Method for Computational Analysis of Histopathological Images to Support the Diagnosis of Cervical Cancer

Gisele Helena Barboni Miranda*, Junior Barrera†, Edson Garcia Soares‡ and Joaquim Cezar Felipe*
*Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, USP
gimiranda@usp.br, jfelipe@ffclrp.usp.br
†Department of Computer Science, Institute of Mathematics and Statistics, USP
jb@ime.usp.br
‡Department of Pathology, Faculty of Medicine of Ribeirão Preto, USP
eysoares@fmrp.usp.br

Abstract—Histopathology is considered one of the most important tools for diagnosis in medical routine. It is characterized by the study of structural and morphological changes of the cells, caused by diseases in biological tissues. The use of computational techniques in the processing of histopathological images allows the study of the structural organization of tissues and their pathological changes. The overall objective of this work includes the proposal, the implementation and the evaluation of a methodology for the analysis of cervical intraepithelial neoplasia (CIN) from histopathological images. For this purpose, a pipeline of morphological operators were implemented for the segmentation of cell nuclei and the Delaunay Triangulation were used in order to represent the tissue architecture. Clustering algorithms and graph morphology were used in order to automatically obtain the boundary between the histological layers of the epithelial tissue. Similarity criteria and adjacency relations between the triangles of the network were explored. The proposed method was evaluated concerning the detection of the presence of lesions in the tissue as well as the their malignancy grading. Since this method is generic, it can be applied to other types of lesions and tissues

Keywords—Cervical Intraepithelial Neoplasia (CIN); Neighborhood Graphs; Medical Image Processing; Computer-Aided Diagnosis;

I. INTRODUCTION

In the last decades, the automatic diagnosis of cancer and the mapping of its evolution have been supported by different methodologies, which can be used to identify primary lesions usually found in the early stages of the disease. It is known that the cure for many types of cancer is associated with early detection and appropriate treatment, according to the malignancy level. Pathologists conduct the assessment of these lesions by the analysis of histological sections containing biopsy samples. Generally, the diagnosis is based on international standards. However, this process is still subjective and presents great variability, since the final diagnosis comes from the personal experience of the pathologist

Computer-aided diagnosis in histopathology is based on quantitative measures extracted from intrinsic attributes of images obtained from the histological samples. According to Demir & Yener, the improvement in this research field over the past decades is due to the prospects in the large scale use of decision support systems as part of advanced cancer treatments. Furthermore, it is an area with many challenges to be overcome

In the study reported herein, histopathological images of epithelial tissue of the cervix (Fig. 1(a)) were used as data source to model the structural organization of its cells. The basal layer (BL) of this epithelium presents cells with large nuclei and small rounded-shape cytoplasmic area. The intermediate layer (IL) cells have polygonal shape with vacuoles and glycogen. Finally, the superficial layer (SL) contains squamous cells normally flat with no vacuoles

The so-called cervical intraepithelial neoplasias (CINs) consist of proliferative lesions that lead to irregular cell maturation in the tissues. They preceed the squamous cell carcinoma of the cervix, and, if left untreated, they may develop into an invasive carcinoma. CINs can be divided into: mild dysplasia (CIN1), moderate dysplasia (CIN2) and severe dysplasia (CIN3). Fig. 1(b) shows a schematic representation of the structural changes that occur at the cellular level on the cervix epithelial tissue. From the pathological viewpoint, it is interesting to note that the CINs vary from mild dysplasias to invasive carcinoma through of a gradual process.

The portion of the epithelial tissues affected by the lesion is a major perceptual parameter to define the diagnosis and stands out with high relevance in the analysis: when only the basal layer of the tissue is affected the diagnosis is characterized as low-grade lesion (CIN1), and when the intermediate or superficial layer is affected, the diagnosis is characterized as high-grade lesion (CIN2 or CIN3).

