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Abstract—In this work we propose a segmentation method-
ology based on the level set approach for boundary extraction
and an optimization method formulated through the topological
derivative. First, the methodology uses a low-pass filter and
the topological derivative to get a rough definition of the
boundaries of interest. Then, morphological operators are applied
to fill holes and discard artifacts. Next, a level set model is
used to improve the result giving the desired approximation.
The obtained segmentation pipeline can be summarized by
the following steps: (1) Pre-Processing: Low-Pass filtering; (2)
Pre-Segmentation: Topological Derivative; (3) Post-Processing:
Mathematical Morphology Operators; (4) Boundary extraction
via level set method. The proposed methodology is applied for
synthetic and biological (cell) image segmentation. The visual
inspection shows that the obtained results are suitable and, in the
case of synthetic images, the segmentation precision is quantified
and outperforms another technique based only on the level set
method. 1

Keywords-Image Segmentation; Topological Derivative; Bound-
ary Extraction; Level Set Method

I. INTRODUCTION

Image segmentation is a fundamental step for image anal-
ysis and computer vision tasks. Approaches in image seg-
mentation can be roughly classified in [1]: (a) Contour Based
methods, like active contours and active shape models; (b) Re-
gion based techniques; (c) Optimization approaches; (d) Clus-
tering methods, like k-means, Fuzzy C-means, Hierarchical
clustering; (e) Thresholding methods. In this paper we focus
on contour based techniques, the level set approach [2], and
an optimization method formulated through the topological
derivative [3].

The level set method [4], [5], [6] has been successfully
applied for boundary extraction, motion tracking and segmen-
tation, mainly in medical imaging. In general, the process of
boundary extraction in such applications involves some kind of
pre-processing step [1]. Besides, the obtained result is sensitive
to initialization conditions. On the other hand, segmentation
techniques based on topological derivative needs (in general)
a post-processing step, in order to improve the results [3].

Therefore, in this work we propose an image segmentation
pipeline based on the topological derivative together with
the level set method, which is the main improvement with
respect to the previous work [3]. This pipeline combines
the capabilities of the topological derivative to get a rough

1 Full paper of M.Sc Dissertations.

segmentation with the level set precision when initialized
closer the target.

The topological derivative concept [7] quantifies the sensi-
tivity of a given shape functional with respect to a singular do-
main perturbation, such as the nucleation of holes, inclusions,
source-terms or even cracks. This concept, initially conceived
to deal with topology optimization problems, has also been
successfully applied to image segmentation [3]. Despite of
the observed potential of the topological derivative, its result
must be improved by a contour based approach, like level set.
In this way, we are combining two segmentation methods:
an optimization technique to get a first approximation of the
boundary and the level set method to complete the segmenta-
tion. Besides, some low-pass filters and morphological opera-
tors can be also applied in order to improve the segmentation
efficiency. The obtained segmentation pipeline is the main
contribution of this work [8] and is composed by: (a) Low-
pass Filtering; (b) Topological Derivative; (c) Mathematical
Morphology; (d) Level Set Method. In addition we provide
in [9] a full mathematical justification for the topological
derivative formula [3].

Despite some theoretical study about connections between
level set and the topological derivative [10], the combination
of these techniques had not been explored in the image
segmentation literature before our work. Another advantage
of using level set in the last step is the possibility of explor-
ing the topological capabilities of level set for multi-object
segmentation and the fact that the methodology remains the
same for 2D and 3D images. However, we can replace the
level set by any other suitable deformable model.

The paper is organizes as follows. In sections II and III we
describe the level set and the topological derivative techniques,
respectively. Next, on section IV, the proposed methodology
for segmentation is presented. The experimental results are
discussed in section V. Finally, section VI offers final comment
and further works.

