
Evaluation of Real Time Tracking Methods for an
Open Source Motion Capture System

Daniel Pacheco de Queiroz∗, João Victor Boechat Gomide†and Arnaldo de Albuquerque Araujo‡
∗Universidade Federal de Minas Gerais - DCC - UFMG

Belo Horizonte - MG - Brazil
Email: danielpqp@gmail.com
†Universidade FUMEC

Belo Horizonte - MG - Brazil
Email: jvictor@fumec.br

‡Universidade Federal de Minas Gerais - DCC - UFMG
Belo Horizonte - MG - Brazil
Email: arnaldo@dcc.ufmg.br

Abstract—This paper presents new results for the open source
optical motion capture (mocap) system that is being constructed
and is in its final stage of development. The open mocap system
at the present moment realizes the entire pipeline for the real
time data acquisition of the three dimension positions of markers
that are moving in time. These data are organized with a
semantics that obeys the way virtual skeletons are constructed,
with the markers corresponding to specific articulate joints in
the skeleton. In this work, three different methods to track the
marker positions are tested and compared in the software. The
scope of this comparison is to determine the method that better
combines a low computational cost and a high precision in the
real time tracking of the markers. These methods predict the
position of the markers in the next frame and find them there,
maintaining the semantics and reducing the search area. The
results are valid for any motion capture system and are very
important for the software that is being developed, OpenMoCap.
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I. INTRODUCTION

Digital motion capture of living beings and objects has
important applications in character animation, biomechanics
research, athletics performance improvement, augmented re-
ality, among many others. Unfortunately, the available robust
and efficient equipments are very expensive and the source
codes of the applications are proprietary and not easy to be
modified or adapted for specific tasks.

In face of this reality, the open source real time optical
motion capture software was developed in the last two years
and is now working and being improved and tested [1]
[2]. The software, OpenMoCap, performs all the workflow to
output motion data in the appropriate format for the existing
3D modeling software.

The whole process of capturing motion can be divided
in basically four steps [3]. The first one, initialization, is
done only in the beginning of the process and relates special
given points from a scene with points from a previous defined

1This text is based in a Master Thesis

Fig. 1. Eadward Muybridge’s 1878 experiment to investigate if all four of
a horse’s hooves left the ground at the same time during the gallop

structure. These points are called points of interest (POIs).
The second task is called tracking, that is, it monitors the
POIs over a period of time. The third one is reconstruction
or pose estimation. And the last one is output and consists in
outputting data in some special format. To perform these steps,
OpenMoCap was developed in a modular and multithread
structure. The separation of modules by threads was done to
take advantage of the tendency of modern processors to have
more cores. Further, tasks executed in real time such as POI
detection, tracking, triangulation and visualization could be
made parallel.

The concept of abstract modules is very important to ensure
the software extensibility, one of the goals of this work.
If a new camera is to be used and it is not compatible
with the current implementation, just some specific methods
need to be implemented, following the pattern of the abstract
camera module. Another beneficial example is the possibility
to substitute the POI detection algorithm with one based on
body parts recognition instead of regions intensity. In other
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words, transform the system into one without markers.
Given the nature of the built application, an efficient and

mature computer vision library was specially usefull for its
construction, OpenCV. [4] made it to demonstrate its pro-
cessors performance. Unfortunately, the existing modules that
support cameras in OpenCV are not robust for more than two
of those devices and were not developed with object-oriented
concepts in mind. Since the software was designed to grow
and solidly support multiple cameras, videoInput library [5]
was integrated. Theoretically, it supports up to 20 cameras
and is compatible with every video input device that provides
a DirectShow interface [6].

In this work, the performance of three well know algorithms
for tracking was evaluated. The scope of this comparison is
to determine the method that better combines a low computa-
tional cost and a high precision in the real time tracking of the
markers. In order to do this, each tracker was executed in fail-
ure situations, as occlusion and semantics marker swapping.

With OpenMoCap, markers are used as the points of interest
(POIs). The markers can be active, emitting light, or passive,
reflecting light. To capture the marker positions, visible or
infrared cameras are used. Knowing the positions of the
cameras and the markers in each camera, with the appropriate
semantics, then the triangulation is possible and the POIs 3D
coordinates are obtained.