This paper describes the proposal, the implementation and the evaluation of a method for automatic analysis of CINs, through the evaluation of the structural changes caused by these premalignant lesions in the layers of the cervical epithe-
tissue is based on a process called iterative thresholding. The remaining process generates a network over the segmented nuclei using the Delaunay Triangulation (DT). Then, metrics related to the triangles are calculated. The results indicate better accuracy in the separation of normal and high-level lesions (CIN 3).

II. TECHNICAL BACKGROUND: NEIGHBORHOOD GRAPHS

The use of models that describe connections between histological components allows the exploration of an additional set of attributes, providing support to the structural analysis of the tissue. The network generation may take into account different criteria to define the links or edges between its components. Assuming a binary image whose connected components are the objects of interest, we have a set \(V \) of vertices, represented by these elements and a set \(E \) of edges representing neighborhood relations between them. A popular class of models for neighborhood graphs is those obtained from the Voronoi Diagram (VD) \([12] \). The VD represents a space partition formed by the equidistant points from the elements of \(V \). For all \(v \in V \) a polygon \(Z(v) \) formed by points closer to \(v \) than to any other element of \(V \) can be defined in Eq.(1). \(Z(v) \) is also called influence zone of \(v \):

\[
Z(v) = m \in \mathbb{R}^2, \forall q \in V \setminus v, \text{dist}(m, v) < \text{dist}(m, q)
\]

Delaunay Triangulation: Also known as the dual graph of the VD, the Delaunay Triangulation (DT) establishes connections among triples of points, always forming triangles. In this model, given a set of points \(P = p_1, p_2, \ldots, p_n \in \mathbb{R}^2 \), the triangle \(p_i, p_j, p_k \in DT(P) \) if its circumcircle is empty (Fig. 2(a)). The duality between the DT and the VD can be seen in Fig. 2(b).

![Fig. 2. (a) Criteria for a triangle to belong to the Delaunay Triangulation (DT). (b) DT (solid lines) vs VD (dotted lines)](image)

III. STRUCTURAL ANALYSIS

The characteristics of the cell nuclei are important parameters in the analysis of histological images and they can describe specific functional changes. As a consequence, the majority of segmentation methods applied to these images aims to separate the nuclei. In the case of topological attributes, the approximate location of the nuclei may be sufficient to represent the spatial dependence between them.

The segmented nuclei can be represented by a set of vertices of a graph using the location of their centroids. Starting from...
this set, the Delaunay Triangulation (DT) was the model adopted in the methodology presented next. The uniformity of polygons generated by this model (always triangles) allows additional attributes to be explored. Furthermore, the DT can be easily obtained by the Voronoi Diagram, defined over the segmented nuclei. In this way, a graph \(G(V, E) \) can be obtained by the \(DT(V) \), where \(V \) represents the centroids of the cell nuclei and \(E \) is defined by the connections between the elements of \(V \).

Region-based Analysis: Related studies show that an approach based on the extraction of global attributes (obtained taking into account the entire structure of the tissue) provides support to the analysis of the structural organization of different tissues. However, samples that were obtained from the same tissue can only be differentiated through gradual changes in some tissue regions. As a consequence, for the images analyzed in this work, it is more appropriate a local attribute extraction, characterized by the analysis of tissue regions or clusters. The method proposed in this section aims to define these clusters. Within this context, from the \(DT(V) \) the regions of the tissue can be modeled based on adjacency and similarity criteria as described next.

To generate the clusters a new graph \(G'(V', E') \) was defined over \(DT(V) \), where \(V' \), the new set of vertices, is now represented by the set of all the triangles belonging to \(DT(V) \) and \(E' \) is defined by grouping and adjacency criteria between the pairs of triangles. Two triangles are adjacent if they present at least one vertex in common.

