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Abstract—Complex networks have emerged as a unified repre-
sentation of complex systems in various branches of science. In
this work, we analyze the problem of clustering and recognizing
handwritten patterns using two different perspectives with the
aid of complex networks. In the first approach, we use a rigor-
ously described competitive learning system composed of several
particles navigating in a network with the purpose of conquering
as many vertices as they are able to. The particle’s walking rule is
composed of a stochastic combination of random and preferential
movements. At the end of the particle competition process, each
particle dominates a pattern cluster. Computer simulations reveal
that the proposed technique presents high precision of pattern
detection, as well as low computational complexity. In the second
approach, we propose a hybrid high level classification technique
for pattern recognition. In this scheme, the hybrid classifier
comprises a mixture of low and high level classifiers, in which the
former derives its decisions using physical features of the data
items and the latter predicts the class labels using the pattern
formations of the data by exploiting the topological properties
of the network. Again, we show that the hybrid classifier can
really improve the pattern recognition rate, where it is capable of
identifying variations and distortions of handwritten digit images.

Keywords-Stochastic competitive learning; high level classifica-
tion; data clustering; pattern recognition.

I. INTRODUCTION

Over the last decade, there has been an increasing interest
in network research, with the focus shifting away from the
analysis of small graphs to the consideration of large-scale
graphs, called complex networks. Such networks have emerged
as a unified representation of complex systems in various
branches of science. In general, they are used to model systems
which have a nontrivial topology and are composed of a large
amount of vertices [1], [2]. Machine learning and pattern
recognition techniques using complex networks have triggered
increased attention. This is because networks are ubiquitous
in nature and everyday life. Examples include the Internet, the
World Wide Web, biological neural networks, social networks
(between individuals and among companies and organiza-
tions), food webs, metabolic networks and distribution (such
as the bloodstream, postal delivery routes and distribution of
electric energy), etc. The main motivation of graph theory
research is the ability to describe the topological structure of
the original system. In the machine learning domain, it has

1This paper is a brief overview of the most relevant research topics derived
by the first author in his ongoing Doctoral Thesis.

been shown that the topological structure is quite useful to
detect clusters of arbitrary forms in data clustering [3].

In this paper, we tackle the problem of clustering and
recognizing handwritten patterns using two different network-
based perspectives. In the first, the patterns are grouped by
means of a competitive learning system, which is composed
of several particles navigating in a network with the purpose of
conquering as many vertices as they are able to. In this case, it
is expected that the similar patterns to be unveiled by analyzing
the subgroup of vertices that each particle is dominating. The
salient advantage of the model is that it is robust and has
low computational complexity. Also, results indicate that the
competitive system is able to obtain good pattern detection
rates. In the second, the patterns are recognized via a novel
hybrid high level classifier. In this sense, the hybrid classifier
is composed of a mixture of low and high level classifiers, in
which the former derives its decisions using physical features
or class topologies of the data items (for instance: SVM, deci-
sion tree) and the latter predicts using the pattern formations
of the data. The high level order of learning does not use
spatial relation among data items, but instead it exploits the
topological properties of the network, which is built using the
data items, in search of hidden pattern formation. Simulation
results show that the proposed hybrid classifier is able to
outperform traditional classification techniques when applied
to handwritten digits recognition.

The remainder of the paper is organized as follows: Sections
II and III discuss the particle competition and the hybrid
high level classifier, respectively; Section IV draws the final
remarks of the paper; and Section V lists the publications of
this research work.

II. PARTICLE COMPETITION ALGORITHM

In this section, we review the particle competition algorithm
[4], [5]. The readers are invited to read the aforementioned
references for more details.

A. Overview of the Technique

In the proposed competitive learning model, a set of par-
ticles K = {1, ...,K} is put into the vertices of the network
G = 〈V, E〉 in a random manner, where V = {1, . . . , V } is
the set of vertices and E = {1, . . . , E}, the set of edges. Each
particle can be conceptualized as a flag carrier with its main
objective being to conquer new vertices, while defending its
current dominated vertices. When a particle visits an arbitrary



vertex, it strengthens its own domination level on that vertex
and, simultaneously, weakens the domination levels of all other
rival particles on the same vertex. It is expected that this
model, in a broad horizon of time, will end up uncovering the
communities in the network in such a way that each particle
dominates a community.

