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Abstract—Histopathology is considered one of the most impor-
tant tools for diagnosis in medical routine. It is characterized by
the study of structural and morphological changes of the cells,
caused by diseases in biological tissues. The use of computational
techniques in the processing of histopathological images allows
the study of the structural organization of tissues and their
pathological changes. The overall objective of this work includes
the proposal, the implementation and the evaluation of a method-
ology for the analysis of cervical intraepithelial neoplasia (CIN)
from histopathological images. For this pourpose, a pipeline of
morphological operators were implemented for the segmentation
of cell nuclei and the Delaunay Triangulation were used in order
to represent the tissue architecture. Clustering algorithms and
graph morphology were used in order to automatically obtain
the boundary between the histological layers of the epithelial
tissue. Similarity criteria and adjacency relations between the
triangles of the network were explored. The proposed method
was evaluated concerning the detection of the presence of lesions
in the tissue as well as the their malignancy grading. Since this
method is generic, it can be applied to other types of lesions and
tissues1.

Keywords-Cervical Intraepithelial Neoplasia (CIN); Neighbor-
hood Graphs; Medical Image Processing; Computer-Aided Di-
agnosis;

I. INTRODUCTION

In the last decades, the automatic diagnosis of cancer and
the mapping of its evolution have been supported by different
methodologies, which can be used to identify primary lesions
usually found in the early stages of the disease. It is known that
the cure for many types of cancer is associated with early de-
tection and appropriate treatment, according to the malignancy
level. Pathologists conduct the assessment of these lesions by
the analysis of histological sections containing biopsy samples.
Generally, the diagnosis is based on international standards.
However, this process is still subjective and presents great
variability, since the final diagnosis comes from the personal
experience of the pathologist [1] [2].

1This work relates to a master’s thesis and was supported by FAPESP under
grant 2009/04752-1

Computer-aided diagnosis in histopathology is based on
quantitative measures extracted from intrinsic attributes of
images obtained from the histological samples. According to
Demir & Yener, the improvement in this research field over
the past decades is due to the prospects in the large scale
use of decision support systems as part of advanced cancer
treatments. Furthermore, it is an area with many challenges to
be overcome [3].

In the study reported herein, histopathological images of ep-
ithelial tissue of the cervix (Fig. 1(a)) were used as data source
to model the structural organization of its cells. The basal layer
(BL) of this epithelium presents cells with large nuclei and
small rounded-shape cytoplasmic area. The intermediate layer
(IL) cells have polygonal shape with vacuoles and glycogen.
Finally, the surperficial layer (SL) contains squamous cells
normally flat with no vacuoles [4].

The so-called cervical intraepithelial neoplasias (CINs) con-
sist of proliferative lesions that lead to irregular cell maturation
in the tissues. They preceed the squamous cell carcinoma of
the cervix, and, if left untreated, they may develop into an
invasive carcinoma. CINs can be divided into: mild dyspla-
sia (CIN1), moderate dysplasia (CIN2) and severe dysplasia
(CIN3) [4]. Fig. 1(b) shows a schematic representation of
the structural changes that occur at the cellular level on the
cervix epithelial tissue. From the pathological viewpoint, it is
interesting to note that the CINs vary from mild dysplasias to
invasive carcinoma through of a gradual process.

The portion of the epithelial tissues affected by the lesion is
a major perceptual parameter to define the diagnosis and stands
out with high relevance in the analysis: when only the basal
layer of the tissue is affected the diagnosis is characterized
as low-grade lesion (CIN1), and when the intermediate or
superficial layer is affected, the diagnosis is characterized as
high-grade lesion (CIN2 or CIN3).

This paper describes the proposal, the implementation and
the evaluation of a method for automatic analysis of CINs,
through the evaluation of the structural changes caused by
these premalignant lesions in the layers of the cervical epithe-



(a) Epithelial tissue and its layers

(b) Structural variations of the cervical epithelial tissue layers [5]

Fig. 1. Cervix epithelium

lial tissue. This method is described in sections III and IV. The
study of the processes involved in the structural organization of
cells were carried out through techniques based on Neighbour-
hood Graphs. The automatic identification of the presence of
intraepithelial lesions in the tissue and also the identification of
their malignancy level can contribute to increase the accuracy
in generating diagnoses in histopathology.

