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Abstract—This work presents a hybrid classification approach
combining the use of supervised classification and unsupervised
clustering algorithms. The main idea is to reduce the training set
by selecting the most appropriated samples for classification using
the K-nearest neighbor (KNN) algorithm. Indeed, a clustering
algorithm is run in each class and the resulting centers of each
cluster are selected to form the new training set of KNN. In this
work, we use the K-Means and ISODATA clustering algorithms
and present a comparative analysis using these methods. Ex-
periments are carried out on two well-known databases: Indian
Pines, acquired by AVIRIS sensor; and Pavia University, acquired
by ROSIS sensor. Results show the efficiency of our proposed
approach which significantly reduces the time required in the
classification step while the effectiveness/accuracy is kept close
to the ones of the original KNN.
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I. INTRODUCTION

The emergence of remote sensed hyperspectral images has
brought some challenges to the task of data interpretation.
Among them, we may mention the modeling of high dimen-
sional data and their parameter estimation. In multispectral
data (dozens of spectrals), Gaussian distribution model has
been used for these purposes [1]. However, when dealing with
hyperspectral imaging a large number of training samples for
each class is required in order to estimate the terms of the
large covariance matrices, for example. It should be noted
also that a unimodal Gaussian description is not enough to
handle multimodal data class [2]. In order to circumvent the
above problems, the use of non-parametric algorithms such as
the k-nearest neighbors (KNN) can be a good choice, since it
has the advantage of not requiring estimated density function
for each class [2]. Despite its simplicity, the KNN has been
widely used [3], [4], [5], [6], because it has a high degree of
accuracy, clear rules and, moreover, it is easy to implement.

The KNN is one of the most simple and intuitive algorithms
to supervised classification. It is assumed that nearest samples
are in the same class. This notion is used for the classification
task and the KNN works as follows. For each unclassified
pattern (testing set), one seek for the closest known class
patterns (training Set) in the feature space, i.e., the nearest
neighbors. And one uses the class of these classified samples
for selecting by majority the class of the unclassified pattern.

The KNN classifier is the one in which learning is based on
analogy. The training set is composed by patterns represented
by n-dimensional vectors. Each pattern of this group can
be seen as a point in a n-dimensional space. In order to
determine the class of a pattern which does not belong to
the training set, the classifier KNN chooses the patterns of
the training set that are closest to this unknown pattern, i.e.,
having the greatest similarity, usually the smallest Euclidian
distance. Computational cost can be high due to the number
of comparisons to be made [7], since the similarity/distance
from the unclassified pattern to the all training set has to
be computed. That is, a large number of spectral distances
should be evaluated for each pixel which requires a high
computational load, especially when the number of spectral
bands and/or the number of training samples is large. This is
why the KNN has been primarily limited to the classification
of multispectral data. For hyperspectral data, the KNN has
been used only after features reduction is achieved [2].

Contributions: Thus, an approach which may take ad-
vantage of KNN decreasing its computational cost can be
useful and appropriate to classify remote sensed hyperspectral
images. With this in mind, the connection between an un-
supervised clustering algorithm as Kmeans or ISODATA and
the non-parametric KNN classifier is proposed in this work1.
In order to decrease the computational load, we suggest to
reduce the training set size by selecting the most appropriated
samples. For each class, these samples are chosen as the
resulting center clusters from Kmeans and ISODATA.

The remainder of this paper is organized as follows. Sec-
tion II formally describes the Kmeans, ISODATA, and KNN
algorithms. Section III presents our approach for remote
sensed hyperspectral images classification. Sections IV and V
describes the experiments performed using two well-know
database (Indian Pines, acquired by AVIRIS sensor [8]; and
Pavia University, acquired by ROSIS sensor [9].) in order to
validate the proposed approach and their respective analyses.
Finally, conclusions are pointed out in Section VI.