A particle in this model can be in two states: active or
exhausted. Whenever the particle is active, it navigates in the
network according to a combined behavior of random and
preferential walking. The random walking term is responsible
for the adventuring behavior of the particle, i.e., it randomly
visits vertices without taking into account their domination
levels. The preferential walking term is responsible for the
defensive behavior of the particle, i.e., it prefers to reinforce
its owned territory rather than visiting a vertex that is not being
dominated by that particle. So as to make this process suitable,
each particle carries an energy term with it. This energy
increases when the particle is visiting an already dominated
vertex by itself, and decreases whenever it visits a vertex that
is being owned by a rival particle. If this energy drops under
a minimum allowed value, the particle becomes exhausted
and is teleported back to a safe ground, which is one of
the vertices dominated by the present particle. At the next
step, the exhausted particle will be possibly recharged by
visiting the vertices dominated by itself. With this confinement
mechanism, we expect to restrain the acting region of each
particle and, thus, reduce long range and redundant visits in
the network.

B. Proposed Model
The proposed dynamical system is nonlinear and stochas-

tic. The internal state of the system is given by X(t) =
[p(t) N(t) E(t) S(t)]T , where:
• p(t) is a K-dimensional vector, where the k-entry denotes

the position of particle k at the instant t.
• N(t) is a N ×K matrix, where the (i, k)-entry indicates

the number of visits that vertex i has received from
particle k up to time t.

• E(t) is a K-dimensional vector, where the k-entry pro-
vides the energy of particle k at the instant t.

• S(t) is a K-dimensional vector, where the k-entry sup-
plies the state of particle k at time t: active or exhausted.

The update rule of the proposed dynamical system is
expressed by:

φ :



p(k)(t+ 1) = j, j ∼ P(k)
transition(t)

N
(j)
i (t+ 1) = N

(j)
i (t) + δ

(
p(j)(t+ 1) = i

)
E(j)(t+ 1) =

{
min(ωmax, E

(j)(t) + ∆), if owner(j, t)

max(ωmin, E
(j)(t) − ∆), if ∼ owner(j, t)

S(j)(t+ 1) = δ
(
E(j)(t+ 1) = ωmin

)
(1)

where δ(.) is the indicator function that yields 1 if the
argument is logically true and 0, otherwise. In the following,
we present the meaning of the four expressions shown in the
competitive dynamical system φ:

• Particle’s Transition Rule (1st Expression): This rule
provides a stochastic process for moving each particle
to a new vertex j, where j is determined according to
the time-varying transition matrix:

P(k)
transition(t) , (1− S(k)(t))

[
λP(k)

pref(t) + (1− λ)P(k)
rand

]
+ S(k)(t)P(k)

rean(t). (2)

Note that the two terms are mutually exclusive and are
triggered depending on the value of the state of particle
k, S(k)(t). When it is active (S(k)(t) = 0), only the
first term is enabled. In this case, the particle performs a
mixture of random-preferential walk, whose distribution
matrices are given by:

P(k)
rand(i, j) ,

ai,j∑V
u=1 ai,u

, (3)

P(k)
pref(i, j, t) ,

ai,jN̄
(k)
j (t)∑V

u=1 ai,uN̄
(k)
u (t)

, (4)

where N̄(t) denotes the domination matrix of the system
at time t, which is given by the row normalization of the
matrix N(t).
Now, when S(k)(t) = 1, the particle becomes exhausted
and the second term indicated by the matrix P(k)

rean(t) is
enabled. Such matrix is given by:

P(k)
rean(i, j, t) ,

δ

(
arg max

m∈K

(
N̄

(m)
j (t)

)
= k

)
∑V

u=1 δ

(
arg max

m∈K

(
N̄

(m)
u (t)

)
= k

) .
(5)

• Update Rule of the Number of Visits (2nd Expression):
The update rule states that whenever a particle visits a
vertex, the corresponding entry in N(t) must be incre-
mented.

• Update Rule of the Particle’s Energy (3rd Expression):
In the model, each entry of E(t) is limited by the
interval [ωmin, ωmax]. ∆ > 0 symbolizes the increment
or decrement of energy that each particle receives at time
t. The increment and decrement of energy are given by
the first and second expressions, respectively.

• Update Rule of the Particle’s State (4th Expression): This
expression derives the state of the particle by monitoring
whether its current energy is at the minimum threshold.

In the next subsections, we present some extensions of the
model that have been made by the authors. Due to the page
limit, we will not go deeper into them.

C. Mathematical Analysis of the Model

In [5], we have analyzed the competitive system in a mathe-
matical form. Specifically, we have derived closed probabilistic
formula that supplies the distribution of N̄(t) over time. With
this tool, one can analytically understand the dynamics of the



model and predict the outcome of the model without using
numerical models. A validation has been performed and the
derived expressions do approximate the real behavior of the
model.