II. LEVEL SET

In this section we review some details of the level set formu-
lation [2]. The main idea of this method is to represent the de-
formable surface (or curve) as a level set

{
x ∈ <3|G (x) = 0

}
of an embedding function:

G : <3 ×<+ → <, (1)
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such that the deformable surface (also called front in this
formulation), at t = 0, is given by a surface S:

S (t = 0) =
{
x ∈ <3 : G (x, t = 0) = 0

}
. (2)

The next step is to find an Eulerian formulation for the front
evolution. Following Sethian [2], let us suppose that the front
evolves in the normal direction with velocity F that may be
a function of the curvature, image gradient, etc.

We need an equation for the evolution of G (x, t), consid-
ering that the surface S, at any time t, is the level set given
by:

S (t) =
{
x ∈ <3 : G (x, t) = 0

}
. (3)

Let us take a point x (t), t ∈ <+ of the propagating front
S. From its implicit definition given above we have:

G (x (t) , t) = 0. (4)

Now, we can use the Chain Rule to compute the time
derivative of this expression:

Gt + F |∇G| = 0, (5)

where F = ‖dx/dt‖ is called the speed function. In this paper,
the governing equation for the embedding function G , and,
consequently, for the zero level set S(t) , has the general form
[11]:

Gt =

[(
1 + λκ

1 + |∇I|2

)
|∇G| − γ(∇|∇I| · ∇G)

]
, (6)

where λ and γ are parameters that weight the different terms,
κ is the curvature of the front, G is an embedding function,
I is the image field and ∇ is the gradient operator. An initial
condition G (x, t = 0) is required. A straightforward technique
to define this function is to compute a signed-distance function
as follows:

G (x, t = 0) = ±d, (7)

where d is the distance from x to the surface S (x, t = 0) and
the sign indicates if the point is interior (-) or exterior (+) to
the initial front.

In this higher dimensional formulation, topological changes
can be efficiently implemented. Stable Finite difference
schemes, based on a uniform grid, can be used to solve
equation (5). Besides, the update of the embedding function
can be made cheaper if the narrow-band technique is applied
[11]. Also, a stopping criterion is adopted as follows. We stop
the evolution if: Nm/N < e, where Nm is the number of
points that moved in one iteration, N is the total number of
points of the front and e is a user-defined threshold.

III. TOPOLOGICAL DERIVATIVE IN IMAGE SEGMENTATION

Let us consider an open bounded domain Ω ⊂ <2, which
is subject to a non-smooth perturbation confined in a small
region ωε(x̂) = x̂+ εω of size ε, as shown in Figure 1. Here,
x̂ is an arbitrary point of Ω and ω is a fixed domain of <2.

Fig. 1. The topological derivative concept.

Then, we assume that a given shape functional ψ(χε(x̂)),
associated to the topologically perturbed domain, admits the
following topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DΩ(x̂) + o(f(ε)) , (8)

where ψ(χ) is the shape functional associated to the original
(unperturbed) domain, f(ε) is a positive function such that
f(ε) → 0, when ε → 0. The function x̂ 7→ DΩ(x̂) is called
the topological derivative of ψ at x̂. Therefore, this derivative
can be seen as a first order correction of ψ(χ) to approximate
ψ(χε(x̂)).

More precisely, the topological derivative DΩ(x̂) is a scalar
function defined over the original domain that indicates, in
each point, the sensitivity of the shape function when a
singular perturbation of size ε is introduced at that point. In
general, the domain singular perturbation can be, for instance:
the introduction of holes, cracks or non smooth changes in the
parameters of the problem (e.g., material properties, sources
acting over the domain, boundary conditions, etc.).

Among the methods for calculation of the topological
derivative currently available in the literature, here we shall
adopt the methodology developed in [7], which is based on
the following result:

DΩψ = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) , (9)

where d
dεψ(χε(x̂)) is the derivative of ψ(χε(x̂)) with respect

to the small parameter ε, which can be seen as the sensitivity
of ψ(χε(x̂)), in the classical sense, to the domain perturbation
produced by a uniform expansion of the perturbation ωε [12],
[13]. Therefore, we can use the concept of shape sensitivity
analysis as an intermediate step in the topological derivative
calculation [9].

