
A Comparative Study of Image Segmentation by
Application of Normalized Cut on Graphs

Anselmo Ferreira
Institute of Computing-IC

University of Campinas- UNICAMP
Campinas, São Paulo, Brazil

Email: ra023169@ic.unicamp.br

Marco A. G. de Carvalho
School of Technology- FT

University of Campinas- UNICAMP
Limeira, São Paulo, Brazil

Email: magic@ft.unicamp.br

Abstract—The graph partitioning has been widely used as a
mean of image segmentation. One way to partition graphs is
through a technique known as Normalized Cut, which analyzes
the graph’s Laplacian matrix eigenvectors and uses some of
them for the cut. This work proposes the use of Normalized
Cut in graphs generated by structures based on Quadtree and
Component Tree to perform image segmentation. Experiments of
image segmentation by Normalized Cut in these models are made
and a specific benchmark compares and ranks the results obtained
by other graph-conversion techniques proposed in the literature.
The results are promising and allow us to conclude that the use
of different graph models combined with the Normalized Cut
can yield better segmentations according to the characteristics
of images.

Keywords-Image Segmentation; Normalized Cut; Quadtree;
Component Tree

I. INTRODUCTION

The goal of computer vision is provide computers human vi-
sion habilities, such as recognizing and distinguishing objects
in a scene. One image processing technique used for helping
this task is the image segmentation, which divides an image
into pieces that are suitable for machine operations.

Lots of image segmentation approaches were proposed in
literature. The graph-based one uses a graph representation of
an image and uses a criteria for splitting it into pieces [1],
[2], [3]. In this approach, image features such as pixels or
image regions are modelled as graph nodes and graph edges
stablishes relations among them. So, a criterion is used to
partition this graph, yielding the image segmentation.

One graph partitioning criterion well-used is the sum of
edges weight removed to generate two subgraphs, also called
the cut. The Normalized Cut (NCut) approach by Shi and
Malik [4] is a graph-cut technique responsible for generating
balanced subgraphs by removing the minimum edges possible.
It is based on a spectral graph theory concept by Fiedler [5],
which originally uses the second smallest eigenvector of the
graph representative matrix as a guide for graph partitioning.
The inherent bias of this technique is that balanced partitions
for image segmentation cannot be appropriate for some images
when small number of partitions is desired (e.g, images with

0This work is related to a master thesis presented at UNICAMP’s School
of Technology in January 2011

an easily detectible object and a uniform background). This
technique was originally proposed to cut pixel-based similarity
graphs.

Contributions: This paper proposes two different ap-
proaches based on existing ones to create graphs from im-
ages and apply NCut image segmentation on them. These
approaches are based on images hierarchical information: one
is based on Quadtree decomposition and other is based on the
Component Tree representation. We argue that these represen-
tations can be useful to implement image segmentation based
on Normalized Cut for specific images and applications. For
that, we use some images from The Berkeley Image Database
[6] and classify their NCut segmentations in different graph-
conversion approaches, using a wide used benchmark for this
task.

This paper is organized as follows: Section II presents the
NCut image segmentation approach. In Section III, we show
some image-graph conversion approaches applied to NCut
segmentation proposed in the literature. Section IV presents
the proposed ones and in section V we discuss the image
segmentation experiments. Section VI concludes this work.

II. THE NORMALIZED CUT FRAMEWORK

Shi and Malik [4] proposed a new criterion for measuring
the graph cuts accuracy and performing image segmentation.
The authors argue that their technique solves the problem
stated by Wu and Leahy in their minimum cut criterion for
graph cutting [3]. Given a graph bipartition G = A ∪ B, the
Normalized Cut cost is:

NCut(A,B) =
Cut(A,B)

V ol(A, V)
+
Cut(A,B)

V ol(B, V)
, (1)

where Cut(A,B) is the sum of edges removed to split the
graph and V ol(A, V) and V ol(B, V) are, respectively, the sum
of weights in the nodes in A and B to all nodes in the original
graph G.