A cluster is defined as a subgraph of \(G' \), i.e., the set of vertices \(V'' \) of this cluster is a subset of \(V' \). A grouping criterion defines a threshold \(\delta \) from which a triangle \(t_i \) will belong to a subgraph \(G'' \). The Euclidean distance was used to define the grouping criterion:

- Triangle Similarity (\(\delta \)): two triangles \(t_i \) e \(t_j \) will be in the same cluster if: \(\text{dist}(t_i, t_j) < \delta \)

Where \(\text{dist} \) is the euclidean distance calculated between the vectors formed by the length of the edges of \(t_i \) and \(t_j \), and \(\delta \in [0, 1] \). The vector generated for each triangle is sorted in ascending order.

Grouping Algorithm: The algorithm described next groups the elements of \(V'' \) using the adjacency and the grouping criteria defined above. This algorithm allows the mapping of the \(DT \) in clusters that provide a representation of regions of interest in the image under analysis. The grouping criteria (\(\delta \)) is represented by a percentage of the maximum distance between any two triangles of the network.

The algorithm starts with a reference triangle \(t_i \) for which the adjacency and grouping criteria are checked. If \(\text{true} \), \(t_j \) is stacked on \(P \) and added to a cluster \(C_i \). As long as \(P \) is not empty the same process is repeated analyzing the adjacent triangles to the elements of \(P \), i.e., while there are elements in \(P \), more triangles can be added to the cluster \(C_i \). When the stack is empty the cluster \(C_i \) will no longer receive more triangles and a new cluster \(C_j \) is created. Then, the process described above is repeated for the remaining triangles until all of them be grouped. Each triangle is visited only once. It is important to note that the checking of adjacency and grouping criteria are always made relatively to the reference triangle \(t_i \).

IV. Automatic Analysis of the Cervix Epithelia

The proposed method aims to identify primary lesions related to cervical cancer. For this purpose, an image database was created, followed by the application of a segmentation algorithm in order to identify the cell nuclei. Then, the Region-Based analysis is applied considering the cell nuclei as nodes. These steps are discussed in the next subsections.

A. Image Acquisition

This work was developed in collaboration with the Cytopathology Laboratory team of the Department of Pathology at Ribeirão Preto School of Medicine, which provided the necessary material. The digitized microscopic images were acquired from histological sections previously stained with hematoxylin and eosin. The image database was standardized using a 20x objective lens, with an additional increase of 1.6x. The resolution of the digitized images is 1388 x 1040 pixels. The database contains 160 images representing different types of CINs and normal regions.

B. Segmentation

The process of segmentation aims to separate the cell nuclei in the histological images. For this purpose, a pipeline of morphological operators was applied, followed by the watershed transform (using markers). A specific section of this algorithm concerns the identification of the markers, since they depend on the application context. The next morphological operators were applied in order to obtain the markers for the nuclei:

- close-by-reconstruction top-hat: morphological operator defined by the subtraction of the original image by its morphological closing
- open / closing: operators applied over a thresholded image.
- area open: ensures that the markers will be connected components.

In a second step, the Voronoi Diagram was generated from the internal markers obtained previously. The boundaries defined in this step were used as external markers. Finally, the watershed is applied on the gradient of the original image, using both internal and external markers. The images were processed in gray scale. This approach leads to a segmentation process less dependent on the acquisition variability of the histological data.

C. Identification of the epithelial tissue layers

For a normal epithelial image, it is expected to find a large amount of small triangles in the basal layer, triangles of average area in the intermediate layer and, finally, large triangles in the superficial layer. The presence of tissue damages tends to break this rule. For example, in the presence of CIN3 lesions it is expected to find a large amount of small triangles convering
the whole tissue, and, therefore a smaller number of clusters must be obtained when applying the Grouping Algorithm. In this way, three classes of triangles were defined considering their area values: Basal (B), Intermediate (I) and Superficial (S). To obtain the intervals of area values that represent each of these classes, a supervised approach was used: a pathologist was asked to identify manually the boundaries between histological layers in a set of normal images.