A. Formulation of the Segmentation Problem
In [3] it was proposed a shape function that quantifies the

misfit between the input image v being segmented and a
possible segmentation u. Let us first define the input image
v as

v ∈ V = {v ∈ L2(Ω) : v const. at image element (pixel) level},
(10)



and the segmented image u as:

u ∈ U = {u ∈ V : u(x) ∈ C,∀x ∈ Ω}, (11)

where Ω is the image domain, and the set of classes C is given
by:

C = {ci ∈ < : i = 1, · · · , Nc}, (12)

with Nc used to denote the number of classes in which the
original image v will be segmented and ci represents the
intensity that characterizes the ith−class. Therefore, let us
introduce the following shape function, which is inspired on
the Mumford-Shah functional [14]:

ψ(χ) := J (ϕ) =
1

2

∫
Ω

K∇ϕ · ∇ϕ+
1

2

∫
Ω

(ϕ− (v − u))
2
,

(13)
where the field ϕ accounts for the misfit between v and u,
and is the solution of the following variational problem: find
ϕ ∈ H1(Ω), such that:∫

Ω

K∇ϕ ·∇η+

∫
Ω

ϕη = β

∫
Ω

(v−u)η ∀η ∈ H1(Ω). (14)

The diffusive second order tensor field K is constant at image
element level and 0 < β ≤ 1 is used to adjust the numerical
algorithm. Note that the segmented image u and function
ϕ can be seen as the control and the state, respectively.
Therefore, the image segmentation problem can be stated as
following: given the image data v ∈ V , find the segmented
image u∗ ∈ U such that minimizes the functional (13).

In this process, the topological derivative is used to design
an algorithm that follows a steepest descent methodology (see
section IV). It can be shown that, for the functional 13, the
topological derivative DΩ(x̂) is given by:

DΩ(x̂) = −1

2
|ω|(u− ci)[(ϕ(x̂)− (v − u))]−

1

2
|ω|(u− ci)[(ϕ(x̂)− (v − ci)) + 2(1− β)ϕ(x̂)], (15)

where function f(ε) = ε2 and |ω| stands by the Lebesgue
measure of the set ω (ω = π in <2).

IV. PROPOSED METHOD

The proposed segmentation methodology is composed by
the following pipeline: (1) Pre-Processing: Low-Pass filter-
ing; (2) Pre-Segmentation: Topological Derivative; (3) Post-
Processing: Mathematical Morphology Operators; (4) Bound-
ary extraction via level set method.

Medical and biological images have a complex intensity
field and texture patterns. Thus, the low-pass filtering (a) is
applied to smooth the original image before using the topo-
logical derivative. This improves the robustness of the pipeline
against parameters choice. The morphological operators (c) are
used to simplify the level set initialization.

As mentioned before, for the image v ∈ V we need
to find the segmented image u∗ ∈ U that minimizes the
shape function J (ϕ) by successively selecting the class that
produces a negative value of the topological derivative. In this

way, the following image segmentation algorithm is proposed
(Algorithm 1) based on the topological derivative.

Algorithm 1 Image segmentation based on the topological
derivative
Require: An input image v ∈ V , the set C, an initial guess
u ∈ U , the diffusivity tensor field K and the parameters β
and the step size α ∈ (0, 1).

Ensure: The segmented image u∗ ∈ U .
while DΩ(x̂) < 0 do

find the solution ϕ to the variational problem (14)
evaluate DΩ(x̂) = DΩ(x̂, ci) according to (15)
compute c∗(x̂) = arg min

ci∈C
{DΩ(x̂, ci)}

compute d∗T = min
x̂∈Ω
{DΩ(x̂, c∗(x̂))}

if DΩ(x̂, c∗(x̂)) ≤ (α)d∗T , set u(x̂) = c∗(x̂)
update the class C according to Algorithm 2

end while
u = u∗

The solution ϕ in Algorithm 1 is obtained by the standard
finite element method, where the bilinear elements coincide
with the image pixels.