The best Normalized Cut in a graph is the one that mini-
mizes the NCut value. The problem in minimizing Equation
(1) is that it has a NP-Hard complexity[4]. In their paper, Shi
and Malik extended this equation and founded a well-known
equation in linear algebra called the Rayleigh Quotient [7]:

file:ra023169@ic.unicamp.br
file:magic@ft.unicamp.br

RQ =
vTAv

vT v
, (2)

where v is orthogonal to the n − 1 smallest eigenvectors
v1...vn−1 of A. Shi and Malik defined A = D−W

D [4]. One
fact about the Rayleigh Quotient is that it is minimized by the
second smallest eigenvector v2 of A, and its minimum value
is λ2, the second smallest eigenvalue of A [4]. To do so, the
following generalized eigenvalue system has to be solved:

(D −W)v = λv. (3)

The graph splitting is guided by v2, where each value v2[i]
will represent a graph node i and it is called the characteristic
value of node i. To split a graph, a threshold value is used
and the graph nodes are partitioned in two subsets. The most
common threshold values are zero, the median value in v2
or the one that minimizes the NCut value. Shi and Malik
used the latter approach by checking l possible splitting points
and calculating the best NCut among them. They proved that
their approach is reliable even with small l [4]. The cut can be
recursively done in the two partitioned parts and stops when a
previously given NCut value is reached, resulting a previously
unknown number of partitions. This technique is known as
Recursive Two-Way Cut and its steps are described as in the
following:

1) Given a weighted graph G, build the weight matrix W
and the degree matrix D.

2) Solve (D −W)v = λDv.
3) Threshold v2, where v2[i] is a node in the graph, yielding

partitions A and B.
4) Calculate NCut.
5) Repeat the previous steps in each subgraph only if the

NCut value is below a prespecified threshold.
If one wants to simultaneously generate a K fixed partitions,

so the K first eigenvectors can be used as a K dimensional
vector for each pixel. The partitioning process using K-way
Cut uses the two first steps of the Recursive Two-Way Cut,
the difference is the use of the K first discretized eigenvectors
as the guide for partitioning [4], [8].

Shi and Malik also proposed their method as a way of image
segmentation by first modelling an image into a graph. For
that, an affinity graph must be builded using image structural
features (e.g, pixels, regions, among others) as graph nodes
and a similarity function to weight its edges.

For image segmentation, this technique has two problems
that must be dealt: the high computational cost for graphs
with high connections and the correct choice of the image-
graph conversion method to segment specific images. In the
following two Sections we discuss some image graph con-
version approaches applied in NCut Image segmentation and
present two other based on existing ones.

III. IMAGE GRAPH CONVERSION APPROACHES TO
NORMALIZED CUT IN THE LITERATURE

Several image-graph modelling techniques were proposed
as input for the Normalized Cut. In this section, we review

three different approaches proposed in the literature.
1) Pixel Affinity Graph: In this modelling, each pixel is

taken as a graph node, and two pixels within a r distance are
connected by an edge. The edges weights should reflect the
similarity between the pixels connected by them. The grouping
cue used in the similarity function will reflect the overall
quality of the segmentation. Some of them are the intensity,
position and contours [4], [8], [9].

The intensity and position grouping cue Wip assumes that
close-by pixels with similar intensity are most probably to
belong to the same object.The measure of similarity regarding
this grouping cue is given by Equation (4) [4], [8]:

Wip(i, j) =

 e

−

(
α2

dp

)
−

(
β2

di

)
, if α < r
0, otherwise

, (4)

where α = ||Pi − Pj || and β = ||Ii − Ij || are, respectively,
the position and intensity difference between pixels i and j;
r is a given distance (also called graph connection radius),
α is the distance between i and j; and dp and di are the
corresponding scale parameters which control the tradeoff
between the brightness likehood and spatial proximity.