Related Work: Landini et al. [6] present an approach
based on graph theory for the structural characterization of
tissues through mathematical models that describe the geome-
try of relations between the cells. In this work, images of oral
tissues were used to distinguish between cancer dysplastic and
normal epithelia. The use of topological features in the char-
acterization and diagnosis of cancer can also be found in [7].
Metrics were extracted for each cell nuclei which represented
the nodes of the network. In a more recent work [8], Gunduz-
Demir presents another approach for mapping the evolution of
cancer, based on the analysis of connectivity of the network
elements.

The characterization of histological tissues through graph
analysis can also be used to characterize different types of
tissues. A methodology for classification of tissue architecture
using graph modeling is described in [9]. A similar approach
is described in [10], using morphological and topological
attributes extracted from two kind of tissues. In a more specific
context, Keenan et al. [11] presents a method for automatic
classification of cervical lesions. The nuclei segmentation in

tissue images is based on a process called iterative thresh-
olding. The remaining process generates a network over the
segmented nuclei using the Delaunay Triangulation (DT ).
Then, metrics related to the triangles are calculated. The results
indicate better accuracy in the separation of normal and high-
level lesions (CIN 3).

II. TECHNICAL BACKGROUND: NEIGHBORHOOD GRAPHS

The use of models that describe connections between histo-
logical components allows the exploration of an additional set
of attributes, providing support to the structural analysis of the
tissue. The network generation may take into account different
criteria to define the links or edges between its components.
Assuming a binary image whose connected components are
the objects of interest, we have a set V of vertices, represented
by these elements and a set E of edges representing neigh-
borhood relations between them. A popular class of models
for neighborhood graphs is those obtained from the Voronoi
Diagram (V D) [12]. The V D represents a space partition
formed by the equidistant points from the elements of V . For
all v ∈ V a polygon Z(v) formed by points closer to v than
to any other element of V can be defined in Eq.(1). Z(v) is
also called influence zone of v:

Z(v) = m ∈ <2,∀q ∈ V \v, dist(m, v) < dist(m, q) (1)

Delaunay Triangulation: Also known as the dual graph
of the V D, the Delaunay Triangulation (DT ) establishes
connections among triples of points, always forming triangles.
In this model, given a set of points P = p1, p2, . . . , pn ∈ <2,
the triangle pi, pj , pk ∈ DT (P ) if its circumcircle is empty
(Fig. 2(a)). The duality between the DT and the V D can be
seen in Fig. 2(b).

Fig. 2. (a) Criteria for a triangle to belong to the Delaunay Triangulation
(DT). (b) DT (solid lines) vs VD (dotted lines)

III. STRUCTURAL ANALYSIS

The characteristics of the cell nuclei are important parame-
ters in the analysis of histological images and they can describe
specific functional changes. As a consequence, the majority
of segmentation methods applied to these images aims to
separate the nuclei. In the case of topological attributes,
the approximate location of the nuclei may be sufficient to
represent the spatial dependence between them.

The segmented nuclei can be represented by a set of vertices
of a graph using the location of their centroids. Starting from



this set, the Delaunay Triangulation (DT ) was the model
adopted in the methodology presented next. The uniformity
of polygons generated by this model (always triangles) allows
additional attributes to be explored. Furthermore, the DT
can be easily obtained by the Voronoi Diagram, defined over
the segmented nuclei. In this way, a graph G(V,E) can be
obtained by the DT (V ), where V represents the centroids of
the cell nuclei and E is defined by the connections between
the elements of V .

