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Abstract—In this work, we studied variational models for
image segmentation present in literature, in which will be
discussed its mathematical formulations and characteristics of
minimization processes. Among these techniques, it will be
explored the method Fuzzy Region Competition and segmen-
tation models that can be derived from its energy functional.
Inspired by this method, three modifications were proposed based
on these models that minimize some of their limitations and
which emerges as alternatives for real-world image segmentation.
The proposed modifications were validated by the good results
obtained using natural, textured and noisy images. In addition,
some comparative results are shown with other similar techniques
with the objective of reporting the effectiveness of the proposed
models. 1

Keywords-soft image segmentation, Fuzzy Region Competition,
Variational Methods, Partial Differential Equations.

I. INTRODUCTION

Image segmentation is a fundamental field in image pro-

cessing and computer vision. Despite intense studies in last

decades, image segmentation problem still presents an impor-

tant research task. In literature, there exists a large diversity

of segmentation techniques and researchers have made efforts

to develop efficient and consistent algorithms. Methods that

incorporate variational principles appear with powerful tools

to solve several problems related to image segmentation. In

a variational approach, the segmentation is obtained by mini-

mizing an energy functional formulated under a homogeneity

criterion of the image regions.

In this sense, we may distinguish between hard (also called

crisp) and soft segmentation approaches. The goal of hard

segmentation is to subdivide the image domain into its non-

overlapping and connected components. The main examples

are Mumford-Shah functional [1] and Snake model [2], which

boosted the development of region-based and contour-based

variational segmentation models, respectively. The first one

deals with image smoothing and boundary preservation simul-

taneously and the solution is a piecewise smooth approxima-

tion from the reference image. The latter uses a parametric

dynamic curve, explicitly represented, that moves from an

initial position towards to the image object boundaries. The

most of further developed image segmentation models that
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uses a variational formulation are based on Mumford-Shah

and Snake method [3] [4]. However, generally these meth-

ods compute local solutions and present a slow convergence

process, since they are based on curve evolution techniques

that are numerically solved through Euler-Lagrange Equations

associated with gradient-descendent schemes.

Mory and Ardon [5] proposed an extension of the classical

Region Competition algorithm [6] to a soft (fuzzy) approach,

named Fuzzy Region Competition (FRC), which aims to seg-

ment an image in two regions (background and foreground).

This method describes the image regions by means of a sta-

tistical criterion, which is used for the competition procedure

between these image regions, coming from Bayesian principles

[6], constants regions [3] or regions with intensity variations

[1]. Furthermore, the refered method can assume a supervised

or an unsupervised approach. Its energy functional is convex

related to the fuzzy membership function, in which global

solutions that minimizes its functional and stable segmentation

models can be obtained.

However, some of these models presented in Mory and

Ardon work’s [5] have drawbacks related to its practical

applications and to the statistical criteria used to characterize

the image segmentation models. These limitations motivated

us to propose three alternative image segmentation models

based on FRC methodology.

Constant Region Competition (CRC) [5] model represents

each image region by a constant value, which is not in-

dicated for segmenting textured images. The first proposed

modification is a local extension of CRC that computes these

constants by considering the influence of neighborhood in

relation to each image point. Mory and Ardon proposed in

[5] a supervised segmentation model that uses a probability

distribution to represent image regions. This model has prac-

tical limitations due to the necessity of the sampling of image

regions before the segmentation process. In this sense, we

developed an unsupervised version that turns the segmentation

process automatic, keeping the quality of the results. The

third proposed method refers to an extension of the two-phase

FRC to multiphase image segmentation. The main reason to

develop this extension is related to the applicability of Mory

and Ardon method, which is restricted to images composed

by two regions, knowing that we can naturally find images



constituted of several regions. Moreover, multiphase image

segmentation models based on FRC methodology are not very

explored in the scientific community.

This paper is organized as follows: Section II presents

the two-phase Fuzzy Region Competition energy functional

and the segmentation models that can be derived from its

methodology. Section III describes the Local Weighted Con-

stant Region Competition method, which is the local ex-

tension of the CRC model proposed by Mory and Ardon.