1This work relates to a master’s thesis.
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II. THEORETICAL BACKGROUND

A. Kmeans

The Kmeans is a partition clustering algorithm that is
characterized by dividing the dataset into disjoint subsets.
According to [10], the Kmeans does not require spatial infor-
mation and has the great advantage of the computational time.
It is based on distance, since its similarity function is based
in the distance, which seeks to minimize. The most popular
clustering algorithm is the Kmeans [11] using Euclidean
distance. The idea of the algorithm is to provide a classification
according to the data itself, based on analysis and comparisons
of their numerical values. Thus, the algorithm provides an au-
tomatic classification without the need for human supervision.
Because of this feature, the Kmeans algorithm is considered as
a data classification unsupervised. According to a pre-defined
rule, this method uses values from the data itself as temporary
estimates of the average of clusters Km, where Km is the
number of clusters specified by the user. Thus, the KMeans
form sets having the most similar to each other, consequently
separating the least similar.

The initial groups are formed around centers provided.
Then, for each cluster formed is calculated an average value
among the values that form the cluster. This average will be
a new center, around which would form a new cluster with
the elements closest to this center, considering all elements
of the data set. This process continues iteratively until the
elements stop changing clusters or until a maximum number
of iterations predetermined is reached.

B. ISODATA

The ISODATA algorithm [12] is an enhancement of
KMeans. The clusters resulting from KMeans depend strongly
on the value of k, the number of clusters chosen a priori,
that does not always represent the real amount (natural) of
possible groupings. The ISODATA allows the deletion, fusion
and division of clusters, so that the resulting number of clusters
can be different from the k, informed by the user. Thus, the
resulting number of cluster are closer to the natural amount of
clusters from the data set. Like the KMeans, ISODATA based
on minimization of a cost measure, in this case, the internal
distance between the patterns of one group. Considering:
K: Number of clusters initial;
I: Maximum number of iterations;
θM : Threshold for minimum number of samples in each

cluster can contain, for discarding clusters;
θS : Threshold for standard deviation, for split operation;
θC : Threshold for pairwise distances, for merge operation.
The ISODATA algorithm, extracted from [13], as follow:
Step 1: Arbitrarily choose k (not necessarily equal to

K) initial cluster centers: m1,m2, ...,mk from the data set
xi; i = 1, 2, ..., N .

Step 2: Assign each of the N samples to the closest cluster
center:
x ∈ wj , if DL(x,mj) = max{DL(x,mi), i = 1, 2, ..., k}.

Step 3: Discard clusters containing too few members, i.e., if
Kj < θM , then discard wj and reassign its members to other
clusters. k = k − 1.

Step 4: Update each cluster center:
mj =

1
Kj

∑
x∈wj

x; (j = 1, 2, ..., k).
Step 5: Compute the average distance Dj of samples in

cluster wj from their corresponding cluster center:
Dj =

1
Kj

∑
x∈wj

DL(x,mj); (j = 1, 2, ..., k).
Step 6: Compute the overall average distance of the samples

from their respective cluster centers:
D = 1∑k

j=1
Kj

∑k
j=1KjDj =

∑k
j=1 PjDj , Pj =

Kj∑k

j=1

.

Step 7: If k <= K/2 (too few clusters), go to Step 8 (split);
else if k > 2K (too many clusters), go to Step 11 (merge);
else go to Step 13 (continue).

(Steps 8 through 10 are for split operation, Steps 11 through
13 are for merge operation.)

Step 8: Find the standard deviation vector:
σ(j) = [σ

(j)
1 , ..., σ

(j)
N ]T

for each cluster:
σ
(j)
n =

√
1
Kj

∑
x∈wj

(xn −m(j)
n )2, (n = 1, ..., N ; j =

1, ..., k)

where m(j)
n and σ

(j)
n are the nth component of the mean

vector mj e o desvio padro das amostras wj . Kj is the number
of samples in wj .

Step 9: Find the maximum component of each σj and denote
it by σ(j)

max. Do this for all j = 1, ..., k.
Step 10: If for any σ(j)

max, (j = 1, ..., k), all of the following
are true:
σ
(j)
max > θS
Dj > D
Kj > 2θM
then split mj into two new cluster centers m+

j e m−j , by
adding ±δ to the component of mj corresponding to σ

(j)
max

where δ can be ασ(j)
max, for some α > 0. Then delete mj and

let k = k + 1. Goto Step 2, else Go to Step 13.
Step 11: Compute the pairwise distances Dij between every

two cluster centers:
Dij = DL(mi,mj), (1 ≤ i, j ≤ k, i > j)
sort them in ascending order:
Di1j1 ≤ Di2j2 ≤ ... ≤ Dikjk

Step 12: Find the P smallest distances all satisfying Dij <
θC , and perform pairwise merge of the corresponding clusters.
Specifically, for l = 1, ..., P , if neither of mij nor mji has
been used in this iteration, merge them to form a new center:
m = 1

Kij+Kji
[Kijmij +Kjimji]

Delete mij and mji, and let k = k − 1
Go to Step 2.
Step 13: Terminate if maximum number of iterations I is

reached. Otherwise go to Step 2.