D. Estimating the Number of Communities or Groups in a
Data Set

In [4], we have devised how to estimate the number of
communities or groups in a data set. Specifically, we use the
average maximum domination level 〈R(t)〉 ∈ [0, 1] measure,
which is given by the following expression:

〈R(t)〉 =
1

V

V∑
u=1

max
m∈K

(
N̄ (m)

u (t)
)
. (6)

This measure has been shown to work well both in artificial
and real-world data sets. It will be utilized in our simulations
in the computer simulation section.

E. Discovering Overlapped Patterns

In [6], we have derived a method for detecting overlapping
vertices (patterns) only using information generated by the
competition process itself. In contrast to the majority of the
related techniques, which occasionally possesses a dedicated
process to infer overlapping characteristics of the items, our
technique artlessly supplies this information.

F. Computer Simulations

In all simulations, we will make use of the USPS, MNIST,
and Letter Recognition data sets. While the first two have
10 classes representing the digits “0” to “9”, the third one
has 26 classes indicating the English alphabet. More details
of these data sets as well as the configuration of the particle
competition technique are available in [4], [7].

1) Estimating the number of groups: Here, we use the
heuristic which has been developed in [4], [7]. Figures 1a,
1b, and 1c show the determination of the optimal K for the
USPS, MNIST, and Letter Recognition data sets, respectively.
One can verify that 〈R(t)〉 is maximized exactly when the
number of particles is equal to the number of clusters in the
network, confirming the effectiveness of such heuristic.

2) Handwritten Data Clustering: Here, we report the clus-
ter detection accuracy reached by our algorithm in detail, along
with the data clustering accuracy reached by LCGMM, GMM,
K-Means, NCut and variations. These techniques are described
in [7]. For the calculation of the cluster detection accuracy, we
set that the ideal result is that each cluster represents a “digit”
(in the USPS and MNIST data set) or a “letter” (in the Letter
Recognition data set).

Table I reports the data clustering accuracy reached by
our method and the aforementioned competing algorithms. As
we can verify by looking at the Average Rank column, our
algorithm has reached one of the best positions, showing the
effectiveness of the proposed technique. In order to examine
the results in a statistical manner, we utilize the Friedman Test.
This test is used to check whether the measured average ranks

TABLE I
RESULTS FOR THE DATA CLUSTERING ACCURACY. THE MEAN VALUE OF

THIRTY INDEPENDENT RUNS IS PROVIDED.

USPS MNIST Letter Avg.
Recognition Rank

LCGMM 73.83 73.60 93.03 2.33
GMM 67.30 66.60 91.24 5.33

K-Means 69.80 53.10 87.94 6.33
NCut 69.34 68.80 88.72 5.67

NCutEmbAll 72.72 75.10 90.07 3.67
NCutEmbMax 72.97 75.63 90.59 2.67

Proposed Technique 80.46 74.53 91.37 2.00

are significantly distinct from the mean rank. Applying it with
a 10% significance level, the null-hypothesis is rejected, mean-
ing that the algorithms are statistically different. Nonetheless,
one can see that our algorithm has obtained the best average
rank in relation to the other algorithms for these three data
sets.

In order to further verify the robustness of the proposed
technique, we inspect the samples that compose the same
cluster. Specifically, Fig. 2 shows some samples of the cluster
representing the pattern “2” of the MNIST data set. These
samples are captured using the following strategy: we compute
the vertices that compose the maximum geodesic distance of
the cluster representing each pattern (cluster diameter). Now,
we select a representative subset of vertices composing the
cluster diameter trajectory for illustrative purposes. In these
figures, samples that are adjacent are more similar than those
distant from one to another. On the basis of this analysis, we
conclude that the graph representation has successfully cap-
tured several variations of the these number patterns each of
which in a single representative cluster, showing the robustness
of the proposed model.

III. HYBRID HIGH LEVEL CLASSIFIER

In this section, we review the hybrid high level classifier
[8]. The readers can get more details in [8].

A. Overview of the Technique

The proposed technique works in a fully supervised
network-based environment. With this in mind, the induction
is performed in two steps:
• Training Phase: the data items are mapped into a graph

such that each class holds a unique component (sub-
graph). For example, Fig. 3a shows a schematic of how
the network looks like for a three-class problem when
the training phase has been completed. In this case, each
class holds a representative component. In the figure, the
surrounding circles denote these components: GC1 , GC2 ,
and GC3 .