This grouping cue used separately often gives bad segmen-
tations because some natural images are affected by texture
clutter. So, another grouping cue Wic is regarded to the
intervening contours, given by Equation (5) [8]:

Wic(i, j) =

 e

−

(
max

(x ∈ linef(i, j)) ε

dc

)
, if α < r

0, otherwise

,

(5)
where linef(i, j) is a straight line joining pixels i and j and
ε = ||Edge(x)||2 is the square of edge strength at location
x. In this grouping cue, two pixels have a high affinity if a
straight line across them doesn’t cross an image edge.

These two grouping cues can be combined as shown by
Equation (6) [8]:

Wipc(i, j) =
√
Wip(i, j) ·Wic(i, j) + α2 ·Wic(i, j), (6)

where α2 is a constant given by user [8].
2) Multiscale Graph Decomposition: In their paper, Cour,

Benzit and Shi [8] argue that high graph connection radius
r generally makes better segmentations because it facilitates
the propagation of local grouping cues along image regions.
But it demands a high computational cost, once it makes
the graph’s similarity matrix denser. They propose the graph
decomposition in multiple scales. For that, in the first scale
W1, every pixel is a graph node and are connected if they are
within r distance apart. In the second scale, pixels are sampled
at 2r+ 1 distance apart and, in scale s, pixels are sampled at
(2r + 1)s−1.

Their algorithm works on these scales to capture coarse
and fine level details. The construction of the graph is then

given according to W = W1 + W2 + . . . + Ws, where W
represents the graph similarity matrix and s, the scale, i.e.,
each Ws is an independent subgraph. As r value is a tradeoff
between the computation cost and segmentation result, Ws can
be compressed using recursive sub-sampling of image pixels.
This compression is not perfect, but he has the advantage of
the computational efficiency.

3) Watershed regions based similarity graph: The Water-
shed Transform is a region-based image segmentation that
treats a grayscale image or the image gradient as a topographic
surface. The image is then flooded from a set of selected
sources (also called regional minima) until the whole image
has been flooded. Dams are then built between different lakes
before them meet, generating, in this way, the watershed lines
and watershed regions [10].

One problem with this technique is the image superseg-
mentation due to the high number of regional minima in the
images. Meyer [11] dealt with this problem by suggesting
the hierarchical Watershed. In this case, the flooding process
begins in a given threshold value tv that represents some
relief feature, for instance, the altitude. So, some initial regions
will be flooded, yielding in this way the number of partitions
desired [12].

The hierarchical watershed regions can be modeled using
graphs. The flooded gradient image is represented by a full-
connected weighted neighborhood graph, where a node rep-
resents a catchment basin of the topographic surface. Hierar-
chical Watershed can be used in order to reduce the number
of nodes (super segmentation problem) that is originated by
the primitive Watershed in the correspondent graph. After the
conversion, one weighting function that can be used is the
mean intensity, as proposed in [13]:

WIW (i, j) = e−|Imi−Imj |, (7)

where Im is the mean intensity of Watershed regions i and j.
Another interesting approach to modelling image graphs using
watershed regions uses centroid pixels and can be found in
[14].

IV. QUADTREE AND COMPONENT TREE BASED
SIMILARITY GRAPHS

Hierarchical information about images can give good clues
about image graph constructions if one wants to segment
images into meangniful regions. In this section, we describe
two image graph construction approaches previously presented
in [15], [16].

A. Quadtree based similarity gaph

The term Quadtree is used to describe a class of hierarchical
data structures created by the recursive decomposition of space
[17]. In order to represent an image through a Quadtree, it
should be recursively decomposed into exact four new disjoint
regions when they satisfy a defined criterion. The initial region
corresponds to the whole image and is associated to the tree
root node [17], [18]. Fig. 1 shows a Quadtree decomposition
example.

(a) Original
Image

(b) Quadtree
Decomposition

(c) Quadtree

Fig. 1. Quadtree decomposition example.

