using all
pixel features but without “looking” at its neighborhood.

B. Extended Morphological Profiles (EMP)

In order to obtain an accurate classification system, spectral
and spatial information should be joined [3]], [2]. For this
purpose [7], the concept of morphological operations [24] is

applied to build the Morphological Profiles (MP). A feature
extraction (FE) technique, such as Principal Component Anal-
ysis (PCA), is applied to hyperspectral data. Then, the MPs are
built applying openings and closings by reconstruction with
a structuring element (SE) of increasing size. Finally, p-first
Principal Components and their MPs are put together to form
the Extended Morphological Profile (EMP). This technique
can connect similar structures of hyperspectral data becoming
its within-class representation more homogeneous [[7]. Details
about morphological operations can be seen in [24]].

C. Proposed Feature Selection by Genetic Algorithms

In some cases, reducing data dimensionality is very impor-
tant to avoid Hughes effect. Nowadays, many feature extrac-
tion/selection techniques are available in the literature [4]], [S]],
[25]. Our work also proposes a filter-based feature selection
using GA. The applied feature selection technique (Feature
Extraction by Genetic Algorithm - FEGA) is based on the op-
timization of a clustering measure that computes the “quality”
of the yielded clusters from a subset of features. Similar to
[5], the chromosome is a bit string that encodes absence or
presence of a feature. The fitness function is defined as the
ratio between the average intra- and inter-cluster distance, i.e.,
F = avg(dintra)/avg(dinter). The “optimal” subset is that
one which minimizes the F' value. It is expected that this op-
timization produces denser clusters and more distant from each
other, in the feature space. Hence, from these subset of features
it is suggested to be easier to build decision boundaries for a
given classifier. An extension of this feature selection approach
can be seen in [26]], in which a more elaborated cluster validity
measure and different learning algorithms are applied.

IV. LEARNING ALGORITHMS

Before starting with the two learning algorithms used in
this work, let us introduce a mathematical formalism for
the problem of hyperspectral image classification. Let § =
{1,...,n} be an integer set which indexes the n pixels of
a hyperspectral image. Let ¢» = {1,...,K} be a set of K
available classes and = = (71, ...,7,) € R¥™ be the pixels
that compose the feature vector in a d-dimensional space.
Finally, let y = (y1,...,¥n) € "™ represent a labeled image.
The classification goal is, for every pixel [ € J, to infer a label
Y1 € v using its feature vector z; € R?.

A. Multilayer Perceptron Neural Network

An Artificial Neural Network (ANN) of Multilayer Percep-
tron type is an extension of common ANN Perceptron. The
MLP is composed of a set of input units, or neurons, that
represents the input layer, at least a hidden layer and an
output layer [25]. In pattern classification, a MLP separates
the feature space using hyperplanes, by means of a supervised
learning process. Thus, regions, in feature space, are associated
with a class, then a new sample can be labeled according to
the region in which it is inserted. As MLPs can have a greater
number of layers, they are able to perform multiple separations
in feature space. Hence, MLP can build arbitrary shapes in



feature space representing different and complex classes [25]].
The construction of a MLP has some issues such as the number
of hidden layers and neurons in each layer, which should be
set according to the problem.

We use the Neural Network Toolbox from MATLAB for the
MLP classifier. In order to determine the number of neurons in
the hidden layer we follow a simple rule: the square root num-
ber of input patterns times output patterns. Sigmoidal transfer
function and Backpropagation training algorithm arethen used.

B. Support Vector Machines

The Support Vector Machines (SVM) methodology is based
on class separation through margins in which samples are
mapped using a kernel function to a higher feature space where
it is expected to achieve a linear separability of data [25]. Some
popular kernels are: Linear, Polynomial and Radial Basis
Function (RBF). The ability of separating data with nonlinear
distributions is related to the choice of this function and should
be chosen according to the problem domain [25]]. Using an
appropriate nonlinear mapping, samples of two classes can
then be linearly separated by a hyperplane [25], [27] in this
new transformed and high feature space [25], [[15].