Section IV presents the second proposed modification, an

unsupervised case of Fuzzy Region Competition which uses

probability density functions to describe images. Section V

shows the multiphase image segmentation model based on

Fuzzy Region Competition. Experimental results are reported

after each segmentation model description in its respective

sections. Section VI shows the conclusions about the proposed

image segmentation modifications.

II. TWO-PHASE FUZZY REGION COMPETITION

With the success of the Region Competition algorithm [6],

several variational region-based methods that use its ideas

have been developed. Mory and Ardon proposed the two-phase

Fuzzy Region Competition (FRC) framework [5], which has

a fuzzy approach and aims to segment an image I over

the domain Ω ⊂ R
m in two regions based on its intensity

distributions. The FRC minimization problem, in a general

formulation, is given by:

min
u∈BV (Ω)[0,1],α

{

FFRC(u,α) =

∫

Ω

g|∇u| +

+

∫

Ω

u(x)r1(α1, x)dx +

∫

Ω

(1 − u(x))r2(α2, x)dx

}

, (1)

where u ∈ BV (Ω)[0,1] (set of bounded variation functions be-

tween [0, 1]) is a variable that represents the fuzzy membership

function. g is a positive boundary function, decreasing with the

image gradient. ri : Ω → R, for i = 1 or 2, are error functions,

which design image regions using intensity properties. They

are dependent on a set of region parameters α = (α1, α2),
assuming to be scalars [6], constants [3] or space varying

functions [1]. When α is known a priori, the problem in

Eq. (1) becomes a supervised segmentation model, otherwise

the segmentation model is said to be unsupervised, where α

needs to be optimized. The first term in energy functional of

Eq. (1) is responsable for smoothing the variable u, while the

remainder terms are related to the cost of assign each domain

point to the respective regions.

The error functions ri(αi, x) characterize image regions

using the statistical parameters αi. We can obtain several

segmentation models using different error functions, where are

commonly employed:

• ri(αi, x) = −λ log(Pi(I(x)|αi)), where Pi(I(x)|αi) is a

probability distribution with scalar parameters αi (αi ∈
(Rk)2) [6]. Mory and Ardon proposed a supervised image

segmentation model by the use of this error function on

the functional of Eq. (1);

• ri(αi, x) = λ(I(x)− ci)
2, where parameters αi = ci are

constant values (ci ∈ R
2) [3]. Mory and Ardon used this

error function in the functional of Eq. (1) to obtain the

Constant Region Competition (CRC) method;

• ri(αi, x) = λ(I(x)−si(x))2+ζ|∇si|2, where parameters

αi = si are space varying functions (si ∈ (C1)2) [1]. The

derived segmentation model is refered as Smooth Region

Competition (SRC).

remarking that λ is a regularizer parameter for balancing the

smoothness and the competition.

The functional in Eq. (1) is convex with respect to u, so

minimizing it, optimal global solutions regardless of initial

conditions can be obtained in the supervised case. In the

unsupervised case, the obtained solutions are weakly sensitive

to initial conditions, since it involves the optimization of region

parameters. Generally, the minimization of the problem in Eq.

(1) consists of performing alternately the two steps below:

(i.) Keeping u fixed, compute optimal values for the

parameters α, according to the adopted error func-

tion. This step takes place only in the unsupervised

segmentation case;

(ii.) Keeping α fixed, update fuzzy membership function

u by minimizing Eq. (1);

where function u is initialized randomly with the restriction

u(x) ∈ [0, 1], for each x ∈ Ω. This minimization process ends

when no significant changes occurs in u or if we fix a limited

number of iterations.

It is important to emphasize that step (ii.) can be numerically

solved using the Euler-Lagrange equations associated with a

gradient-descendent scheme. However, this strategy does not

take advantage over the convexity of functional of Eq. (1).