Defining the criterion to Quadtree decomposition is not a
trivial task. There are different criteria proposed, such as the
standard deviation or entropy of image graylevels [18]. We
proposed applying the Canny filter in the image before the
decomposition. This Filter, proposed by Canny in [19] is a
more robust filter because it is less sensitive to noise in images.
By removing pixels with low gradient and thresholding the
resulting ones, this process produces a binary image with
border pixels highlighted and apply Quadtree decomposition
on them. This procedure was chosen because:

1) the filter results in a binary matrix. Then, it became
trivial to define that a region should be decomposed
when it is not formed entirely by 1’s or 0’s [17].

2) the edge detection operation drastically reduce the size
of data to be processed, while at the same time preserves
the structural information about object boundaries [19];

The main goal of using a Quadtree image representation
is to reduce the similarity graph size. For this purpose, the
input graph will be generated using the regions associated to
the Quadtree leaves. Each region will be associated to a graph
node and in each region a centroid pixel is defined as the
representative pixel for that region. The connection radius is
given by Equation (8):

Radius =
max (RSa, RSb)

2
+ r, (8)

where RSa and RSb are the sizes of the two regions being
connected and r is the radius given by the user. The edges
weighting function will be the same as used in pixels similarity
graph in Equation (5), but now we use only the regions
centroid pixels and the ones reached by the graph connection
radius as the graph nodes.

The number of regions obtained by the proposed technique
will vary depending on the image data and size. Also, the pa-
rameters of the edge detection filter can be manually specified,
in order to change its sensibility. It means that the number of
nodes on the similarity graph can be influenced by the choice
of the edge detector parameters.

B. The Component Tree-based similarity graph

The Component Tree (CT) is a hierarchical representation
of a grayscale image after several thresholding operations
between its minimum and maximum graylevels. There is a
relation of inclusion between components at sequential cross-
sections of the image. A cross-section is defined as a binary
image given by Equation (9) [20]:

Fk = {x ∈ F/F (x) ≥ k}, (9)

where F is an image and Fk is a section k (level) of F . The
levels in k are in the range [GMin,GMax], where GMin is
the smallest graylevel and GMax is the higher graylevel in
the image.

The Connected Components (CC) of the different cross-
sections are organized in a tree structure. Two CCs Ck+1 and
Ck are linked in this tree when Ck+1 is a subset of Ck. The
CC of the first cross-section Fmin corresponds to the whole
image domain and it’s called root.

The traditional CT is formed only by the 1’s CCs, once
the cross-section used for the root corresponds to the minimal
graylevel. However, there is still information on the cross-
sections related to the 0’s CCs that are not included in the
traditional CT. For some particular cases these CCs hold more
relevant information than the 1’s CCs does. Therefore, we
build a Reverse Component Tree (RCT), where two CCs Ck

and Ck−1 are linked when Ck−1 is a subset of Ck. In this
case, the root of the tree is formed by the CC of the last
cross-section Fmax. Fig. 2 shows a simple example of CT
and RCT construction.

(a) original image (b) Component
Tree

(c) Reverse Com-
ponent Tree

Fig. 2. Example of buiding the Component Tree and Reverse Component
Tree

The final similarity graph G = {G1
cs, G

2
cs, . . . , G

n
cs} is a

set of n complete subgraphs Gn
cs = (Ck, E), where: n is the

subgraph identifier; Ck is the set of all connected components
from cross-section k; and E is the set of edges that connects
mutually every node from Gn

cs. Finally, the disconnected
subgraphs are linked together by CT and RCT edges.

It is not necessary to include all the cross-sections in the
final graph G. In general, the cross-sections at extreme gray
levels do not contain much information about the image and
also there is a lot of redundant information among all cross-
sections. Thus, one method to choose which cross-sections
should be added to G can be done by selecting a cross-section
correspondent to a middle gray level with more CCs; then,
the adjacent cross-sections can be added to G until a desired
number of nodes is achieved.

The G weights should reflect the similarity between the CCs
and can be obtained from combinations of both CC and image
attributes; but the edges that links CCs from different cross-
sections needs to receive a higher similarity value to ensure
that very similar CCs on subsequent cross-sections are kept
on the same region.