Thus, SVM training consists of finding an optimal hyper-
plane where the separating distance between margins of each
class can be maximized [25], [27]. Samples whose locations
are located on the margins are called support vectors and are
the most informative ones to build the classification decision
boundary [235].

In this work, we use the LIBSVM [28]] implementation for
SVM classifier. RBF kernel is chosen in all feature representa-
tion schemes described in Section [[II| and all parameters were
manually adjusted based on previously experiments.

V. COMBINING MULTIPLE APPROACHES

The main goal on combining multiple classification ap-
proaches is to produce a final decision that is better than a
single one [29], [19]. Among all combiners, majority vote is
the simplest one [30] and largely used [[17]. However, it only
uses the hard assignment which can not take advantage of all
available information.

In general classifiers can produce hard or soft labels as
outputs. Hard labeling uses a single crisp value as output,
while in soft labeling for each class we have a certain degree of
support [18]]. In this work, we are interested on classifiers that
produce soft outputs, which can provide more information that
could be used for post processing. These outputs can be fuzzy,
posterior probabilities, certainty, or possibility values [30],
that is, for an input sample there are ¢ membership values
associated to c¢ classes. From these soft outputs one can build
a Decision Profile (DP) [18] as illustrated on Fig.

Mathematically, a DP for a given sample  can be defined as
a L x ¢ matrix: DP(z) = [D1(x), D2(z),...Dr(z)]T where
L is the number of classifiers. Each classifier prediction is
represented by a vector D;(x) = [d;1(z), ..., d; o(x)] with ¢
classes, which d; ;(z) is a degree of support given a classifier
D, and a class j [18], [30]. After building support degrees

Output of classifier D;(x)

dia(x) | dij(x) | .. die(x)
DP() = ||din () o | diy0) | o dic)
dLl(x) N dri(x) . dpe(x)

Support from classifiers D; ... D for class j /

Fig. 1. Decision Profile. Extracted from [18]

for each input sample, a crisp value (hard labeling) can be
assigned by using the maximum support value in the set.

In Conscious theory there are some basic rules that can be
used to produce a combination between two or more decisions
in DP scheme. These basic rules are defined as below:

o Maximum (Max): u;(x) = "¢*{d; ;(x)}
e Minimum (Min): p;(z) = "™"{d; ;(z)}
« Average (Aveg): 11;(z) = L 28 d; i(x)

o Product (Prod): p(x) = Hle d; j(x)
where (;(x) is the new support degree for class j given a
sample x. These operations are usually called as nontrainable
rules just because they are conceived with no need of param-
eter estimation.

A. Proposed WLC-GA

When classifiers have different accuracies, it is reasonable
to give more discriminant power for those that have greater
accuracy [18]. This is the idea of Weighted Average, Weighted
Majority Vote (WMYV), and other weighted approaches [18]].
Such methods are known as trainable because they need to
find the best set of weights to produce the best set of support
for each sample. In [19], the sum rule has proven to be a better
option than other basic combination rules discussed previously.
Hence, we propose to use the sum rule to perform a Weighted
Linear Combination (WCL) in DP scheme optimized by GA
(WLC-GA) [20]. Thus, new support values are produced for
each class as follow:

L
wi(z) = Zwv x d; j(z)

in which L is the number of classifiers, w; is the weight of the
i-th classifier, d; ;(x) is i-th classifier support for class j and
;(x) is the new support for class j. Then, a label is assigned,
for a given sample z, as the index of the maximum support
w;(x). Weights are found using a global search performed
by a GA. We used a bit string representation to encode the
weights in the individual chromosome. Fig. [2] ilustrates our
representation scheme. Each weight can be a non-negative
integer value between 0 and 127, which means that there are
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7 bits in chromosome for each weight. The fitness function is
built based on the Overall Accuracy (OA) maximization by
using the WLC in the dataset.

We applied two well-known machine learning algorithms
described in Section [[V]to each feature representation method
described in Section [l Thus, as Fig. [3] shows, we obtained
six classification approaches to perform the combination.