Obviously, a fundamental question is: How to define the
set of classes C? This is performed by calling the Algorithm
2, after each interaction of the main loop. Basically, the
Algorithm 2 takes an initial guess C (minimum and maximum
intensity values for two-class case) and computes Cδ , for
δ ∈ {−1, 0, 1}, and replaces the class C by the Cδ that
minimizes the functional J (ϕ) in expression (13).

The topological derivative result may have holes inside the
objects of interest as well as artifacts in the background. These
problems can be easily removed through simple morphological
operators (erosion, dilation, region filling). The obtained result
is binarized (0 for the background and 1 inside the objects).

Algorithm 2 Adjust the values of the classes
Require: An input image v ∈ V , the set C and the segmented

image u ∈ U obtained at each iteration of Algorithm 1.
Ensure: The new set of classes C∗.
C∗ = [ ]
for ci ∈ C do

for δ = −1 to 1 do
set Cδ = (C \ {ci}) ∪ {ci + δ})
compute ψδ = J (ϕ) by taking u ∈ Cδ

end for
set c∗ = ci + δ∗, where δ∗ = min

δ∈{−1,0,1}
{ψδ}

set C∗ = C∗ ∪ {c∗}
end for
C = C∗

Then, this result is the input for the computation of the
signed-distance function of expression (7) to initialize the level
set method, described in section II. For to get as the zero level
set is used a simple 2D marching cubes. In this way, we get



a first approximation of the boundary which can save time
computation and improve the accuracy of the level set result.

V. EXPERIMENTAL RESULTS

In this section we show the robustness and efficiency of the
proposed segmentation approach. We start by considering a
synthetic image of size 228 × 184 pixels with three classes
{c1, c2, c3} as shown in Figure 2.(a). This image is composed
by two concentric circles; the inner one with 31 pixels of
radius (c1 = 50); the outer one with 71 pixels of radius (c2 =
100); and a background with image intensity c3 = 204. Then
this image is damaged with a gaussian noise of null mean
and variance 0.05, as can be seen in Figure 2.(b). The idea
is to segment the damaged image into three classes using the
proposed method (section IV) and then compare the result with
level set (section II) alone.

(a) (b)

Fig. 2. (a) Synthetic image. (b) Damaged image with 5% of white noise.

Before starting, we must choose a low-pass filter. Three
filters have been tested: (1)Directional, due to its capability
to preserve edges; (2) Mean and gaussian which are known
low-pass techniques very much used in image processing.

Figure 2.(b) was filtered 8 times by each filter and the result
was segmented using the proposed pipeline. The initial guess
for the set C is the minimum, (minimum+maximum)/2
and maximum intensities of the original image at startup. The
setting of parameters was performed through experimentation
following the references [3], [11]. The pre-segmentation re-
sults, obtained through the Algorithm 1 applied to the filtered
versions of image 2.(b), are shown in Figure 3 using the
following parameter values: β = 0.3, α = 1.0 e k = 20.

A visual inspection of Figures 3.(a)-(c) shows that the mean
filter gives the best pre-segmentation result. So, we take the
image field of Figure 3.(c) for the level set initialization in
the last step of the pipeline. For the sake of simplicity, each
image feature is segmented separately. The Table I shows
the precision of the segmentation result (First line: ”Mean-
PM” means the mean filtered image segmented with the
proposed method). The precision of the obtained segmentation
is analyzed through the following error measure:

Error =

N∑
i=1

|r − di|
N

(16)

where r is the radius of the circle of interest in Figure 2.(a)
and di, com i = 1, 2, ..., N , represent the distances from the
points of zero level set to the center of that circle.