The most important tracker function is to maintain the
marker semantics frame to frame. This semantics consists of
a label associated to the marker in the initialization phase
and must be maintained along all the capture process. This
information is used in the pose estimation step to do the
triangulation. OpenMoCap was constructed with the Alpha-
Beta filter at the beginning. But as it is modular and versatile,
another choice of filter can be easily implemented in the
software.

This paper is organized as follows. In the next section
related works are introduced, including approaches for optical
motion capture and trackers. The applied methods are de-
scribed in Section III. The experiments for trackers evaluation
and their results are presented in Section IV. Finally, the
conclusions are discussed in Section V.

II. RELATED WORK

In the broad survey of computer vision-based human mo-
tion capture made by [7] [3], it is observed that the
Kalman filter and the CONDENSATION (Conditional Density
Propagation) algorithm are the most used methods to track
markers. Both are stochastic and the Kalman filter is based on
a Markov chain built on linear operators perturbed by Gaussian
noise [8]. The CONDENSATION algorithm uses nonlinear
movement models, allowing its application in more complex
cases [9].

Other Kalman filter variations are present in the literature.
The Extended Kalman Filter [10] [11] works with nonlinear
equations, being necessary a linearization of the currently
estimation using Taylor series. Due to the high computational
cost of this variation, another form (also nonlinear) was

proposed and is called Unscented Kalman Filter. With this
method, the linearization is not necessary, this is possible
with the use of a deterministic sampling technique known as
unscented transform [12] [13] [14].

OpenMoCap was first implemented using the Alpha-Beta
filter [1]. This algorithm prizes for its simplicity, low com-
putational cost and efficiency. In this filter the next position is
predicted by the velocity calculated in the prior state, consid-
ering the movement as rectilinear and uniform in each state.
This previewed velocity suffers a smoothing defined by the
alpha and beta parameters, which were obtained empirically.
The other two methods are implemented in OpenMoCap and
evaluated.

In [15] is presented an approach for tracking markers to
human movement analysis. In this work two tracking methods
were evaluated, the Kalman filter aforementioned and the
extrapolation. The latter is based in an extrapolation function
for each coordinate, whose parameters were experimentally
defined. Using as input the values obtained in the prior frames
(in this case, three frames), it is possible to calculate a pre-
dicted position of the marker in the fourth frame. Nevertheless,
the experiments showed that the Kalman filter was superior to
the extrapolation.

In [16] a system for tracking and counting fishes is
presented. Again, the Kalman filter and CONDENSATION
are cited, but the author used another tracking method called
BraMBLe (A Bayesian Multiple-Blob Tracker), considering
this method more befitting with the problem. This method
is based on CONDENSATION, in conjunction with a proba-
bilistic observation model capable to separate the background
and the interest objects. However, the OpenMoCap done
the segmentation between the background and the interest
objects in another step of the process. This way, it is not
necessary to use the BraMBLe’s training phase to do this
segmentation. Hence, only the tracking task accomplished by
the CONDENSATION method is necessary to this work.

III. EVALUATED METHODS

A. Alpha-Beta

The Alpha-Beta tracking filter is a single target tracking
widely used in radar systems. The most important propriety
of this tracker is its simplicity, which provides a low computa-
tional cost allowing real time running [17]. The recursive filter
is compound by two states, with one of them being obtained by
the integration of the other over time. The first state variable is
the position xp and the second is the velocity vp. In this way,
the position can be obtained by the integration of the velocity
over time. To do this, the velocity is taken as constant in a
small time interval ∆t.