After the pathologist segmentation, each image was fragmented into three layers defined according to the boundaries drawn by the pathologist and a DT was generated on each layer. This procedure was performed only once, as a training process. Then, for each image in the training set, three parameters were estimated: the average area of the triangles of the basal layer (\bar{A}_B), the average area of the triangles of the intermediate layer (\bar{A}_I) and the average area of the triangles of the superficial layer (\bar{A}_S). In this way, the classification criterion of a cluster with mean area A_m is:

- **basal**, if $A_m \leq \frac{\bar{A}_B + \bar{A}_I}{2}$
- **intermediate**, if $\frac{\bar{A}_B + \bar{A}_I}{2} < A_m \leq \frac{\bar{A}_I + \bar{A}_S}{2}$
- **superficial**, if $A_m > \frac{\bar{A}_I + \bar{A}_S}{2}$

The application of the Region-Based analysis, presented in the last section, generates n clusters. After this step, each cluster is classified in one of the labels listed above. This process tends to decrease the number of clusters and can yield one to three clusters. Fig. 3 shows an example. Therefore, the clustering algorithm is important to find similar structures in the network and the labeling of the clusters provides a better representation of the theoretical model for the CINs grading as described in Figure Fig. 1(b).

![Clusters: basal (yellow), intermediate (green) and superficial (blue)](image)

D. Feature Extraction

The metrics adopted to compose the feature vectors were chosen based on the structural differences that they provided, such as the occupancy rate (OR) characterized by the sum of the areas of the triangles belonging to a particular layer (A_{C_i}) divided by the sum of the areas of all the triangles in the network (A_{C}). Also, the mean degree (k_{med}) and the entropy (H) were evaluated.

- **Occupancy Rate**: $OR = A_{C_i}/A_{C}$
- **Mean Degree**: $k_{med} = 1/N \sum_i k_i$, where k_i is the degree of i-node
- **Entropy**: $H = -\sum_k P(k)\log P(k)$, where $P(k)$ is the relative frequency of node degree of value k

E. Classifier

From the region-based modeling described above, a classifier was designed to evaluate the presence of the CINs in the tissue. Based on the theoretical model adopted in this work (Fig. 1(b)), a number of possible combinations of clusters were identified. For example, it was found that vectors containing only metrics of basal clusters would be acceptable, since high-grade lesions tend to produce more homogeneous DTs. Differently, the feature vectors obtained from normal images usually present metrics related to the three layers. Finally, for vectors obtained from CIN1 and CIN2 it is expected to find an intermediate number of clusters.

Due to this variation in the number of clusters obtained for each image, four partitions were defined which allowed only vectors of the same size to be compared:

1) B cluster: $\hat{X} = [X_B]$
2) B and I clusters: $\hat{X} = [X_B, X_I]$
3) B, I and S clusters: $\hat{X} = [X_B, X_I, X_S]$
4) any vector containing different metric combinations

The last partition includes, for example, vectors presenting basal and superficial clusters $\hat{X} = [X_B, X_S]$ or intermediate and superficial clusters $\hat{X} = [X_I, X_S]$. These vectors are not representative of the CINs grading as they contain metric combinations that could not represent real situations, therefore they are considered noise and are not classified.

As described in Fig. 4, partitions 1 and 2 lead to CIN3 due to the examples used in the training phase. However, these examples represent only 1.72% of the dataset and the great majority is in partition 3. For this partition, a representative vector (\bar{X}_{r_y}) for each class of interest was estimated as follows:

Let Y be the variable that describes the classes of interest and $\bar{E}[X]$ the sample mean for the attribute (X_j) considering all the instances associated with class y. For $y \in Y$, a representative vector (\bar{X}_{r_y}) is estimated as follows:

$$\bar{X}_{r_y} = [\bar{E}[X_1], \bar{E}[X_2], ..., \bar{E}[X_j], ..., \bar{E}[X_A]]$$ (2)

Where A is the number of attributes. Then, the euclidean distance is calculated between the representative feature vectors for each class (\bar{X}_{r_y}) and the feature vectors of the instances to be labeled (X_i). These representative vectors were obtained by training. The class adopted for a new instance is the class that presents the shortest distance between its representative vector and the vector of (X_i): $d_{min} = d(\bar{X}_{r_y}, X_i)$.