V. EXPERIMENTS

A. Database and benchmarking

We chose the Berkeley Image Segmentation Dataset and
its open source benchmark to evaluate the experiments. Two
reasons tells us to use the Berkeley Image Dataset in the
experiments:

1) The images available were previously segmented by
humans, so, the machine segmentations can be compared
to the human-made ones.

2) An open-source benchmark is available to classify the
segmentations, according to their similarity to the man-
ual segmentations.

The benchmark uses two metrics in the classification task:
Precision (P) and Recall (R). Precision is the probability that
the pixel marked as a border pixel in fact be a border pixel;
Recall is the probability that the border pixels marked by the
machine is the same as the border pixels marked by humans.
These two metrics are summarized in the F-measure [21]:

F = 2 · P ·R
P +R

. (10)

The process of Precision-Recall calculation for the image
segmentation comparison occurs 30 times or the number of
times defined by user. In each time, the segmented image
is thresholded and the final image is then compared to the
manual segmentations, yielding the Precision-Recall values.
The greater F-measure value in all of these points is then
defined as the algorithm ranking.

B. Parameters

In the experiments, the images dimensions had to be resized
to 256x256 because of the Quadtree requirement for squared
images with size 2n. So, we decided to do this to make a
fair comparison with other approaches. The comparison with
the ground-truth segmentations is done in the benchmark after
performing a bicubic interpolation, to resize the segmented
images to their original sizes. The Pixel affinity graph was
configurated to use the intervening contours weighting func-
tion in Equation (5) with dc = 0.1 and a connection radius
r = 10. We will call the segmentation in this graph NCutPixel.

The Pixel affinity graph using the multiscale decomposition
was configurated to use the intensity and contours weighting
function as presented in Equation (6), with α2 = 1, di = 0.12
and dc = 0.08. In this case, the graph was decomposed in
three scales. The segmentation algorithm works simultane-
ously across these graph scales, with an inter-scale constraint
to ensure communication and consistency between the seg-
mentations at each scale [8]. We will call the segmentation in
this graph NCutPixelMS.

The Watershed regions affinity graph uses a full-connected
input graph with 1000 regions generated by the hierarchical
watershed, and the weighting function uses the difference
between the mean graylevel intensity values of each region,
as cited in Equation (7). We will call the segmentation in this
graph NCutWshed.

The Quadtree affinity graph uses the Quadtree leaf nodes as
the similarity graph nodes. The radius used was r = 10 and
the weighting function uses the intervening contours described
in Equation (5). We will call the segmentation in this graph
NCutQT.

The Component Tree based similarity graph uses a full
connected graph using the connected components from the
CT and RCT cross-sections as graph nodes. The weighting
function uses the difference of mean graylevels, standard
deviation, distance and area of two connected component.
The segmentation in this graph is spread among all the cross
sections, and the cross section with best segmentation is
chosed manually to be the final segmentation. We will call
the segmentation in this graph NCutCT.

C. results and discussion

The number of segments for each image was chosen to
be the same as one chosen by one manual segmentation for
that image. To do that, we accessed the segmentation data
for a randomly chosen volunteer. The segmentation was then
performed by the K-way Cut described in Section II.

Originally, the Berkeley benchmark classifies only border-
based image segmentations. So, we use a border detector in
the images segmented by its regions to benchmark the results.
We decide to use the Canny filter [19] also available in the
benchmark because it is faster than the others. The result of
this process is a graylevel image used for benchmarking. Table
I shows the final ranking for 50 images segmented using the
F-Measure.

TABLE I
FINAL SCORES FOR THE NORMALIZED CUT ALGORITHM WITH DIFFERENT

IMAGE-GRAPH CONVERSION APPROACHES.

Position Score
1 0.52 NCutPixelMS
2 0.50 NCutPixel
3 0.48 NCutQT
4 0.48 NCutCT
5 0.44 NCutWshed

Despite the proposed methods were not the best ones when
applied to NCut segmentation, the Table I shows only the mean
F-Measure and tells nothing about the segmentation of each
image separately. The Table II shows the F-measure per image
where the proposed image-graph conversion approaches got
best or equal NCut segmentations than the Pixel graph with
multiscale decompositon, according to the benchmark. Fig. 3
shows the region-based segmentation results.