Region-based Analysis: Related studies show that an
approach based on the extraction of global attributes (obtained
taking into account the entire structure of the tissue) pro-
vides support to the analysis of the structural organization of
different tissues. However, samples that were obtained from
the same tissue can only be differentiated through gradual
changes in some tissue regions. As a consequence, for the
images analyzed in this work, it is more appropriate a local
attribute extraction, characterized by the analysis of tissue
regions or clusters. The method proposed in this section aims
to define these clusters. Within this context, from the DT (V )
the regions of the tissue can be modeled based on adjacency
and similarity criteria as described next.

To generate the clusters a new graph G′(V ′, E′) was defined
over DT (V ), where V ′, the new set of vertices, is now
represented by the set of all the triangles belonging to DT (V )
and E′ is defined by grouping and adjacency criteria between
the pairs of triangles. Two triangles are adjacent if they present
at least one vertex in commom.

A cluster is defined as a subgraph of G′, i.e., the set of
vertices V ′′ of this cluster is a subset of V ′. A grouping
criterion defines a threshold δ from which a triangle ti will
belong to a subgraph G′′. The Euclidean distance was used
to define the grouping criterion:

• Triangle Similarity (δ): two triangles ti e tj will be in
the same cluster if: dist(ti, tj) < δ

Where dist is the euclidean distance calculated between the
vectors formed by the lenght of the edges of ti and tj , and
δ ∈ [0, 1]. The vector generated for each triangle is sorted in
ascending order.

Grouping Algorithm: The algorithm described next
groups the elements of V ′′ using the adjacency and the
grouping criteria defined above. This algorithm allows the
mapping of the DT in clusters that provide a representation of
regions of interest in the image under analysis. The grouping
criteria (δ) is represented by a percentage of the maximum
distance between any two triangles of the network.

The algorithm starts with a reference triangle ti for which
the adjacency and grouping criteria are checked. If true, tj
is stacked on P and added to a cluster Ci. As long as P is
not empty the same process is repeated analyzing the adjacent
triangles to the elements of P , i.e., while there are elements
in P , more triangles can be added to the cluster Ci. When
the stack is empty the cluster Ci will no longer receive more
triangles and a new cluster Cj is created. Then, the process

described above is repeated for the remaining triangles until
all of them be grouped. Each triangle is visited only once. It is
important to note that the checking of adjacency and grouping
criteria are always made relatively to the reference triangle ti.

IV. AUTOMATIC ANALYSIS OF THE CERVIX EPITHELIA

The proposed method aims to identify primary lesions
related to cervical cancer. For this purpose, an image database
was created, followed by the application of a segmentation
algorithm in order to identify the cell nuclei. Then, the Region-
Based analysis is applied considering the cell nuclei as nodes.
These steps are discussed in the next subsections.

A. Image Acquisition

This work was developed in collaboration with the Cy-
topathology Laboratory team of the Department of Pathology
at Ribeirão Preto School of Medicine, which provided the
necessary material. The digitized microscopic images were
acquired from histological sections previously stained with
hematoxylin and eosin. The image database was standardized
using a 20x objective lens, with an additional increase of 1.6x.
The resolution of the digitized images is 1388 x 1040 pixels.
The database contains 160 images representing different types
of CINs and normal regions.

B. Segmentation

The process of segmentation aims to separate the cell nuclei
in the histological images. For this purpose, a pipeline of mor-
phological operators was applied, followed by the watershed
transform (using markers). A specific section of this algorithm
concerns the identification of the markers, since they depend
on the application context. The next morphological operators
were applied in order to obtain the markers for the nuclei:
• close-by-reconstruction top-hat: morphological operator

defined by the subtraction of the original image by its
morphological closing

• open / closing: operators applied over a thresholded
image.

• area open: ensures that the markers will be connected
components.

In a second step, the Voronoi Diagram was generated
from the internal markers obtained previously. The boundaries
defined in this step were used as external markers. Finally, the
watershed is applied on the gradient of the original image,
using both internal and external markers. The images were
processed in gray scale. This approach leads to a segmentation
process less dependent on the acquisition variability of the
histological data.