C. KNN

The K-Nearest Neighbor (KNN) [7] is one of the most
simple and intuitive to supervised classification, it is assumed
that within the close any instances of attributes are the same
class. For each pattern with unknown class, look for the



patterns of known class (Training Set) closest in feature space,
the nearest neighbors, and uses the class closer to these
standards for classification, choosing the class corresponding
to majority. The KNN classifier is one in which learning is
based on analogy. The training set consists of n-dimensional
vector and each element of this set represents a point in n-
dimensional space. To determine the class of an element that
does not belong to the training set, the KNN classifier seeks to
K elements of the training set that are closest to this unknown
element, that is, having the shortest distance.

Let x be an unknown pixel vector, wi be a label for ki
neighbors, so that∑M

i=1 ki = k
Let a general KNN rule be

x ∈ ωi, if mi > mj for all j 6= i (1)

where mi(x) is the membership that pixel vector x belongs
to class i. For the basic KNN

mi(x) = ki (2)

In this work, Euclidean distance is used as the spectral
distance measure.

III. THE PROPOSED APPROACH

The proposed approach aims to obtain a reduced training
set such that the KNN classification algorithm run faster than
in its original way. Moreover, we expect that the instances
chosen for each class, which are cluster centers of Kmeans,
could keep the classification effectiveness similar to the one
when all training set is used. A flowchart of our proposed
approach is shown in Fig. 1.

Fig. 1. Scheme of the proposed approach

The proposed strategy is the implementation of the cluster-
ing algorithm on each set of instances of the same class in the
original image. Then from each cluster obtained, their centers

will be selected and form the new training set for the KNN.
This new training set is then formed by data representing best
determined class, thus diminishing the effect of intra-class, and
of noise in the set clustered. In the proposed strategy, as was
done with KMeans, the ISODATA was used in each class and
the resulting cluster centers were selected as the new training
set of KNN.

IV. EXPERIMENTS

In order to determine the reliability of the constructed model
with the data available, the N -fold cross validation scheme
is employed, in which the dataset is divided into N subsets.
Among these subsets, one is retained to be used as testing
and the remaining N − 1 subsets are used for training. The
validation procedure is repeated N times until each subset is
used exactly once as testing data, as illustrated in Fig. 3. In
this way, the N average effectiveness of the classifier in testing
is obtained.

Fig. 3. N-folds cross validation scheme

The dataset division is performed as follows. The labeled
pixels are divided into sets, in which each set represents a
class. Then each class set is equally divided into five subsets
(N = 5). The resulting subsets are grouped so that each
contain 1/5 of the labeled pixels of each class.

In order to verify the effectiveness and efficiency of our
approach, tests are performed with two training sets.

First experiment: Experiments are performed using the
Indian Pines datasets, acquired by AVIRIS airborne sensor
data [8], which cover an area of agriculture and forest in
northeastern Indiana, USA, 145×145×220 pixels. Noise bands
are removed, that is, the indexed from 104 to 108, from 150 to
163 and 220, remaining a total of 200 bands. A representation
of this hyperspectral image can be seen in Fig. 2a, in which
there are sixteen classes or categories as highlighted in Fig. 2b.

This image is classified by KNN using the full training set
and using the training set procuced by the proposed approach,
and the respective obtained thematic maps are shown in
Fig.’s 2c, 2d and 2e. The obtained results are shown in
Table I. As we can observe, the accuracy of KNN is higher,



(a) Original (b) Ground Truth (c) Thematic Map for 1-NN (d) Thematic Map for 1-NN and
60 clusters, KMeans

(e) Thematic Map for 1-NN and
100 clusters, ISODATA

Fig. 2. Indian Pines dataset, 200 bands, AVIRIS sensor

(a) Original (b) Ground Truth (c) Thematic Map for 3-NN (d) Thematic Map for 3-NN and
60 clusters, KMeans

(e) Thematic Map for 3-NN and
140 clusters, ISODATA

Fig. 4. Pavia University, 103 bands, ROSIS sensor

but the time required for classification is greater than that of
the proposed approach. In these experiment, we used all 200
image bands, which may influenced the low accuracy. Note
that the time required for clustering is taken into account.