Due to noise in the acquisition of the images and in the
motion model, almost never the predicted position xp is the
same of the measured xm. To represent this difference, it is
used the residual error r, which is calculated by the difference
between xm and xp in a given time k (Equation 1). This error
describes the impact of the perturbations occurred in the scene
and the trajectory of the observed object. This value, together



with the constants α and β, is used as show the equations (2)
and (3) to control the intensity of smoothing, obtaining the
smoothed position xs and de smoothed velocity vs.

r(k) = xm(k)− xp(k) (1)

xs(k) = xp(k) + αr(k) (2)

vs(k) = vp(k) +
β

∆t
r(k) (3)

The constants α and β are used to control the intensity of
smoothing. As bigger as their values are, faster is the response
of the tracker to abrupt changes in the trajectory. Contrariwise,
as small as their values, less the noise will prejudice the
prediction. Hence, the definition of the value of these constants
is related with the compromise between the smooth of the
noise and fast responses to changes in the trajectory. Then,
this values need to be experimental defined and varies for
each application.

B. Kalman filter

The Kalman filter is a recursive technique that uses a
set of mathematical equations to predict the process state.
Setting some initial values, the process state in each step
can be predicted. The algorithm can automatically adjust the
parameters of the model using the measurements of each step,
obtaining an error estimation in each updating. The possibility
to incorporate error effects and its computational structure
gave to the Kalman filter a wide field of applications in
different areas, such as robotics or computer vision.

The discrete Kalman filter algorithm can be separated in
two parts. In the first one the algorithm predicts the new
process state. After that, in the second part, it corrects that
prediction using the feedback of the prediction. In this way,
the equations for the Kalman filter can be separated into two
groups: time update (or predictor) equations and measurement
update (corrector) equations. The first group is responsible for
projecting forward, in time, the current state and error covari-
ance estimates to obtain the a priori estimates for the next
time step. The measurement update equations are responsible
for the feedback, i.e., for incorporating a new measurement
into the a priori estimate to obtain an improved a posteriori
estimate.

The time update equations are present below.

x̂−k+1 = Akx̂k (4)

P−k+1 = AkPkA
′
k +Qk (5)

In the equation (4) the variable x̂− is the a priori es-
timated process state vector. A example of state vector is
x̂′ = {x, vx, y, vy}, where x and y are the coordinates of a
marker and vx and vy the velocities in each axes. The transition
matrix A is defined by the model of motion, for example, a
rectilinear movement where x = ∆tvx.

Fig. 2. The Kalman filter cycle. The time update project the state ahead in
time, then the measurement update corrects the last prediction by the actual
measurement

In the equation (5) P−k+1 is a priori estimate error covariance
matrix and Pk is a posteriori estimate error covariance matrix.
The covariance error matrix Qk represents the noise (or the
error) of the system that allows to adjust the values of Pk. To
obtain a variable matrix Pk, used to generate a variable area
of search, we need to vary the matrix Qk, for example, basing
in the velocity of the markers.

The measurement update equations are present below.

Kk = P−k H
′
k(HkP

−
k H

′
k +Rk)−1 (6)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (7)

Pk = (I −KkHk)P−k (8)

The first task during the measurement update is to compute
the Kalman gain K (6). In this equation the matrix Hk relates
the state to the measurement and Rk is the measurement error
covariance matrix. The next step is do the measures to obtain
zk (the measurement vector), and then generate an a posteriori
state estimate by incorporating the measurement as in (7). The
last step is to obtain an a posteriori error covariance estimate
through (8).

C. CONDENSATION

Like the Kalman filter, the CONDENSATION algorithm
propagates a probability density function (pdf ) in time [9].
Nevertheless, this algorithm does not restrict the shape of this
distribution. Thus, the function curve can have multiples local
maxima, being multimodal and nonlinear, which increases the
cost of their propagation in time. In order to accomplish
this operation in a feasible time, it is necessary to do an
approximation. This is the purpose of the particles in this kind
of filters. In the CONDENSATION algorithm, this technique
is called factored sampling and is described as following.

In the factored sampling technique, the pdf is represented by
a set of N particles or samples, represented by {s1, . . . , sN}.
Therefore, this approximation of the pdf increases the accu-
racy as N increases. Each particle stores a possibility of the
system state. To measure this, it is assigned to each particle
a probability of the state stored in the particle being the true



state. This value is represented by πn, with n ∈ {1, . . . , N}
and measures the confidence of the particle.