C. Identification of the epithelial tissue layers

For a normal epithelial image, it is expected to find a large
amount of small triangles in the basal layer, triangles of aver-
age area in the intermediate layer and, finally, large triangles in
the superficial layer. The presence of tissue damages tends to
break this rule. For example, in the presence of CIN3 lesions it
is expected to find a large amount of small triangles convering



the whole tissue, and, therefore a smaller number of clusters
must be obtained when applying the Grouping Algorithm. In
this way, three classes of triangles were defined considering
their area values: Basal (B), Intermediate (I) and Superficial
(S). To obtain the intervals of area values that represent
each of these classes, a supervised approach was used: a
pathologist was asked to identify manually the boundaries
between histological layers in a set of normal images.

After the pathologist segmentation, each image was frag-
mented into three layers defined according to the boundaries
drawn by the pathologist and a DT was generated on each
layer. This procedure was performed only once, as a training
process. Then, for each image in the training set, three
parameters were estimated: the average area of the triangles of
the basal layer (ÂB), the average area of the triangles of the
intermediate layer (ÂI ) and the average area of the triangles
of the superficial layer (ÂS). In this way, the classification
criterion of a cluster with mean area Am is:
• basal, if Am ≤ ÂB+ÂI

2

• intermediate, if ÂB+ÂI

2 ≤ Am ≤ ÂI+ÂS

2

• superficial, if Am ≥ ÂI+ÂS

2

The application of the Region-Based analysis, presented in
the last section, generates n clusters. After this step, each
cluster is classified in one of the labels listed above. This
process tends to decrease the number of clusters and can yield
one to three clusters. Fig. 3 shows an example. Therefore, the
clustering algorithm is important to find similar structures in
the network and the labeling of the clusters provides a better
representaion of the theoretical model for the CINs grading as
described in Figure Fig. 1(b).

Fig. 3. Clusters: basal (yellow), intermediate (green) and superficial (blue)

D. Feature Extraction

The metrics adopted to compose the feature vectors were
chosen based on the structural differences that they provided,
such as the occupancy rate (OR) characterized by the sum of
the areas of the triangles belonging to a particular layer (ACi

)
divided by the sum of the areas of all the triangles in the
network (AC). Also, the mean degree (kmed) and the entropy
(H) were evaluated.
• Occupancy Rate: OR = ACi

/AC

• Mean Degree: kmed = 1/N
∑

i ki, where ki is the degree
of i-node

• Entropy: H = −
∑

k P (k)logP (k), where P (k) is the
relative frequency of node degree of value k

E. Classifier

From the region-based modeling described above, a classi-
fier was designed to evaluate the presence of the CINs in the
tissue. Based on the theoretical model adopted in this work
(Fig. 1(b)), a number of possible combinations of clusters were
identified. For example, it was found that vectors containing
only metrics of basal clusters would be acceptable, since
high-grade lesions tend to produce more homogeneous DTs.
Differently, the feature vectors obtained from normal images
usually present metrics related to the three layers. Finally, for
vectors obtained from CIN1 and CIN2 it is expected to find
an intermediate number of clusters.

Due to this variation in the number of clusters obtained for
each image, four partitions were defined which allowed only
vectors of the same size to be compared:

1) B cluster: ~X = [XB ]
2) B and I clusters: ~X = [XB , XI ]
3) B, I and S clusters: ~X = [XB , XI , XS ]
4) any vector containing different metric combinations
The last partition includes, for example, vectors presenting

basal and superficial clusters ~X = [XB , XS ] or intermediate
and superficial clusters ~X = [XI , XS ]. These vectors are
not representative of the CINs grading as they contain metric
combinations that could not represent real situations, therefore
they are considered noise and are not classified.