• Classification Phase: the test instances are presented to
the classifier one by one. Since we do not know the
label of the test instance, it is temporally inserted into
the network in a way that it is connected to its most
similar vertices. Once the data item is inserted, each



(a) (b) (c)

Fig. 1. Determination of the optimal number of particles K (the optimal number of clusters) in real-world data sets. 20 independent runs are performed and
the average value is reported.

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. A broad set of samples of that were classified as being member of the cluster representing the pattern “2”. The transitions from the sample (a) to
(g) were captured from the maximum geodesic distance between two vertices in the cluster representing pattern 2. In this case, the diameter of such cluster
is 17. We have only provided 7 representative samples above.

class analyzes, in isolation, its impact on the respective
class component using the complex topological features
of it. In the high level model, each class retains an
isolated graph component. Each of these components
calculate the changes that occur in its pattern formation
with the insertion of this test instance. If slight or no
changes occur, then it is said that the test instance is in
compliance with that class pattern. As a result, the high
level classifier yields a great membership value for that
test instance on that class. Conversely, if these changes
dramatically modify the class pattern, then the high level
classifier produces a small membership value on that
class. These changes are quantified via network measures,
each of which numerically translating the organization
of the component from a local to global fashion. For
the sake of clarity, Fig. 3b exhibits a schematic of how
the classification process is performed. Note that, once
the test instance gets classified, it is either discarded or
incorporated to the training set with the corresponding
predicted label. In any case, each class is still represented
by a single graph component.

B. Hybrid High Level Classification

The hybrid classifier M consists of a convex combination
of two terms: (i) a low level classifier and (ii) a high level
classifier, which is responsible for classifying a test instance
according to its pattern formation with the data. Mathemat-
ically, the membership of the test instance xi ∈ Xtest with
respect to the class j ∈ L, here written as M (j)

i , is given by:

M
(j)
i = (1− λ)T

(j)
i + λC

(j)
i , (7)
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Fig. 3. (a) Schematic of the network in the training phase. (b) Schematic of
how the classification inference is done.

where T (j)
i ∈ [0, 1] and C(j)

i ∈ [0, 1] denote the memberships
of the test instance xi on class j produced by a low level
and a high level classifier, respectively, and λ ∈ [0, 1] is the
compliance term, which plays the role of counterbalancing the
classification decision supplied by both classifiers.

The inference of pattern formation, which is used by the
classifier C, is processed using the generated network. The
motivation behind using networks is that it can describe
topological structures among the data items. With that in mind,
the pattern formation is extracted using network measures
developed in the complex network literature. Suppose that
K measures are selected to comprise the high level classi-
fier C. Mathematically, the membership of the test instance
xi ∈ Xtest with respect to the class j ∈ L yielded by the high
level classifier, here written as C(j)

i , is given by:

C
(j)
i =

∑K
u=1 α(u)

[
1− f (j)i (u)

]
∑

g∈L
∑K

u=1 α(u)
[
1− f (g)i (u)

] , (8)



where α(u) ∈ [0, 1],∀u ∈ {1, . . . ,K},
∑K

u=1 α(u) = 1,
are user-controllable coefficients that indicate the influence
of each network measure in the classification process and
f
(j)
i (u) is a function that depends on the uth network measure

applied to the ith data item with regard to the class j. This
function is responsible for providing an answer whether the
test instance xi presents the same patterns of the class j or
not. The denominator in (8) has been introduced solely for
normalization matters.

With respect to f (j)i (u), it possesses a general closed form
given by:

f
(j)
i (u) = ∆G

(j)
i (u)p(j), (9)

where ∆G
(j)
i (u) ∈ [0, 1] is the variation of the uth network

measure that occurs on the component representing class j if
xi joins it and p(j) ∈ [0, 1] is the proportion of data items
pertaining to the class j. Remembering that each class has
a component representing itself, the strategy to check the
pattern compliance of a test instance is to examine whether
its insertion causes a great variation of the network measures
representing the class component.

The high level term of the hybrid classifier is composed
by the assortativity, clustering coefficient, and average degree.
The reason why these three measures have been chosen is
as follows: the degree measure figures out strict local scalar
information of each vertex in the network; the clustering
coefficient of each vertex captures local structures by means of
counting triangles formed by the current vertex and any of its
two neighbors; and the assortativity coefficient considers not
only the current vertex and its neighbors, but also the second
level of neighbors (neighbor of neighbor), the third level of
neighbors, and so on. We can perceive that the three measures
characterize the network’s topological properties in a local to
global fashion. In this way, the combination of these measures
is expected to capture the pattern formation of the underlying
network in a systematic manner.