Pixelwise +
SVM

FEGA +SVM

WLC-GA

combination rule Thematic map ‘

EMP + SVM
P\xelmse +
MLP

EMF’ +MLP

Hyperspectral
data

Fig. 3. Multiple classification approach scheme

VI. EXPERIMENTS
A. Datasets

Experiments were performed on two widely used datasets,
Indian Pines and Pavia University, taken by AVIRIS [21]]
and ROSIS [22] sensors, respectively. The two datasets are
described below:

1) The Indian Pines dataset is an agricultural area recorded
over Northwestern Indiana with dimensions of 145 x 145
pixels, a spatial resolution of 20m per pixel and 220
channels covering a spectral range of 0.4um to 2.5um.
Twenty noisy bands have been removed, remaining 200
spectral bands for the experiments. Sixteen classes of
interest are considered, for each classification approach
5% of each class were selected as training samples.
However, for those classes that have a number of sam-
ples smaller than 100 units, we selected 50% for training
as shown in Table I

2) The Pavia University dataset is an urban area recorded
over the University of Pavia, Italy. The image is com-
posed of 610 x 340 pixels with spatial resolution of
1.3m/pizel, spectral range of 0.43um to 0.86um along
its 115 channels. Therefore, 12 noisy channels were
removed remaining 103 bands for the experiments. Nine
classes of interest are reported, Table |H| summarizes all
samples for each class. Again for each classification

approach 5% of each class were selected as training
samples.

More details about these datasets are found in [31].

To perform the combination GA’s parameters were the
same for both datasets used. We evolved the GA during 50
generations with a population of 50 individuals, 80% and 0.9%
of crossover and, mutation probabilities, respectively, k from
tournament and elitism parameters equal to 2. GA was ran in a
5-fold cross-validation scheme and the average of the weights
were used as final weights to perform the combination.

B. Results

In Table [l we show the overall (OA) and average (AA)
accuracy of each individual classification approach and also
the proposed combination method (WLC-GA), for the Indian
Pines dataset. Moreover, we compare our WLC-GA with other
nontrainable combiners, such as Max, Min, Prod, Aveg, simple
majority vote (MV) and we have also implemented a trainable
combiner, the weighted majority vote (WMV-GA), in which
the weights were also found using GA in the same scheme.
The maximum reachable column (Max. reach.) represents the
correct predictions union of all six approaches used, that is,
if we had a combination approach that could take all true
predictions of each classification method and put it together,
we would get the maximum reachable accuracies for this
combination method. As we expected the genetic algorithm
always find higher weights for classification approaches that
have highest accuracy. It is noticeable that the proposed
combiner significantly improved the accuracies, however, as
the maximum reachable column in Table [I] shows, we still can
go further. The thematic map built by WLC-GA can be seen
in Fig. [@p.Table [[] shows the results obtained for the Pavia
University dataset. Again, we can observe that the proposed
combiner obtained the highest accuracies. Fig. [Bp shows the
resulted thematic map and Fig. [Bh its respective ground-truth.
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Fig. 4. Results for Indian Pines dataset

Among individual classification approaches the classifica-
tion based on EMP is that one which stands the highest
accuracy in both datasets. From that, we highlight the impor-
tance of having a spectral-spatial classification method in our
ensemble of classifiers. Note that all accuracies are obtained
from the classification maps (thematic maps).