V. RESULTS AND DISCUSSION

A. Characterization of the CINs

Fig. 5 shows the results obtained with the application of the pipeline of morphological operators to a normal epithelial tissue image (Fig. 5(a)). Fig. 5(b) shows the result of the operator close top-hat by reconstruction. In Fig. 5(c) is possible to visualize the markers within each nucleus resulting from
the application of the following operators: opening, closing and area open. Each nucleus has only one marker, which is a connected component. This image was thresholded before the application of these operators and Fig. 5(c) also shows the Voronoi Diagram generated from the internal markers. Finally, Fig. 5(d) shows the final result of the application of the Watershed, using the Fig. 5(c) as marker.

To evaluate the correct identification of the CINs, the experiments were carried out considering each metric alone, represented by the following vector $\vec{X} = [X_B, X_I, X_S]$, where X represents a given metric and B, I and S, represent the previously defined layers. If an instance presents only basal and intermediate groups, the vector is now represented by $\vec{X} = [X_B, X_I]$. Moreover, different combinations of metrics were also considered, in order to evaluate the classification accuracy of CINs for different sets of attributes.

Normal vs Lesion: In the first experiment, the proposed method was evaluated concerning the detection of lesions in the tissue. For this purpose, the CINs were grouped in the same class, concerning the structural changes in the tissue. In this experiment, 60 images were used for training: 30 representing normal cases and 30 representing at least one kind of CIN. Finally, 15 images (10 representing normal images and 5 representing the presence of CINs) were used for test.

To evaluate the metrics, different feature vectors were created by extracting measures of the tissue layers. Sets of attributes were defined by combining the following metrics: OR, k_{med} and H. These metrics were applied to each cluster: basal (B), intermediate (I) and superficial (S). The sets representing the combination metric/cluster are described next:

- $a) = [OR_B, OR_S]$
- $b) = [k_{med_B}, k_{med_I}, k_{med_S}]$
- $c) = [k_{med_B}, k_{med_I}, k_{med_S}]$
- $d) = [H_B, H_I, H_S]$
- $e) = [H_B, H_S]$
- $f) = [OR_B, OR_S, k_{med_B}, k_{med_S}]$
- $g) = [OR_B, OR_S, H_B, H_S]$
- $h) = [k_{med_B}, k_{med_I}, H_B, H_S]$
- $i) = [OR_B, OR_S, k_{med_B}, k_{med_I}, H_B, H_S]$

For each vector combination, a 5-fold cross-validation was performed alternating images from training and testing. The values presented in Table I are average values of accuracy due to cross-validation. The “attributes” column corresponds to the sets of combinations shown above. In this context, accuracy represents the number of correct classified instances. Besides the mean accuracy (AC_m), Table I also shows the values of the average sensitivity (SS_m) and the average specificity (SP_m) and their respective standard deviations (sd). The values in bold represent the highest values of accuracy, sensitivity and specificity. The best results in the task of detecting abnormalities were obtained using the first set of attributes: (a). For this set, the values of mean accuracy, sensitivity and specificity were 88%, 98% and 68% respectively.

We can observe that the same values of accuracy were obtained for sets (b) and (c) that evaluate the average degree. It shows that the use of measures of the intermediate layer did not alter the accuracy obtained for this data set. A similar analysis can be performed to SS_m and SP_m, especially for the entropy (d and e) and the occupancy rate (a).