As described in Fig. 4, partitions 1 and 2 lead to CIN3 due
to the examples used in the training phase. However, these
examples represent only 1.72% of the dataset and the great
majority is in partition 3. For this partition, a representative
vector ( ~Xry ) for each class of interest was estimated as
follows:

Let Y be the variable that describes the classes of interest
and Ê[Xj ] the sample mean for the attribute (Xj) considering
all the instances associated with class y. For y ∈ Y , a
representative vector ( ~Xry ) is estimated as follows:

( ~Xry ) = [Ê[X1], Ê[X2], ..., Ê[Xj ], ..., Ê[XA]] (2)

Where A is the number of attributes. Then, the euclidean
distance is calculated between the representative feature vec-
tors for each class ( ~Xry ) and the feature vectors of the
instances to be labeled (Xi). These representative vectors were
obtained by training. The class adopted for a new instance is
the class that presents the shortest distance between its repre-
sentative vector and the vector of (Xi): dmin = d( ~Xry ,

~Xi).

V. RESULTS AND DISCUSSION

A. Characterization of the CINs

Fig. 5 shows the results obtained with the application of
the pipeline of morphological operators to a normal epithelial
tissue image (Fig. 5(a)). Fig. 5(b) shows the result of the op-
erator close top-hat by reconstruction. In Fig. 5(c) is possible
to visualize the markers within each nucleus resulting from



Fig. 4. Classifier

the application of the following operators: opening, closing
and area open. Each nucleus has only one marker, which is
a connected component. This image was thresholded before
the application of these operators and Fig. 5(c) also shows
the Voronoi Diagram generated from the internal markers.
Finally, Fig. 5(d) shows the final result of the application of
the Watershed, using the Fig. 5(c) as marker.

Fig. 5. Steps of the segmentation process. (a) Reference image. (b) Close
top-hat by reconstruction. (c) Internal and external markers. (d) Watershed.

To evaluate the correct identification of the CINs, the
experiments were carried out considering each metric alone,
represented by the following vector ~X = [XB , XI , XS ], where
X represents a given metric and B, I and S, represent the
previously defined layers. If an instance presents only basal
and intermediate groups, the vector is now represented by
~X = [XB , XI ]. Moreover, different combinations of metrics
were also considered, in order to evaluate the classification
accuracy of CINs for different sets of attributes.

Normal vs Lesion: In the first experiment, the proposed
method was evaluated concerning the detection of lesions in

the tissue. For this purpose, the CINs were grouped in the same
class, concerning the structural changes in the tissue. In this
experiment, 60 images were used for training: 30 representing
normal cases and 30 representing at least one kind of CIN.
Finally, 15 images (10 representing normal images and 5
representing the presence of CINs) were used for test.

To evaluate the metrics, different feature vectors were
created by extracting measures of the tissue layers. Sets of
attributes were defined by combining the following metrics:
OR, kmed and H . These metrics were applied to each cluster:
basal (B), intermediate (I) and superficial (S). The sets
representing the combination metric/cluster are described next:

a) = [OR B,OR S]
b) = [kmed B, kmed I, kmed S]
c) = [kmed B, kmed S]
d) = [H B,H I,H S]
e) = [H B,H S]
f) = [OR B,OR S, kmed B, kmed S]
g) = [OR B,OR S,H B,H S]
h) = [kmed B, kmed S,H B,H S]
i) = [OR B,OR S, kmed B, kmed S,H B,H S]

For each vector combination, a 5-fold cross-validation was
performed alternating images from training and testing. The
values presented in Table Iare average values of accuracy due
to cross-validation. The “attributes” column corresponds to the
sets of combinations shown above. In this context, accuracy
represents the number of correct classified instances. Besides
the mean accuracy (ACm), Table I also shows the values of the
average sensitivity (SSm) and the average specificity (SPm)
and their respective standard deviations (sd). The values in
bold represent the highest values of accuracy, sensitivity and
specificity. The best results in the task of detecting abnormali-
ties were obtained using the first set of attributes: (a). For this
set, the values of mean accuracy, sensitivity and specificity
were 88%, 98% and 68% respectively.