TABLE I
RESULTS FOR INDIAN PINES DATASET

Individual C ination Methods
number train Pixelwise FEGA EMP Pixelwise FEGA EMP Max Min Prod Aveg MV WMV WLC Max.
of samples MLP MLP MLP SVM SVM SVM -GA -GA reach.
samples (%) (200 features) (95 features) (18 features) (200 features) (95 features) (18 features)
OA (%) 799 719 81.9 81.6 772 88.3 89.2 82.6 87.6 89.2 87.3 90.2 91.6 97.3
AA (%) 82.3 81.3 84.6 81.8 77.0 87.8 89.6 84.6 89.6 89.3 87.1 90.6 91.6 96.8
Classes
Alfafa 54 50 98.2 87.0 92.6 94.4 90.7 88.9 92.6 90.7 96.3 94.4 96.3 92.6 92.6 98.2
Corn-notill 1434 5 74.4 73.6 80.5 78.0 65.1 80.1 87.6 77.6 83.0 84.7 85.6 82.8 85.6 95.7
Corn-min 834 5 68.6 59.8 79.9 61.5 56.5 73.0 84.6 82.6 855 79.1 75.8 84.8 86.9 97.7
Corn 234 5 52.6 57.3 68.4 26.1 16.7 45.7 59.4 71.8 71.8 59.0 49.6 63.3 63.3 76.9
Grass/pasture 497 5 64.8 88.5 87.1 88.5 84.7 90.3 89.5 71.4 87.3 91.2 91.2 89.9 88.7 97.3
Grass/trees 747 5 95.4 91.8 95.7 92.6 89.2 96.0 96.8 99.0 98.6 97.1 96.8 96.8 97.5 98.2
Grass/pasture-mowed 26 50 100.0 96.2 96.2 96.2 96.2 96.2 96.1 96.1 96.1 96.1 96.1 96.1 96.1 100
Hay-windrowed 489 5 90.3 88.3 98.0 92.8 90.8 97.8 95.9 96.9 96.5 95.3 94.2 97.8 97.6 98.7
Oats 20 50 100.0 100.0 100.0 100.0 85.0 100 100 100 100 100 100 100 100 100
Soybeans-notill 968 5 68.1 75.6 66.3 75.9 71.2 84.8 78.0 71.2 715 84.1 85.9 854 85.7 94.8
Soybeans-min 2468 5 83.7 73.6 86.6 86.3 853 96.5 91.6 86.8 88.7 92.8 89.8 94.9 95.5 99.3
Soybean-clean 614 5 83.9 84.0 10.1 80.9 80.0 67.3 81.6 40.2 84.2 85.7 84.0 72.9 829 94.9
Wheat 212 5 98.1 99.1 99.1 93.4 93.9 98.1 99.5 100 99.5 99.1 98.6 98.6 9.1 99.5
‘Woods 1294 5 95.9 97.4 99.3 97.4 96.3 99.5 99.0 98.8 99.1 98.9 98.2 99.3 99.5 99.8
Bldg-grass-trees-drives 380 5 44.5 29.4 95.5 44.7 30.8 91.6 82.9 70.2 75.0 71.6 521 95.0 95.0 98.2
Stone-steel towers 95 50 98.9 98.9 98.9 100.0 100.0 98.9 98.9 100 100 100 100 98.9 100 100
TABLE I
RESULTS FOR PAVIA DATASET
Individual Combination Methods
number train Pixelwise FEGA EMP Pixelwise FEGA EMP Max Min Prod Aveg MV WMV WLC Max.
of samples MLP MLP MLP SVM SVM SVM -GA -GA reach.
samples (%) (103 features) (34 features) (18 features) (103 features) (34 features) (18 features)
OA (%) 923 91.6 96.7 934 91.9 96.6 97.5 98.0 97.8 96.5 95.3 97.7 98.1 99.6
AA (%) 89.3 88.0 94.8 90.4 88.2 94.7 95.0 96.3 95.9 94.5 92.4 96.1 96.9 99.0
Classes
Asphalt 6631 5 93.0 91.9 97.4 94.2 92.9 97.6 98.2 98.3 98.4 97.5 97.1 97.8 98.3 99.8
Meadow 18649 5 97.5 97.3 99.6 97.9 97.6 99.3 99.9 99.9 99.9 99.4 99.3 99.7 99.8 99.9
Gravel 2099 5 74.4 72.6 85.4 74.0 71.5 712 90.9 88.9 87.6 84.6 81.9 85.1 89.6 97.7
Trees 3064 5 86.7 90.1 91.6 90.2 87.0 94.4 92.3 97.6 96.8 93.0 90.8 95.7 96.2 99.2
Metal Sheets 1345 5 99.3 98.5 97.0 98.9 98.7 99.5 96.9 99.7 99.5 99.3 99.3 99.4 99.3 99.6
Bare Soil 5029 5 88.0 86.8 97.1 89.7 85.7 96.5 98.2 98.7 97.7 94.4 91.5 98.0 98.6 99.9
Bitumen 1330 5 79.5 72.9 93.5 79.8 73.8 94.4 91.0 88.5 88.4 87.8 82.0 94.1 93.3 95.9
Bricks 3682 5 85.8 829 91.5 88.8 87.7 93.1 95.0 94.9 95.4 94.3 90.3 95.4 96.5 99.0
Shadow 947 5 99.9 99.3 100.0 99.7 99.2 100.0 92.9 99.9 99.9 100 99.7 100 100 100
different configuration of GA’s parameters. On the “testing”
Asphalt phase, which means to apply the combination directly, the