An alternative strategy is related to the use of Chambolle’s

dual projection algorithm [7], which is a fast and stable

numerical tool to minimize energy functionals that incorporate

total variation regularizing terms. To achieve this objective, we

use Bresson’s strategy [8], in which the segmentation problem

in Eq. (1) can be rewritten by the approximation below:

min
(u,v)∈BV (Ω)[0,1]

{

FAP (u, v) =

∫

Ω

|∇u|

+
1

2θ

∫

Ω

|u − v|2 +

∫

Ω

rv + ρν(v)

}

(2)

where v is an auxiliary function, r = r1−r2 is the competition

function, ν(ε) = max(0, |2ε − 1| − 1), ρ > 1
2 |r|∞ and θ is

chosen to be a small enough value, so that the minimizing

pair (u∗, v∗) are almost identical in relation to L2 norm. The

functional in Eq. (2) depends only on the function u in the

two first terms, then Chambolle’s dual projection algorithm

can be used for FAP minimization. Based on this fact, the

solution of the functional in Eq. (2) is reached by carrying

out sucessive minimization steps in u and v, alternately as:



1) Keeping u fixed, compute v:

v = max{min{u − θr, 1}, 0} (3)

2) Keeping v fixed, compute u:

u = v − θdivp (4)

where the vector p = (p1, p2) ∈ C1
c (Ω, Rm) can be

calculated by the fixed point algorithm, iterating for n ≥
0:

pn+1 =
pn + τ∇(divpn − v/θ)

1 + τ |∇(divpn − v/θ)| (5)

where p
0 = 0 and τ < 1/8 guarantees the numerical

stability of the scheme and g is obtained as

g(|∇I|) =
1

1 + β|∇I|2 (6)

where β is a positive constant that controls the gradient

influence in function g and I is the reference image.

The Chambolle’s dual projection algorithm has numerical

stability in the minimization process, fast minimization and it

is advantageous for the convergence process.

In the next sections, the three proposed modifications for

image segmentation based on FRC method will be detailed.

These sections contains the idea behind the derived models,

motivation and a segmentation result that illustrates the usage

of the respective model.

III. LOCALLY WEIGHTED CONSTANT REGION

COMPETITION

Constant Region Competition (CRC) model is very useful

for segmenting images in which its regions are homogeneous

or corrupted by noise. On the other hand, the applicability

of this model in real and natural images is too restricted,

since images with homogeneous regions are rarely found in

practice. Because this method computes optimal constants

for each region, information like object texture and topology

are disregarded during the segmentation process, since these

parameters are computed from image global analysis. Using a

local methodology over the image and performing the compe-

tition between the two regions considering only neighborhood

points, the final segmentation result should be more effective.

Using this idea, we propose a segmentation model based on

FRC that aims to approximate each image region by a con-

stant value using local weighted analysis. The segmentation

model is called Locally Weighted Constant Region Competition

(LWCRC) [9], which uses the following error function:

rci

i (x) = λ

∫

y∈Ω

ω(x − y)(I(x) − ci)
2dy. (7)

where ω : Ω → R
+ is a window function, which provides the

neighborhood influence in relation to each domain point and

ω(x) → 0 when |x| → +∞. Tipically, ω can be defined as a

normalized isotropic Gaussian window:

ω(x) =
1

σ
√

2π
exp

(

−|x|2
2σ2

)

, (8)

where σ is the standard deviation, responsable for providing

the scale notion in the image analysis. Further details about

how this error function was determined is given in [9].

Replacing the error in Eq. (7) into the functional of Eq. (1)

becomes:

min
u∈BV (Ω)[0,1],(c1,c2)∈R

{

FLWCRC(u, c1, c2) =

∫

Ω

|∇u| +

+λ

∫

x∈Ω

u(x)

∫

y∈Ω

ω(x − y)(I(x) − c1)
2dydx +

+λ

∫

x∈Ω

(1 − u(x))

∫

y∈Ω

ω(x − y)(I(x) − c2)
2dydx

}

, (9)

where α = {c1, c2} and λ balances the error region terms and

the total variation regularization. Keeping u fixed, the optimal

values for c1 and c2 are obtained computing Euler-Lagrange

Equations for equation (9). So, c1 and c2 are given by:

c∗1 =

∫

y∈Ω

∫

x∈Ω
(I(x)u(x))ω(x − y)dxdy

∫

y∈Ω

∫

x∈Ω
u(x)ω(x − y)dxdy

c∗2 =

∫

y∈Ω

∫

x∈Ω
(I(x)(1 − u(x)))ω(x − y)dxdy

∫

y∈Ω

∫

x∈Ω
(1 − u(x))ω(x − y)dxdy

. (10)

Eqs. (10) can be rewritten by means of normalized convo-

lutions [9], where such convolutions, in fact, create smooth

approximations for each image region, considering the fuzzy

membership functions u and (1 − u) as certainty measures.