<table>
<thead>
<tr>
<th>X</th>
<th>AC_m</th>
<th>$sd(AC_m)$</th>
<th>SS_m</th>
<th>$sd(SS_m)$</th>
<th>SP_m</th>
<th>$sd(SP_m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_B</td>
<td>0.88</td>
<td>0.09</td>
<td>0.98</td>
<td>0.04</td>
<td>0.68</td>
<td>0.3</td>
</tr>
<tr>
<td>X_I</td>
<td>0.85</td>
<td>0.09</td>
<td>0.96</td>
<td>0.09</td>
<td>0.64</td>
<td>0.33</td>
</tr>
<tr>
<td>X_S</td>
<td>0.85</td>
<td>0.09</td>
<td>0.96</td>
<td>0.09</td>
<td>0.64</td>
<td>0.33</td>
</tr>
<tr>
<td>X_B</td>
<td>0.83</td>
<td>0.11</td>
<td>1.00</td>
<td>0.00</td>
<td>0.48</td>
<td>0.33</td>
</tr>
<tr>
<td>X_I</td>
<td>0.85</td>
<td>0.13</td>
<td>1.00</td>
<td>0.00</td>
<td>0.56</td>
<td>0.38</td>
</tr>
<tr>
<td>X_S</td>
<td>0.85</td>
<td>0.09</td>
<td>0.96</td>
<td>0.09</td>
<td>0.64</td>
<td>0.33</td>
</tr>
<tr>
<td>X_B</td>
<td>0.84</td>
<td>0.13</td>
<td>1.00</td>
<td>0.00</td>
<td>0.52</td>
<td>0.39</td>
</tr>
<tr>
<td>X_I</td>
<td>0.87</td>
<td>0.09</td>
<td>0.98</td>
<td>0.04</td>
<td>0.64</td>
<td>0.33</td>
</tr>
<tr>
<td>X_S</td>
<td>0.87</td>
<td>0.09</td>
<td>0.98</td>
<td>0.04</td>
<td>0.64</td>
<td>0.33</td>
</tr>
</tbody>
</table>

The evaluation presented above was also designed for the
comparison between the following classes: Normal vs CIN1, CIN1 vs CIN2 and CIN2 vs CIN3.

B. Evaluation of the identification of the CINs

In the experiments presented in the previous section, the OR attribute allowed a good separation between the analyzed classes, providing accuracy values always greater than 73%. This result can be compared to other sets of attributes, showing better results in some cases. However, in general, in all the experiments, the sd values indicate that all sets of attributes tested provided very similar results regarding the values of accuracy, sensitivity and specificity.

The analysis of the values of sensitivity showed that the entropy (H) presented the best results, however, H also presented a very low specificity. Although it is interesting to obtain high rates of sensitivity to the problem under consideration, a low specificity may lead to more aggressive diagnostic conducts in cases that could be applied simpler treatments. For example, a false positive in the comparison between CIN1 and CIN2 could lead to a surgical intervention in a case that would require only a non-intrusive treatment. The relation between sensitivity and specificity can be seen in the graphs of Fig. 6 for each experiment.

![Fig. 6. Analysis of sensitivity and specificity for different experiments](image)

VI. CONCLUSION

This paper has presented a method for automatic identification of the tissue layers based on the structural organization of its components. In addition, the proposed approach is independent of image scale and angular position of histological structures. Furthermore, the area of the triangles of the DT was used to identify the clusters and not to classify the CINs. For this task, a specific classifier was designed.

As for the evaluation of the proposed method to represent the gradual transition of the CINs, accuracy values higher than 70% were obtained when comparing the following classes: Normal x CIN1, CIN1 x CIN2, and, CIN2 x CIN3. When comparing the four classes (Normal x CIN1 x CIN2 x CIN3), the maximum accuracy obtained was 64%. The method described by Keenan et al. provided an accuracy rate of 62% when comparing the three CINs (CIN1 x CIN2 x CIN3). The work of Landini et al. also evaluated the accuracy in classification of premalignant lesions (in this case, related to oral carcinoma), reaching a maximum of 52%, using only samples of high and low degree of malignancy.

Our method can be used and evaluated when applied to other types of lesions and tissues, since this method is generic in relation to the number of clusters and can be adapted to such clusters by the extraction of different metrics as features.

REFERENCES