Bare soil
Bitumen
Gravel
Meadow
Metal sheets
Bricks
Shadow
Trees

(a) Ground-truth (b) Them. map (OA-98.1%)

Fig. 5. Results for Pavia Univeristy dataset

C. Computation Load

We measured the computation time to perform training
and testing on each of the classification methods including
combination approaches. These results are shown in Tables [ITI]
and [IV] In combination approaches, the “training” step is
concerned to find optimal, or sub-optimal, weights, while the
“testing” phase performs the combination rule with the found
weights. Note that simple conscious combiners do not have
training phase. From these tables, we can observe that both
WMV-GA and WLC-GA have higher computation load for
training phase, however this time can be minimized using a

computation times for most of all combination rules in both
datasets are less than 1.5 seconds, only for simple Aveg we
obtained the highest computation times.

VII. CONCLUSION

In this work we proposed, implemented, and tested a
combiner of classifiers for remote sensed hyperspectral images
classification. We used three types of feature representation
and two learning algorithms yielding six classification ap-
proaches. In the experiments, the weighted linear combiner
adjusted by a genetic algorithm was also compared with
the most well-known combiners in the literature and it has
shown better effectiveness in terms of overall accuracy and
average accuracy for the two datasets used. Although our
proposed approach presents a high computation load, the use
of genetic algorithm is suitable when we have a large number
of classification approaches, which implies in more weights to
be adjusted. In this situation, despite the fact that the search
space becomes larger as the number of weights increases, the
fitness function cost remains the same in our proposed scheme.

Here, we employed a simple weighted linear combination
based on sum rule which uses a single weight per clas-
sifier. These results encourage us to deeply study the use
of more sophisticated combiners. We plan to explore some
meta-learning strategies, in which the goal is to overcome
difficulties of each classification method learning how they are
correlated with each other in order to improve the accuracy
further. Moreover, further experiments which include mean




TABLE III
COMPUTATION LOAD (IN SECONDS) FOR TRAINING AND TESTING ON INDIAN PINES DATASET

COMPUTATION LOAD

(IN SECONDS) FOR TRAINING

Pixelwise FEGA EMP Pixelwise FEGA EMP Max Min Prod Aveg MV WMV-GA WLC-GA
MLP MLP MLP SVM SVM SVM
Training 63.95 60.0 34.6 0.67 0.44 0.28 - - - - - 1080 1075
Testing 0.29 0.19 0.09 2.72 1.62 0.71 0.59 0.61 0.09 3.73 0.06 0.04 0.04
TABLE IV

AND TESTING ON PAVIA UNIVERSITY DATASET

Pixelwise FEGA EMP Pixelwise FEGA EMP Max Min Prod Aveg MV WMV-GA WLC-GA
MLP MLP MLP SVM SVM SVM
Training 96.3 7215 77.1 1.38 1.12 0.55 - - - - - 3635 3625
Testing 0.6 0.3 0.22 7.28 4.18 1.95 1.31 1.31 0.15 8.30 0.21 0.11 0.11
and standard deviation should validate more thoroughly our [14] F Melgani and L. Bruzzone, “Classification of hyperspectral remote

proposal.
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