In order to compare our approach with the level set method
alone, the filtered images are segmented by using level set

(a) (b)

(c)

Fig. 3. Topological derivative results: (a)Directional filtered image: after 53
iterations of Algorithm 1. (b) Gaussian filtered image: after 52 iterations of
Algorithm 1. (c) Mean filtered image: after 45 iterations of Algorithm 1.

initialized by hand, as shown in Figures 4.(a)-(d) for the mean
filtered image only. Once again, for the sake of simplicity, each
image feature is segmented separately. According to [11], we
have used a time step ∆t = 0.005, stop criterion e = 10−5

and parameters λ = 50 and γ = 10. The Table I shows the
error, computed by expression (16) for each result (Last line:
”Mean-LS” means the mean filtered image segmented with the
level set method, and so on).

(a) (b)

(c) (d)
Fig. 4. Level Set method for mean filtered image: (a) Outer circle
initialization. (b) Inner circle initialization. (c) Final result for outer circle after
505 iterations. (d) Segmentation result for inner circle after 257 iterations.

Despite of the fact that the level set initialization (given
by the user) was too close to the boundaries of interest, the
Table I shows that the proposed pipeline outperforms the level
set results. Also, we should emphasize that our method does
not depend on user interaction. In fact, as already known in
deformable models, depending on the chosen initialization the
segmentation may be not precise. Besides, the first and last
line of this table indicate that the mean filter is the best one
for the pre-processing step.



TABLE I
PRECISION OF THE PROPOSED METHODOLOGY (PM) AND THE LEVEL SET

TECHNIQUE (LS).

Error Computed by
Expression (16)

Outer Circle Inner Circle
Mean-PM 0.4929 0.6821

Directional-LS 3.3061 1.5912
Gaussian-LS 2.4561 2.1548

Mean-LS 1.7356 1.2375

Now, we use the proposed pipeline presented in section IV
for cell segmentation. Therefore, it is assumed that we may
have more than one object of interest in the image. However,
we are supposing that each object boundary have the properties
of connectedness and closedness. Therefore, we can fill inner
holes and we can discard foreground regions linked with the
image boundary.

The test images were obtained by electron microscopy
techniques [15], [16]. Our goal in these experiments is to
verify the computational time as well as the robustness of
the parameters for a specific application, which is a desired
feature for the methodology.

We apply the mean filter for the pre-processing step because
it generates better results for synthetic images. In this case we
assume two classes. Therefore, the set C is initialized with the
minimum and maximum intensities of the original image.

As an example, let us observe the Figure 5.(a), pig cells,
whose resolution is 197 (width) x 102 (height) pixels. This
image has some noise and artifacts in the background. Figure
5.(b) draws the topological derivative result. In this case,
we have more than one object of interest which were pre-
segmented by the Algorithm 1. However, this result must be
improved by discarding cell regions linked with the image
boundary as well as artifacts in the background. The former
is discarded by a simple automatic inspection. To discard the
later, we need a set of pre-defined features (area, for example),
and corresponding lower bounds. For small artifacts we can
also use morphological operators (opening or closing). In the
case of Figure 5.(b) an area lower bound is more efficient
because morphological operators may corrupt the regions of
interest. It is important to stress that post-processing scheme
is application dependent but it can be customized if we know
the scale (size) range of the objects of interest. For instance,
in the case of Figure 5.(b), as well as some of the test image
set, the area lower bound was P = 180 (see [17], Chapter 5).

(a) (b)

Fig. 5. (a) Pig tissue cells. (b) Topological derivative result after 49 iterations
of Algorithm 1.

The result obtained after the post-processing is used for the

level set initialization, pictured on Figure 6.(a). The desired
result, shown in Figure 6.(b), is obtained after 4 interactions
of the level set. The values of the parameters used are: for the
topological derivative we set β = 0.3, α = 1.0, k = 20 and
for level set we use ∆t = 0.004, e = 10−2, λ = 15 e γ = 10.
Once the level set starts very close the target it is difficult to
see differences between the boundaries in Figures 6.(a)-(b). In
the following examples we will return to this point.

(a) (b)

Fig. 6. (a) Level set initialization. (b) Final segmentation after 4 iterations
of the level set method.