Therefore, the constants c1 and c2 in our model are locally

weighted averages, which differs from the global constants of

the CRC model.

The minimization process of Eq. (9) takes place as in FRC

unsupervised models, following basically the steps below: (i)

Keeping u fixed, compute the optimal values for c∗1 and c∗2
by Eqs. (10); (ii) Keeping c∗1 and c∗2 fixed, update fuzzy

membership function u minimizing the functional of Eq. (9)

with respect to u using Chambolle’s dual projection algorithm.

The final segmentation is c1u + c2(1 − u).
In Figure 1, we give an example of the proposed segmen-

tation model. We aim to segment the central circle, shown

in Figure 1(a), from the background. Figure 1(b) shows the

initial state of the fuzzy membership function u. Figures 1(c)

and 1(d) illustrate the intermediary state and the final state

of function u after 150 time steps CRC model, respectively.

Figures 1(e) and 1(f) show the intermediary state and the

final state after 150 time steps of function u by LWCRC

model, respectively. The parameters used in this experiments

were θ = 0.15, τ = 0.1, λ = 0.01 and σ = 0.04. It can

be emphasized that our model was able to identify the two

textured objects correctly.

IV. UNSUPERVISED FUZZY REGION COMPETITION USING

GLOBAL DISTRIBUTION PROBABILITIES

In [5], Mory and Ardon explored a supervised approach of

the FRC method aiming to analyse the functional convexity.



(a) (c) (e)

(b) (d) (f)

Figure 1: Image (256×256) constructed using Brodatz textures

[10]: (a) Original image; (b) Initial u; (c-d) Intermediary and

final state of u by CRC model, respectively; (e-f) Intermediary

and final state of u by LWCRC model, respectively.

In this supervised model, we first should sample each image

region, compute the respective parameters using the samples

and estimate the probability distributions for these regions. The

probability distributions of the two regions are used in the

competition process, where a log-likelihood test determines

the most similar region for each domain point.

Although good results that can be reached from the super-

vised case of FRC method, the segmentation process is not

totally automatic. The necessity of a previous knowledge of

the image regions limits the applicability of the segmentation

model to problems in which this information is really avail-

able. Furthermore, the parameters estimation using the region

samples might not significantly represent the entire region,

which may lead to poor results. The remainders unsupervised

FRC models, CRC and SRC, describe each image region by

either a constant value, or a smooth approximation, which are

inappropriate for textured images.

Trying to minimize these drawbacks, we proposed an unsu-

pervised segmentation model based on FRC method that uses

probability density functions (pdf’s) to design image regions

and to set a homogeneity criterion for the competition be-

tween regions [11]. Assuming that the probability distributions

functions Pi(I|αi) are known, replacing the error function

ri(αi, x) = −λ log(Pi(I(x)|αi)) into the functional of the

Eq. (1) leads to:

min
u∈BV (Ω)[0,1],α

{

FUFRC(u,α) =

∫

Ω

g|∇u|

−λ

∫

Ω

u(x) log(P1(I(x)|α1))dx

−λ

∫

Ω

(1 − u(x)) log(P2(I(x)|α2))dx

}

. (11)

A typical model that can be used in the probability distribution

function Pi is the Gaussian distribution, given by:

Pi(I(x)|{µi, σi}) =
1

σi

√
2π

exp

(

− (I(x) − µi)
2

2σ2
i

)

, (12)

where Pi describes statistically the image regions using pa-

rameters αi = {µi, σi}, where µi is the mean and σi is the

standard variation of region i. So, the optimal values for the

parameters of region 1 (α1) and region 2 (α2) can be obtained

computing the Euler-Lagrange equations of the functional in

Eq. (11) related to these parameters:

µ∗

1 =

∫

I(x)u(x)dx
∫

u(x)dx
µ∗

2 =

∫

I(x)(1 − u(x))dx
∫

(1 − u(x))dx
(13)

σ∗

1 =

√

∫

u(x)(I(x) − µ1)2dx
∫

u(x)dx

σ∗

2 =

√

∫

(1 − u(x))(I(x) − µ2)2dx
∫

(1 − u(x))dx
(14)

in which the fuzzy membership functions u and (1 − u) are

certainty measures related to each image region.