As shown in Tables I and II, the NCutWshed approach had
the worse performance than others. This fact is explained by
the use of a full connected graph. In this case, regions not
phisically neighboring are neighbors in the similarity graph,
so the Normalized Cut can put them in the same region.

Because of its inherent characteristic of generating different
segmentations in each cross section using connected compo-
nents as graph nodes, the NCutCT is appropriated to segment
some of the images, e.g, 58060, 3096, 208001 and 253027.

TABLE II
F-MEASURES OF NORMALIZED CUT WHEN APPLIED TO DIFFERENT IMAGE

GRAPHS ACCORDING TO THE BERKELEY BENCHMARK. THE BEST ONES
ARE HIGHLIGHTED IN GRAY

Image/Algorithm 58060 3096 208001 253027 42049
NCutPixel 0,37 0,27 0,48 0,41 0,76

NCutPixelMS 0,40 0,38 0,55 0,41 0,81
NCutWshed 0,37 0,28 0,53 0,54 0,54

NCutQT 0,36 0,29 0,52 0,36 0,82
NCutCT 0,46 0,71 0.57 0,56 0,71

Fig. 3. Images and NCut segmentations that achieves better results when
applied in the proposed image-graph conversion approaches: First Row:
original images 58060, 3096, 208001, 253027 and 42049 respectively. Second,
third, fourth, fifth and sixth rows shows the NCut segmentations using as input
the pixel affinity graph, the multiscale graph decomposition, the Watershed-
based affinity graph, the component tree and Quadtree based similarity graphs.

Fig. 4 shows the NCutCT Precision-Recall plot for image
3096. The behavior of this graph shows the Precision increas-
ing and remaining constant before the F-measure chosed point
and decaying after this point, indicating that the number of
false positives are low only in the threshold values before this
point.

According to Table I, the NCutQT has the same score
from the NCutCT, but its advantage is using lower number
of graph nodes (only the quadtree leaves). Fig. 5 shows the
NCutQT Precision-Recall plot for image 42049. In the Figure,
the greater F-measure point was F = 0.82 in the threshold
value t = 0.35. The graph behavior before this point shows
that the Precision remains high and Recall starts and remain
increasing in most parts of the graph. After this point, the
Recall remains constant and Precision decays, indicating that
the number of false positives increases.

Fig. 4. Precision-Recall plot of the Normalized Cut in the component tree
similarity graph of image 3096.

Fig. 5. Precision-Recall plot of the Normalized Cut in the quadtree based
similarity graph of image 42049.

VI. CONCLUSION

In this work, we propose the use of hierarchical information
for building image similarity graphs and discuss the image
segmentation on them when used as input to the Normalized
Cut approach. Our graph construction methodologies uses
concepts from some already known image representations:
Quadtree and Component Tree.

In our experiments, we segment images of general purpose
and show that some images can be better segmented with
Normalized Cut in the similarity graphs proposed. So, this
image segmentation approach proves to be very flexible,
because different image graph representations yield different
segmentations, showing its potential to different applications.
Benchmark results showed that, because of the general purpose
nature of the images used to segmentation, the final result
tells nothing about the algorithm performance in each one
separately.

Extensions of this work are proposing these approaches to a
specific application, using an image database of a specific kind
of image, use different weighting functions and use physical
neighborhood in the Watershed Similarity Graph.

ACKNOWLEDGMENT

This work was supported by CAPES Brazilian Agency.

REFERENCES

[1] L. Grady, “Random walks for image segmentation,” in IEEE Transac-
tions os Pattern Analysis and Machine Intelligence, vol. 18, 2006, pp.
1–17.

[2] L. Grady and E. Schwartz, “Isoperimetric graph partitioning for image
segmentation,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, 2006, pp. 469–475.