C. Computer Simulations

1) Simple Example Showing How the Technique Works:
This example serves as the gist of how the proposed classifier
draws its decisions. Consider the structured toy data set
illustrated in Fig. 4, in which there are 2 classes: a red or
“circle” (35 vertices) and a green or “square” (120 vertices).
The fuzzy SVM with RBF kernel (C = 100 and γ = 2−2) is
adopted for the low level classifier. By inspection of the figure,
the red or “circle” class shows a strong clear pattern: a grid or
lattice, whereas the green or “square” class does not indicate
any clear patterns. The goal is to classify the triangle-shaped
data items (test set) one by one only using the information of
the training set. Figures 4a, 4b, and 4c exhibit the decision
boundaries of the two classes when λ = 0, λ = 0.5, and
λ = 0.8, respectively. When λ = 0, only the SVM prediction
is used by the proposed technique. In this case, one can see
that the five data items are not correctly classified. Notice that
the decision boundaries are pushed near the red or “circle”

class by virtue of the large amount of green or “square” items
in the vicinity. Now, when λ = 0.5, the SVM and the high
level classifier predictions are used in the same intensity. In
this case, the decision borders are dragged toward the green
or “square” class, because of the strong pattern that the red or
“square” class exhibits. When λ = 0.8, the decision derived
by the high level classifier is so strong that is capable of
pushing the decision boundaries inside the high density area
of the green or “square” class. This happens on account of the
strong pattern that the red or “square” class shows. In the two
former cases, the proposed technique can successfully classify
the triangle-shaped data items.

2) Handwritten Digits Recognition: Figure 5 shows the
accuracy rate reached by the three discussed techniques against
several values of λ when the MNIST data set is used. Our main
goal here is to reveal that a proper mixture of traditional and
high level classifiers is able to increase the overall accuracy
rate of the predicting model. Investigating this figure, one
can see that the perceptron neural network achieved 88% of
classification rate when only a traditional classifier (λ = 0)
is employed. A little increase of the compliance term, in the
case, λ = 0.25, is responsible for a boost in the accuracy rate.
In particular, it achieves almost 91% of correctly labeled test
instances. With regard to the k-nearest neighbor algorithm,
for a pure traditional classifier, we have obtained 95% of
accuracy rate, against 96% when λ = 0.2. In the ε-radius
classifier, we have obtained 98.49% of correctly classified data
items for λ = 0, against 99.06% when λ = 0.2. Finally, this
experiment indicates that the optimal compliance term might
be intrinsic to the data set, since, for three completely distinct
low level classifiers, the maximum accuracy rate is achieved
in the surroundings of λ = 0.225. We intend to investigate
this conjecture as future work.

It should be mentioned that the classification rate improve-
ment by using high level technique is significant because the
applied traditional classification techniques have already been
optimized by using the best parameter values.

IV. FINAL REMARKS

This paper presents two main results obtained in the re-
search of the ongoing doctorate thesis. In the first one, it is
provided a rigorous definition of a new model for competitive
learning in complex networks, biologically inspired by the
competition process taking place in many nature and social
systems. In this model, several particles navigate in the net-
work to explore their territory and, at the same time, attempt
to defend their territory from rival particles. A mathematical
analysis and several extensions have been discussed. In the
second one, a novel combination of low and high level
classifiers (hybrid) has been introduced to perform supervised
data classification using high order of learning. The low
level term classifies test instances according to their physical
features or class topologies, while the second term measures
the compliance to the pattern formation of the training data,
by means of exploiting the complex topological properties of



(a) (b) (c)

Fig. 4. Decision boundaries when (a) λ = 0; (b) λ = 0.5; and (c) λ = 0.8
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Fig. 5. An analysis of the impact of the compliance term λ on three different
traditional low level techniques applied to the MNIST database.

the network. In both cases, several computer experiments have
been undertaken and satisfactory results have been obtained.

V. PUBLICATIONS DURING THE DOCTORATE PERIOD

During the doctorate period, several research results have
been obtained and a series of papers have been published.
The main results have been published in IEEE Transactions
on Neural Networks and Learning Systems [4], [5], [8], which
is one of the leading scientific journals with impact factor 2.6
currently. In the doctorate period, up to now (is still active),
we have generated the following publications:
• Seven publications in international journals (see [4], [5],

[7]–[11]);
• Eight publications in international and national confer-

ences (see [6], [12]–[18]).
• Various manuscripts are at submission stage.
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