The minimization problem of Eq. (11) can be solved fol-

lowing the generic scheme presented in Section II: (i) Keeping

u fixed, compute the optimal values for µ1 and µ2 using Eq.

(13) and, σ1 and σ2 by Eq. (14) and estimate the probability

distributions P1 and P2 by Eq. (12); (ii) Keeping {µ1,σ1}
and {µ2,σ2} fixed, update fuzzy membership function u by

minimizing the functional in Eq. (11).

Figure 2 is a difficult segmentation task due to the high

similarity between foreground and background intensities. We

want to separate the snake from the background. Figure 2(b)

shows the initial function u. Function u in intermediary state

(step 20) is presented in Figure 2(c) and Figure 2(d) shows

the final u after 700 time step iterations. Figure 2(e) illustrates

function u obtained by CRC method. The reconstructed image

IREC = Iu, obtained from final function u (Figure 2(d)) is

presented in Figure 2(f). It can be seen that snake was correctly

segmented, while CRC model presented an erroneous result.

In this experiment, the parameters were fixed as τ = 0.1,

θ = 0.15, λ = 0.4 and β = 0.005.

V. SELECTIVE MULTIPHASE FUZZY REGION

COMPETITION

The most of developed variational multiphase segmentation

models [13] [14] [15] compute solutions that are sensitive with

respect to initial conditions. Using this fact as motivation,

we propose a multiphase image segmentation model which

is weakly sensitive to initial conditions and is based on

several runs of the two-phase FRC technique. The segmen-

tation process takes place under a soft approach and its final

result are hard partitions. So, we can avoid the occurrence of

overlapping regions (points belonging to more than one region)



(a) (b)

(c)

(d) (e)

(f)

Figure 2: Snake image (321×481) from Berkeley Segmentation

dataset [12]: (a) Original image; (b) Initial function u; (c)

Intermediate state of function u; (d) Final function u after

700 steps; (e) Final function u obtained by CRC model; (f)

Reconstructed image IREC = Iu.

and vacuum (pointS without region label) in the image domain.

In this section, we present the Selective Multiphase Fuzzy

Region Competition (SMFRC) model that uses a supervised

approach and a statistical criterium to describe image regions.

Specifically, we represent each image region by probability

distributions, which are computed based on the statistical

parameters extracted from the samples of the image regions.

In the supervised case, the region parameters are computed

from these samples and are known before the segmentation

process.

The goal of the proposed model is to segment an image

domain Ω in N regions, each one represented by a hard

partition, in a way that

Ω = ∪N
i=0Ωi and Ωi ∩ Ωj = ∅. (15)

where Ω0 = ∅.

The key idea behind the proposed segmentation model is to

perform the two-phase FRC model N−1 times and to compute

one fuzzy membership function per round. In each round

i, the determined fuzzy membership function ui, computed

into Ω\ ∪i−1
j=0 Ωj , is transformed into a hard partition using a

threshold procedure. The N th hard partition is taken as the

complement of the set formed by the union of the N − 1
partitions related to Ω. The proposed technique is soft during

the segmentation process, but presents hard partitions as the

final results.

In other words, we first determine u1 and (1−u1) functions

using the two-phase FRC model, where u1 is the membership

of the first region and (1 − u1) is the membership for the

background of the first region. This “first background” is

composed by N − 1 regions with different pdf’s, however,

only one pdf will be used to represent the image background.

After this, we perform a threshold in u1 to obtain Ω1 and

seek for u2 and (1 − u2) functions, only on the domain

points that do not belong to partition Ω1 (i. e., Ω\Ω1).

Applying the same procedure described above and defining

the “second background”, function u3 will be computed on

domain points that do not belong to partition Ω1 or Ω2 (i. e.,

Ω\(Ω1 ∪ Ω2)). This process continues until partition ΩN−1

has been computed. The N th hard partition is obtained as

ΩN = Ω\ ∪N−1
i=0 Ωi. (16)

It can be seen that constraints in Eq. (15) are satisfied, once

all domain points will have an unique region label after the

determination of the N partitions.