Second experiment: An image of the University of Pavia,
Italy, acquired by the sensor ROSIS, 610 × 340 × 103 pixels
is used [9]. This image presentes nine classes as highlighted
in Fig. 4b, where Fig.’s 4a shows a representation of that
region. The experiments are performed using all 103 bands of
this image. The results obtained for this image by the KNN
and proposed approach can be seen in Table II. This image
is classified by KNN using the full training set and using
the training set procuced by the proposed approach, and the
respective obtained thematic maps are shown in Fig.’s 4c, 4d
and 4e. The proposed approach obtained an accuracy slightly
lower than the KNN using the full training data, however its
running time is quite smaller.

V. RESULTS AND DISCUSSION

It is important to note that the classes in both im-
ages/datasets is quite unbalanced, i.e., some few classes con-
tain the majority of pixels while others have many few, as can
be seen in column Samples in Tables III and IV. Therefore,

when applying the clustering algorithm and selecting the
cluster centers found, it may happen that the classes with more
elements are not well represented, since the number of centers
is equal for all classes. This procedure can reduce the accuracy
of classification. In order to find a better representation for
the new training set extracted from the cluster centers, we
adopted the following strategy. Firstly, we account the number
of elements Q from each class and calculated the median M
between the values found. M is divided by the number of
clusters K, previously reported, resulting in R. Then the new
number of clusters NKn to be used in each class is now the
value for the quantity Q of the respective cluster divided by
R, as follow:
M = median(Q1, Q2, ..., Qn)
R =M/K
NKn = Qn/R
where C = number of classes, n = 1, 2, ..., C and K =

number of clusters.

A. Performances

Analyzing the results shown in Table I (Indian Pines-
AVIRIS), we can observe that the accuracies reached by the
proposed approach is very close to the ones reached by the



TABLE I
EXPERIMENTS ON ACCURACY AND RUN TIME (IN SECONDS) FOR Indian Pines - TESTING FOR A ZERO MEAN, 95% CONFIDENCE.

KNN KMeans ISODATA Accuracy Time Confidence Interval
mean std accuracy relate accuracy relate run time

1 - - 83.52% 5.26 2min 58s 83.41% 82.45% à 84.38%
3 - - 83.32% 5.22 2min 57s 83.47% 82.68% à 84.26%
5 - - 82.88% 5.22 2min 58s 83.04% 82.19% à 83.88%
1 5 - 72.19% 5.26 19s 71.60% 70.58% à 72.62% -30.93 à 53.59 116.73 à 201.26
1 20 - 80.62% 5.27 1min 11s 80.54% 80.17% à 80.90% -39.40 à 45.20 64.69 à 149.30
1 60 - 83.23% 5.27 3min 35s 83.35% 82.25% à 84.44% -42.01 à 42.59 -79.30 à 5.30
3 5 - 69.32% 5.17 19s 69.11% 68.65% à 69.56% -27.74 à 55.74 116.25 à 199.74
3 20 - 79.41% 5.21 1min 11s 79.32% 78.59% à 80.04% -37.99 à 45.81 64.09 à 147.90
3 60 - 82.96% 5.21 3min 34s 82.97% 81.87% à 84.07% -41.54 à 42.26 -78.90 à 4.90
5 5 - 67.29% 5.19 20s 68.12% 67.68% à 68.56% -26.23 à 57.41 116.17 à 199.82
5 20 - 78.55% 5.22 1min 17s 78.53% 77.92% à 79.15% -37.61 à 46.27 59.05 à 142.94
5 60 - 82.58% 5.21 3min 43s 82.69% 81.74% à 83.63% -41.60 à 42.20 -86.90 à -3.09
1 - 60 71.87% 4.96 2min 23s 72.03% 70.76% à 73.31% -29.43 à 52.73 -6.08 à 76.08
1 - 100 83.54% 5.26 2min 57s 83.58% 82.38% à 84.77% -42.28 à 42.24 -41.26 à 43.26
1 - 140 83.45% 5.26 2min 54s 83.37% 82.04% à 84.69% -42.19 à 42.33 -38.71 à 45.81
3 - 60 68.77% 4.82 2min 22s 68.53% 67.92% à 69.13% -25.82 à 54.92 -5.37 à 75.37
3 - 100 83.35% 5.22 2min 57s 82.96% 81.25% à 84.67% -41.97 à 41.91 -41.94 à 41.94
3 - 140 83.41% 5.22 2min 50s 83.42% 82.58% à 84.27% -42.03 à 41.85 -34.94 à 48.94
5 - 60 66.95% 4.77 2min 21s 67.81% 67.26% à 68.36% -24.25 à 56.11 -3.18 à 77.18
5 - 100 82.99% 5.22 2min 56s 82.79% 82.13% à 83.45% -42.05 à 41.83 -39.94 à 43.94
5 - 140 83.19% 5.22 3min 03s 83.50% 82.28% à 84.72% -42.25 à 41.63 -46.94 à 36.94