[3] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation,” in IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, November
1993, pp. 1,101–1,113.

[4] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1997, pp. 731–737.

[5] M. Fiedler, “A property of eigenvectors of nonnegative symmetric
matrices and its applications to graph theory,” Czech. Math. Journal,
vol. 25, no. 100, pp. 619–633, 1975.

[6] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th Int’l Conf.
Computer Vision, vol. 2, July 2001, pp. 416–423.

[7] G.H.Golub and C. Loan, Matrix Computations. John Hopkins Press,
1989.

[8] T. Cour, F. Bénézit, and J. Shi, “Spectral segmentation with multiscale
graph decomposition,” in Proc. of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - CVPR’05, vol. 2, 2005,
pp. 1124–1131.

[9] J. Malik, S. Belongie, J. Shi, and T. Leung, “Textons, contours and
regions: cue integration in image segmentation,” in Proc. of IEEE
International Conference on Computer Vision, Corfu - Greece, 1999,
pp. 918–925.

[10] S. Beucher, “The watershed transformation applied to image segmenta-
tion,” in Scanning Microscopy International, 1991, pp. 299–314.

[11] F. Meyer, “Hierarchies of partitions and morphological segmentation,”
in Proc. of Scale-Space, 2001, pp. 161–182.

[12] M. A. G. Carvalho, “Análise hierárquica de imagens através da árvore
dos lagos crı́ticos,” Ph.D. dissertation, Faculdade de Engenharia Elétrica
e Computação- FEEC, 2004.

[13] M. A. G. Carvalho, A. C. B. Ferreira, T. W. Pinto, and R. M. Cesar-Jr.,
“Image segmentation using watershed and normalized cuts,” in Proc. of
22th Conference on Graphics, Patterns and Images (SIBGRAPI), Rio de
Janeiro - Brazil, 2009.

[14] F. C. Monteiro and A. Campilho, “Watershed framework to region-based
image segmentation,” in Proc. of IEEE 19th International Conference
on Pattern Recognition - ICPR, 2008, pp. 1–4.

[15] M. A. G. Carvalho, A. C. B. Ferreira, and A. Costa, “Image segmentation
using quadtree-based similarity graph and normalized cuts,” in Proc.
Of XV Iberoamerican Congress On Pattern Recognition, São Paulo-SP,
Brazil, 2010, pp. 329–337.

[16] M. A. G. Carvalho, A. C. B. Ferreira, A. Costa, and R. M. Cesar-Jr.,
“Image segmentation using component tree and normalized cuts,” in
Proceedings of the XXIII Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI2010), Gramado - Brazil, 2010, pp.
317–322.

[17] H. Samet, “The quadtree and related hierarchical structures,” ACM
Computing Surveys, vol. 16, no. 2, pp. 187–261, 1984.

[18] L. A. Consularo and R. M. Cesar-Jr., “Quadtree-based inexact graph
matching for image analysis,” in Proceedings of the XVIII Brazilian Sym-
posium on Computer Graphics and Image Processing (SIBGRAPI2005),
Natal - Brazil, 2005, pp. 205–212.

[19] J. Canny, “A computational approach to edge-detection,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1986, pp.
679–700.

[20] V. Mosorov and T. M. Kowalski, “The development of component tree
for grayscale image segmentation,” in Proc. of International Conference
on Moderns Problems of Radio Engineering, Telecommunications and
Computer Science – TECSET, Slavsko – Ukraine, 2002, pp. 252–253.

[21] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in ICML ’06: Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 233–240.

	Introduction
	The Normalized Cut framework
	Image Graph Conversion Approaches to Normalized Cut in the literature
	Pixel Affinity Graph
	Multiscale Graph Decomposition
	Watershed regions based similarity graph

	Quadtree and Component tree based similarity graphs
	Quadtree based similarity gaph
	The Component Tree-based similarity graph

	Experiments
	Database and benchmarking
	Parameters
	results and discussion

	Conclusion
	References