The segmentation process above can be formulated as a

minimization of the N − 1 functionals, where each mini-

mization procedure has the objective of determining the fuzzy

membership function ui, for i = 1, ..., N − 1. The proposed

model consists of minimizing the following energy functional:

Fi(ui,α) =

∫

Ω′

i

g|∇ui| +
∫

Ω′

i

ui(x)ri(αi, x)dx

+

∫

Ω′

i

(1 − ui(x))rsi
(x)dx , (17)

where ri(αi, x) is an error function defined as in the two-

phase Fuzzy Region Competition framework. α is a fixed

region parameters set, defined as {α1, ..., αN}. Ω′

i is an image

subdomain, used to fix the domain points that will participate

of the computation of function ui. For i = 1, ..., N − 1, this

subdomain is obtained as

Ω′

i = Ω\ ∪i−1
j=0 Ωj (18)

knowing that Ω0 = ∅ and

Ωi = {x ∈ Ω′

i|ui(x) > T} (19)

defines the hard partition containing the domain points which

belongs to region i. T ∈ [0, 1] is a threshold value.

As before mentioned, the proposed model approximates

image regions by probability distributions. So, using the error

function ri(αi, x) = −λ log(Pi(I(x)|αi)), we design rsi
in

a way that region i always competes with a region j which

one has the highest probability of all other remaining regions.

Thus, rsi
is given by

rsi
(x) = −λ log(Ps(I(x)|αs))) (20)

where

s = arg maxj=i+1,...,N (Pj(I(x)|αj)) , (21)

where the probability distributions are Gaussians.

The energy functional in Eq. (17) is minimized with respect

to ui by the use of Chambolle’s dual projection algorithm,

as in the two-phase Fuzzy Region Competition model. More

details about the algorithm of the proposed multiphase model

can be encountered in [16].



In Figure 3, a result obtained by segmenting a nature

image from Berkeley Segmentation Dataset [12] in three

regions is showed. Figure 3(a) shows the original image with

the red, green and blue rectangles representing each region

manually sampled. Figures 3(b-c-d) present the reconstructed

image regions using the hard partitions obtained by the pro-

posed model. Figures 3(e) and 3(f) illustrate a comparison

between the obtained segmentation and an adapted ground-

truth to three-phase segmentation from Berkeley Segmenta-

tion Dataset. In this experiment, we set the parameters as:

θ = 0.05, τ = 0.1, λ = 0.2, β = 0.0001, N = 20, T = 0.5
and 350 iterations for obtaining each partition. It is worth

noting that the obtained segmentation is near from the adapted

ground-truth provided by the Berkeley dataset developers.

(a) (b) (c)

(d) (e) (f)

Figure 3: Image (481 × 321) from [12] for three-phase seg-

mentation: (a) Original image and region samples; (b) Re-

constructed image using hard partition Ω1; (c) Reconstructed

image using hard partition Ω2; (d) Reconstructed image using

hard partition Ω3; (e) Overall segmentation obtained by the

proposed model; (f) Adapted Ground-truth from [12].

VI. CONCLUSION

In this paper, we described three variational image seg-

mentations techniques which is based on Fuzzy Region Com-

petition (FRC) technique. The first proposed modification is

a local extension of the constant case of FRC framework

(Constant Region Competition - CRC). This model represents

each image region by a single constant value and uses a win-

dow function to weigth locally the competition between two

regions. The proposed modification improved the segmentation

quality compared with CRC using textured images.

The second modification is an unsupervised two-phase

image segmentation model that describes image regions by

probability distributions and guides the competition procedure

by log-likelihood tests. The proposed model is more suitable

for dealing with textured and natural images than CRC and can

keep the segmentation quality when compared with supervised

FRC method.

The third proposed model is a supervised multiphase seg-

mentation algorithm which consists of performing the two-

phase FRC N−1 times, where in each time, the obtained fuzzy

membership function is transformed into a hard partition.

Results showed that this model is promising considering that

multiphase segmentation based on FRC is recent and needs to

be more explored.
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