The CONDENSATION algorithm is based on factored
sampling extended to work iteratively to successive images
in a sequence. In the execution beginning, all the particles
are randomly spread over all the search area. As we has
no information about each particle to discriminate them, all
particles receive the same confidence value, given by 1

N .
After the definition of initial step, the others can be ex-

plained. In a brief definition, the next steps consist in sample
the particles in each time instant. In spite of the re-sampling,
the particle-set still have the same size N in all steps, so
that the algorithm can be guaranteed to run within a given
computational resource.

The particle sampling could be separated in three phases:
selection, when the particles that will be sample are chosen
based in the confidence value, in the way that the particles with
greater value have more chances to be choose; prediction,
the particles undergoes a drift and, since this is deterministic,
identical elements in the new set undergo the same drift, after
that, the particles undergoes a diffusion by adding a noise
in their position; the last phase, observation, calculates the
particles’ confidence, based in the real marker position, in the
way that closer particles obtain greater confidence values.

IV. EXPERIMENTS

Initially, the values of the parameters of the methods are
determined. These values and settings were chosen because
they showed better results, or because they have a good
relationship between execution time and tracking quality. For
the Alpha-Beta filter, the parameter alpha was set with the
value 1.0 and beta received 0.8.

For the Kalman filter, it is important to report that the
matrix Q (which contains the errors of speed) is updated as the
errors are larger as the speed is greater. Thus, the search area
increases with the rise of markers’ speed. The state vector
stores the position variables x and y, and their respective
speeds.

The CONDENSATION algorithm was executed with 100
particles. The number of particles is directly proportional
to the execution time of the method. This value causes the
method to have an execution time consistent with the other
methods, without affecting much the accuracy of the predic-
tions. The state vector stores only the position variables x and
y, making the method completely probabilistic and nonlinear.

Experiments were performed to measure the robustness of
the tracking and the execution time for each method. To
measure the robustness, videos at 30fps with a resolution
of 640 by 480 pixels were generated, which simulate real
situations prone to failures. These situations were divided into
three categories: nonlinear motion, occlusion and semantics
markers swap (change of the names of two markers). The
loss of the markers was registered during the tracking and
in the tests of nonlinear motion. In cases which no loss has
been registered, the distance between the predicted point and
measured point was calculated.

A. Tracking quality

In the tests of nonlinear motion, a marker performed zigzags
in various directions and motions with acceleration. These
motions were separated into slow, fast and with acceleration.
In the experiments of occlusion, a barrier of variable size
was positioned on the trajectory of the marker, which could
be linear or not. Twenty videos were generated for each test
situation, and the number of losses of the marker was counted
for each method. The Figures 3, 4 and 5 show some videos’s
frames examples and the Table I shows the results.

TABLE I
NUMBER OF LOSSES.

Alpha-Beta Kalman CONDEN.
Slow 3 0 0
Rapid 9 0 4
Accleration 4 1 2
Occlusion 7 6 8
Marker Swapping 9 11 16

As each method made a correct tracking in at least 11
videos, and each of them have about 80 frames. A number
close to or exceeding 1000 error values was obtained, by
method. This information is important, because applying the
Shapiro-Wilk test, the result was negative, i.e., the error values
do not follow a normal distribution. Despite this, by the Central
Limit Theorem, due to the large number of values, statistical
moment analysis can be applied. Results are presented sepa-
rately for the videos with slow, fast, and acceleration.

Fig. 3. A frame of a video used in the robustness tests, a zigzag rapid
movement. The dashed line represents the trajectory of the bullet, the red dot
represents the estimated position of the marker (over the marker) and the blue
circle represents the search area.

Tables II, III and IV, in a confidence interval of 99%, show
for each method the number of obtained samples, the lower
limit of errors, the mean and the upper limit of the values.

B. Computational Cost

The test to measure the computational cost of each algo-
rithm was done by measuring the time required to process



Fig. 4. A frame of a video used in the occlusion tests. In this frame the marker
is passing through the area of occlusion, then only the predicted position is
displayed.