TABLE II
EXPERIMENTS ON ACCURACY AND RUN TIME (IN SECONDS) FOR Pavia University - TESTING FOR A ZERO MEAN, 95% CONFIDENCE.

KNN KMeans ISODATA Accuracy Time Confidence Interval
mean std accuracy relate accuracy relate run time

1 - - 89.96% 1.74 27min 47s 89.86% 89.64% à 90.08%
3 - - 90.83% 1.72 27min 16s 90.71% 90.49% à 90.93%
5 - - 90.82% 1.72 26min 58s 90.93% 90.35% à 91.51%
1 5 - 81.21% 1.72 2min 17s 81.39% 80.74% à 82.04% 5.93 à 11.56 1527 à 1532
1 20 - 86.64% 1.73 2min 48s 86.48% 85.98% à 86.98% 0.49 à 6.14 1496 à 1501
1 60 - 88.18% 1.76 8min 31s 88.20% 87.89% à 88.51% -1.06 à 4.62 1153 à 1158
3 5 - 80.05% 1.73 2min 17s 79.57% 78.93% à 80.21% 7.97 à 13.58 1496 à 1501
3 20 - 86.26% 1.71 2min 40s 86.47% 86.23% à 86.71% 1.78 à 7.35 1473 à 1478
3 60 - 88.46% 1.74 8min 19s 88.47% 88.31% à 88.64% -0.44 à 5.18 1134 à 1139
5 5 - 78.94% 1.71 2min 19s 79.07% 78.01% à 80.13% 9.09 à 14.66 1476 à 1481
5 20 - 85.33% 1.70 2min 42s 85.27% 85.00% à 85.55% 2.70 à 8.27 1453 à 1458
5 60 - 87.86% 1.73 8min 27s 87.73% 87.21% à 88.25% 0.15 à 5.76 1108 à 1113
1 - 60 87.75% 1.76 6min 28s 87.88% 87.43% à 88.33% -0.63 à 5.05 1276 à 1281
1 - 100 88.10% 1.73 7min 45s 88.09% 87.76% à 88.43% -0.96 à 4.68 1199 à 1204
1 - 140 88.36% 1.77 11min 30s 88.22% 88.17% à 88.27% 3.42 à 9.59 973 à 980
3 - 60 87.83% 1.74 6min 16s 87.72% 87.49% à 87.96% 0.18 à 5.81 1257 à 1262
3 - 100 88.12% 1.70 7min 30s 88.27% 87.91% à 88.63% -0.07 à 5.49 1183 à 1188
3 - 140 88.79% 1.75 11min 06s 88.86% 88.65% à 89.07% -0.78 à 4.86 967 à 972
5 - 60 87.17% 1.74 6min 16s 87.04% 86.78% à 87.29% 0.83 à 6.46 1239 à 1244
5 - 100 87.51% 1.68 7min 41s 87.68% 87.35% à 88.01% 0.54 à 6.07 1154 à 1159
5 - 140 88.31% 1.75 11min 22s 88.31% 88.01% à 88.62% 4.80 à 10.45 933 à 933

TABLE III
NUMBER OF PIXELS IN EACH SAMPLE AND WITH BALANCING CLASSES FOR ISODATA, Indian Pines.