We can observe that the same values of accuracy were
obtained for sets (b) and (c) that evaluate the average degree.
It shows that the use of measures of the intermediate layer
did not alter the accuracy obtained for this data set. A similar
analysis can be performed to SSm and SPm, especially for
the entropy (d and e) and the occupancy rate (a).

TABLE I
EVALUATION OF THE ACCURACY IN DETECTING THE PRESENCE OF

LESIONS.

~X ACm sd(ACm) SSm sd(SSm) SPm sd(SPm)
~Xa 0,88 0,09 0,98 0,04 0,68 0,3
~Xb 0,85 0,09 0,96 0,09 0,64 0,33
~Xc 0,85 0,09 0,96 0,09 0,64 0,33
~Xd 0,83 0,11 1,00 0,00 0,48 0,33
~Xe 0,85 0,13 1,00 0,00 0,56 0,38
~Xf 0,85 0,09 0,96 0,09 0,64 0,33
~Xg 0,84 0,13 1,00 0,00 0,52 0,39
~Xh 0,87 0,09 0,98 0,04 0,64 0,33
~Xi 0,87 0,09 0,98 0,04 0,64 0,33

The evaluation presented above was also designed for the



comparison between the following classes: Normal vs CIN1,
CIN1 vs CIN2 and CIN2 vs CIN3.

B. Evaluation of the identification of the CINs

In the experiments presented in the previous section, the
OR attribute allowed a good separation between the analyzed
classes, providing accuracy values always greater than 73%.
This result can be compared to other sets of attributes, showing
better results in some cases. However, in general, in all the
experiments, the sd values indicate that all sets of attributes
tested provided very similar results regarding the values of
accuracy, sensitivity and specificity.

The analysis of the values of sensitivity showed that the
entropy (H) presented the best results, however, H also
presented a very low specificity. Although it is interesting
to obtain high rates of sensitivity to the problem under
consideration, a low specificity may lead to more aggressive
diagnostic conducts in cases that could be applied simpler
treatments. For example, a false positive in the comparison
between CIN1 and CIN2 could lead to a surgical intervention
in a case that would require only a non-intrusive treatment.
The relation between sensitivity and specificity can be seen in
the graphs of Fig. 6 for each experiment.

Fig. 6. Analysis of sensitivity and specificity for different experiments

VI. CONCLUSION

This paper has presented a method for automatic analysis
of cervical histological images based on the analysis of topo-
logical features in order to identify the presence of CINs. This
method relies on the characterization of cell clusters or layers
with similar characteristics supporting the feature extraction
by regions.

This work differs from the work described in Keenan et
al [11] in three aspects: the process of identification of the
epithelial tissue layers; the use of the properties of the DT ;
and the classification of the CINs. In the work of Keenan, the
epithelial tissue is indistinctly divided into three equal parts
and the average area of the triangles presented in the network
was used to classify the CINs. In this paper, a new method

for automatic identification of the tissue layers was proposed
based on the structural organization of its components. In
addition, the presented approach is independent of image scale
and angular position of histological structures. Furthermore,
the area of the triangles of the DT was used to identify the
clusters and not to classify the CINs. For this task, a specific
classifier was designed.

As for the evaluation of the proposed method to represent
the gradual transition of the CINs, accuracy values higher than
70% were obtained when comparing the following classes:
Normal x CIN1, CIN1 x CIN2, and, CIN2 x CIN3. When com-
paring the four classes (Normal x CIN1 x CIN2 x CIN3), the
maximun accuracy obtained was 64%. The method described
by Keenan et al. provided an accuracy rate of 62% when
comparing the three CINs (CIN1 x CIN2 x CIN3). The work
of Landini et al. also evaluated the accuracy in classification of
premalignant lesions (in this case, related to oral carcinoma),
reaching a maximum of 52%, using only samples of high and
low degree of malignancy.

Our method can be used and evaluated when applied to
other types of lesions and tissues, since this method is generic
in relation to the number of clusters and can be adapted to
such clusters by the extraction of different metrics as features.
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