Fig. 5. A frame of a video used in the Marker Swapping tests. In the bottom
is the tracking marker with the label ”Peito”, covered by predicted red point.
In the top is a yellow point with the label NULL.

each video frame. This measurement considers only the task
of tracking the marker position, excluding tasks as the image
processing, detection of the POI, etc. Although the execution
time is extremely dependent on the hardware employed, the
goal was to make a comparison between the costs of each
method. Therefore, these comparisons are valid, provided that
the same conditions are maintained for all algorithms, as was
done in this work.

In this experiment the markers follow simple trajectories,
because the goal was not to test the robustness of the tracking,
previously measured. To measure the performance of algo-
rithms with different numbers of markers, videos with 1, 5,
10, 15, 20, 25 and 30 markers were generated. The time
measurement was done for 200 frames and the results are
showed below.

TABLE II
SLOW MOVIMENTS.

Method Samples L. Lim. Mean U. Lim.
Alpha-Beta 1445 6,67 7,21 7,75
Kalman 1700 9,71 10,31 10,91
CONDEN. 1700 38,51 39,18 39,83

TABLE III
RAPID MOVIMENTS.

Method Samples L. Lim. Mean U. Lim.
Alpha-Beta 594 9,77 10,81 11,84
Kalman 1080 14,03 14,98 15,93
CONDEN. 864 38,77 40,02 41,27

V. CONCLUSIONS

Analyzing the tables with the values of prediction error of
the methods, a considerable difference between values of each
method is observed. The Alfa-Beta and Kalman filters results
are more similar, showing the lowest error values. Otherwise
their mean values do not fall within the range determined by
lower and upper limits of each other. The CONDENSATION
algorithm presents the highest error values in all the cases.

An important remark about these results is that smaller
prediction errors are not consistent with a greater number of
hits in the videos. The Alpha-Beta filter, which showed the
lowest prediction error, was always the method that missed at
most the markers in the videos. With this information, it can be
concluded that a very accurate prediction, or with a high confi-
dence in the previous system state, is not the best approach. It
seems that a portion of diffidence in the prediction is necessary,
using predictions with a defined amount of uncertainty. This
is calculated by the error matrices in the Kalman filter and the
confidence of the particles in the CONDENSATION method.
They provided better total results, but the Kalman filter gives
the best overall results.

Another factor that improves the results of the Kalman filter
and the CONDENSATION algorithm is the search area of
variable size. In situations that are more error-prone, if the
search area in these methods increases with the growth of the
uncertainty, or the speed, the results are more precise.

Analyzing the tables with the computational costs, the
longer processing time was 2.812 ms, obtained by the algo-
rithm CONDENSATION. The difference between the values
obtained using the other methods looks great, but this value
corresponds to only 8.44% of the 33 ms time window available
for process each frame in a real time application (30 fps).
Although the ratio is small, other stages of the motion capture
should also be performed in this available time. Based on work
[18], it is known that the average processing time of the other
steps of the capture process is no more than 20 ms, which
allows to spend up to 13 ms with the tracking. Therefore,
even considering the higher peak time obtained, it would still
be possible a real-time tracking at a rate of 30 frames per
second.

From these observations, a good solution for a tracker is to
combine the simplicity of the Alpha-Beta filter with a variable



TABLE IV
ACCELERATION MOVIMENTS.

Method Samples L. Lim. Mean U. Lim.
Alpha-Beta 1360 2,86 3,17 3,48
Kalman 1615 5,50 5,98 6,47
CONDEN. 1530 21,82 22,67 23,51

TABLE V
ALPHA-BETA. FOR EACH NUMBER OF MARKERS, THE TABLE SHOWS THE
5o PERCENTILE, THE MEDIAN, THE 95o PERCENTILE AND THE MAXIMUM

VALUE AMONG THE PROCESSING TIMES OBTAINED (IN MS).

Markers 5o Percentile Median 95o Percentile Maximum
1 0,043 0,046 0,053 0,077
5 0,064 0,067 0,084 0,104
10 0,086 0,091 0,110 0,116
15 0,109 0,113 0,126 0,218
20 0,130 0,140 0,155 0,221
25 0,136 0,164 0,184 0,211
30 0,168 0,194 0,214 0,274

search area, based on speed at the beginning. At the present
moment, the Kalman filter is used to implement the tracker
module of OpenMoCap.
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