Class Number Class Samples Balancing = 60 Balancing = 100 Balancing = 140
Expected Observed Expected Observed Expected Observed

1 Alfafa 54 7 10 11 10 15 10
2 Corn-notill 1434 175 286 291 286 407 286
3 Corn-mintill 834 102 166 169 166 237 166
4 Corn 234 28 46 47 46 66 46
5 Grass-pasture 497 61 99 101 99 141 99
6 Grass-trees 747 91 149 152 149 212 149
7 Grass-pasture-mowed 26 3 5 5 5 7 5
8 Hay-windrowed 489 59 97 99 97 139 97
9 Oats 20 2 4 4 4 6 4
10 Soybean-notill 968 118 193 196 193 275 193
11 Soybean-mintill 2468 302 493 501 493 701 493
12 Soybean-clean 614 75 122 125 122 174 122
13 Whea 212 26 42 43 42 60 42
14 Woods 1294 158 258 262 258 367 258
15 Buildings-Grass-Trees-Drives 380 47 76 77 76 108 76
16 Stone-Steel-Towers 95 12 19 19 19 27 19

TABLE IV
NUMBER OF PIXELS IN EACH SAMPLE AND WITH BALANCING CLASSES FOR ISODATA, Pavia University.

Class Number Class Samples Balancing = 60 Final = 60 Balancing = 100 Final = 100 Balancing = 140 Final = 140

1 Asphalt 6631 130 100 216 119 303 118
2 Meadows 18649 365 288 609 365 852 323
3 Gravel 2099 41 30 69 39 96 35
4 Trees 3064 60 45 100 60 140 50
5 Painted metal sheets 1345 26 21 44 26 61 20
6 Bare Soil 5029 98 80 164 93 230 93
7 Bitumen 1330 26 20 43 23 61 21
8 Self-Blocking Bricks 3682 72 55 120 77 168 59
9 Shadows 947 19 14 31 18 43 16



KNN using the full training dataset, for most k values of the
KMeans and ISODATA Algorithms. However, for k = 20, the
proposed approach obtained run times much lower than the
KNN when using the full training dataset. In Table II (Pavia
University-ROSIS) we can observe that the accuracies reached
by the proposed approach is very close to the ones reached by
the KNN and, thus, obtained run times much lower than the
KNN when using the full training dataset.

B. Quality

Statistical tests, Confidence Interval and Testing for a Zero
Mean, both with 95% Confidence, are done. Table I shows
the results for the degree of accuracy achieved with the use
of KNN and the use of the proposed approach on the AVIRIS
image. It was found that improvements proposed approach
failed. Table I also shows the results for the runtime. For the
KNN K equal to 1 and 3 with KMeans k equal to 5 and 20,
the intervals obtained do not include zero. This shows that the
times were reduced significantly.

Table II shows the results of tests performed on the image
Rosis. For the degree of accuracy, the Testing for a Zero Mean
shows that the proposed approach achieved slightly worse
results than KNN. In Table II are the results for the runtime,
the proposed approach achieved better results than KNN. One
can therefore say that in all experiments, for the image Rosis,
the runtimes of the proposed approach were significantly better
than those of KNN.

In the tables I and II, the balancing (expected) field
are the values for the initial number of centers and in the
final(observed) field are the values found by ISODATA.

VI. CONCLUSION

In this paper, we presented a hybrid approach for remote
sensed hyperspectral images classification, linking clustering
(Kmeans and ISODATA) and a supervised non-parametric
classification (KNN) algorithms. From the experiments using
two well-know databases (Indian Pines, acquired by AVIRIS
sensor [8]; and Pavia University, acquired by ROSIS sen-
sor [9]), we can observe that the obtained accuracy by the
proposed approach is close to the ones obtained by the KNN
when using the full training data. Regarding the runtime, the
proposed approach achieved promising results being up to ten
times faster than KNN.

As future work, we plan to study other clustering algo-
rithms such as: DBSCAN [14], DenClust [15], Xmeans [16],
Optimum-path forest [17], [18], [19], etc. We also plan to
study algorithms developed for sub-spaces clustering on high
dimensional [20] such that the KNN can process the full
training data. In this way, we expect to decrease even more

the KNN run time keeping the obtained accuracy close to the
original values.
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