The next example, pictured on Figure 7.(a), shows the cell
image of a canguru with resolution of 249 (width) x 195 (high)
pixels. We can observe the presence of texture patterns in the
background. Figure 7.(b) shows the result of the topological
derivative. We observe holes inside the region of interest as
well as artifacts in the background due to inhomogeneities in
the intensity pattern. So, we apply a region filling algorithm in
order to fill holes inside the object. Then, the opening operator
is used, with the square structuring element of size W = 6,
in order to discard background artifacts.

(a) (b)

Fig. 7. (a) Canguru cell with resolution 249 (width) × 195 (height) pixels.
(b) Topological derivative result after 57 iterations (Algorithm 1)

The result allows to get a suitable initialization for the level
set method, as we can see in Figure 8.(a). After 9 interactions
we obtain the desired result, shown in Figure 8.(b). The choice
of parameters is the same as the previous result.

(a) (b)

Fig. 8. (a) Initialization of the level set technique. (b) Target boundary after
9 iterations of the level set technique.)

A visual inspection shows little changes between the level



set result and its initialization for the above examples. How-
ever, if we add noise things become very different. Figure
9.(a) shows an image that was corrupted with a gaussian noise
of mean null and variance 0.8 and the level set initialization
obtained with our proposed methodology (see [9] for details).

(a) (b)

Fig. 9. (a) Level set initialization in the last step of the proposed method.
(b) Level set result after 135 interactions.

In this case, the initialization of the level set is not so
close to the desired boundary as we observed in the above
examples. Despite of this, a visual inspections shows that we
get the desired result after 135 interactions. The values of
the parameters used are: β = 0.2, e = 10−5, λ = 30 and
∆t = 0.005. The others are the same of the example of Figure
6.

The cells pictured in Figures 5-8 belong to an image
database composed by 12 images (see [17], Chapter 5).
We apply the proposed pipeline to this images keeping the
mean filter for pre-processing. The post-processing stage was
implemented using area lower bounds, fill roles and opening
operator. The parameters values for the level set method
remained unchanged for all tests. The topological derivative
parameters do not undergo modifications for 9 images. Even
the synthetic experiment keeps these values. For the others
three cell images we need to redefine just the β parameter:
0.5, 0.6 and 0.7. These results show a suitable robustness of
the parameters which is a desired feature for the model.

The computational cost of the proposed pipeline is basically
determined by the level set and the topological derivative
because the other methods are too fast. We have used a
PC with Intel Core 2 CPU, 2.80GHz, and RAM memory of
2.5GB, running a single core Matlab implementation.

We did not implement narrow band techniques for level set.
So, its computational cost depends on the image resolution and
the number of iterations. The same happens for the topological
derivative. The range of image resolutions used was between
[144 − 249] for width the and [102 − 244] for the height.
The maximum number of iterations for the level set was 9
and the maximum CPU time was 0.1235 seconds for this
method. For the topological derivative, the range [min,max]
for the number of iterations was [49, 254] with CPU time
range [53.6284, 708.9881], in seconds (see [17], Chapter 5,
for details). We note that it represents the main contribution
to the computational cost of the proposed approach. A new
optimized implementation must be provided soon.

VI. CONCLUSION AND FUTURE WORKS

In this work we propose an image segmentation approach
based on topological derivative and level set methods. We

have shown results for a synthetic image using the level set
method and the proposed pipeline. Finally, the last approach
was applied in the case of real image segmentation. We
have obtained an image segmentation with acceptable quality
using the proposed pipeline, even in the presence of noise. In
particular, the boundaries of the image features are smoother
than the ones obtained by single topological derivative. In
addition, the topological derivative gives a quite good initial
guess for the level set method, improving the final result and
allowing to automatically deal with multi-object segmentation.
Further research directions are to optimize the topological
derivative implementation and to test the approach for 3D
image data sets. Besides, we should provide a comparative
evaluation of the proposed method with other segmentation
techniques as well as more robust level set implementations
[1] for both segmentation precision and performance.
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