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Abstract—In this paper, we consider image sets classification
problem. For each image, a set of observations is obtained, which
consists of different transformations, possibly including rotation,
occlusion, projection and distortion, of the same image pattern.
Each set belongs to a single pattern, i.e., the pattern is considered
invariant under such transformations. The method employs a
network representation of the input data to take advantage of
the topological relations between the image patterns revealed
by a low-dimensional manifold. In the constructed network,
a measurement called modularity is computed to indicate the
topological characteristics of the image network. Simulations are
carried out in real image data sets and the results have showed
that the proposed method outperforms some recent and state-of-
the-art techniques.
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I. INTRODUCTION

The amount of information stored and processed by com-
puters has been growing fast. Different data types, such as
financial transactions, image and sound databases, customer
relations and scientific measurements have been handled. In
this context, the last 20 years have witnessed a considerable
growth in the study of automatic data processing algorithms,
such as classification, clustering, information retrieval, associa-
tion rules, among others [1], [2]. These algorithms are intended
to automatically extract relevant information from the database
to be explored.

In particular, multiple observations of the same object may
be produced and stored in a database, as is the case, for
example, of sensor networks. In these scenarios, the images
of an object are captured from different viewpoints for further
analysis [3], [4]. A car being tracked via a road camera system
or a person having his/her images recorded and stored by an
internal vision sensors network are examples of objects that
are captured at different time instants or by different angles
and geometric transformations. Thus, efficient methods must
be developed to exploit multiple views of invariant patterns in
order to correctly predict and extract relevant information, as
is done in classification tasks.

Among the many machine learning methods developed
for classification, the network-based learning algorithms have
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been explored with great success [5], [6]. Usually, these
algorithms consist of two stages: the construction of a network
from the original vector-based data set and the execution of
an algorithm on the constructed network.

Another research area that has been received attention in
recent years are the complex networks. A complex network
refers to a large scale graph with nontrivial connection patterns
[7], [8]. Such networks have emerged as a unified represen-
tation of complex systems in various branches of science [9].
Many network measures have been developed to characterize
vertices, subnetworks and the whole network [10], [11]. Such
measures can also be used to distinguish one type of network
from another. One of the salient features of complex networks,
as data representation tools, is the ability to describe the
topological structure of the data. Such representation not only
does emphasize the physical distances among vertices, but it
also captures from local to global relations among the data.
Consequently, it is a suitable tool to uncover pattern formation
among data.

This paper focuses on the development of a a supervised
technique where each pattern is composed of a group of
representations instead of a single image. Each object is rep-
resented by a group of transformations and the classifier must
predict the class this group of multiple images belongs to. The
prediction is based on a low-complexity network measurement
called modularity [12], [13]. Despite the simplicity of the
method, it has been shown very competitive comparing to
some recent and state-of-the-art methods.

The remainder of this paper is organized as follows. Section
II introduces and formalizes the problem explored. Section
III explains each step of the proposed method. In Section
IV, some simulation results are provided and discussed and,
finally, Section V concludes the paper.

II. THE PROBLEM OF MULTIPLE OBSERVATION SETS

In this section the problem of multiple observation sets
classification is formalized as follows. Consider a pattern p
has m multiple observations of the following form:

xi
(u) = oi(p), i = 1, . . . ,m, (1)

where oi represents different views of pattern p, such as
rotation, scaling, perspective, projection etc. Superscript (u)



denotes that the set of observations is unlabelled, i.e., the set
the pattern belongs to is unknown. The task is to classify p
into one of the c classes considered in the problem by using
the unlabelled observation set and labelled sets X(l).

Problem 1: Given labelled data sets X(l) and an unlabelled
data set X(u) = {x(u)

j = oj(p), j = 1, . . . ,m} corresponding
to multiple observations of p, the task is to correctly predict
class c∗ of the original pattern p, by using the group of
representations X(u) related to pattern p.

III. PROPOSED METHOD

The method introduced in this paper consists of two main
steps: network construction and modularity calculation. The
classification task is then performed as the final step. The step
of network construction is responsible for mapping the original
image patterns to a low-dimensinal map relying on a network
structure, where links represent the similarities between two
neighbor patterns. The patterns are represented by the network
nodes. Next, the modularity calculation step is performed and
the classification task is based on its results. The modularity
measurement is capable of quantifying, based on a network
scheme, the similarity between the set of representations of
the original patterns and the set of pattern transformations.
Therefore, using this measurement, the class prediction is
performed taking into account the set of transformations which
is better related to the original pattern. The method is explained
more detailed in the next subsections.

A. Network Construction

Networks are constructed from data sets by using the nearest
neighbors (k-NN) method. This method consists in creating
an edge between a vertex i and its k closest neighbors. In
the original pattern set scenario, it is equivalent to finding
the k most similar patterns of a reference pattern. Consider
the labelled data set X(l) of a specific pattern p. First, the
similarities among all patterns must be calculated, for instance,
using a Gaussian function of the following form:

Sij = exp

(
−||pi − pj ||2

2σ2

)
, (2)

where Sij is the similarity between patterns i and j, ||.|| is a
norm measurement, and σ a width parameter.

As an example, Fig. 1 shows a pattern linked with its two
nearest neighbors. In a similarity network, if a pattern i has
pattern j as its nearest neighbor, the reciprocal is not true, i.e.,
pattern j can have pattern l as its nearest neighbor. Therefore,
in this work the edges are directed, representing only one
direction of similarity.

The constructed network is a set {V,E} composed of a set
of vertices V = {vi} representing each pattern i and a set of
edges E = {eij}. If there is an edge between patterns i and
j, then eij = 1. If there is no edge, then eij = 0.

Fig. 1. An example of a k-NN network formation. The central pattern is
linked with its two nearest neighbors: 1NN and 2NN.

B. Modularity Calculation

Consider a network with g densely connected subgroups
and the connections among these groups are sparse. The
modularity measurement [12] is defined as

Q =
∑
i

(cii − ai
2) = Tr(C)− ||C2||, (3)

where C is a symmetric matrix whose element cij is the
fraction of all edges in the network that link vertices in groups
i and j, ||X|| is the sum of elements of matrix X , Tr(X) is
the trace of matrix X , and ai is defined as the column (or
row) sum: ai =

∑
j cij . The modularity measures the fraction

of the edges in the network that connect vertices whithin the
same densely connected subgroup minus the expected value of
the same quantity in a network with the same group divisions,
but considering random connections among vertices.

The trace of matrix C gives the fraction of edges in the
network that connect vertices in the same dense group. A good
division of the network should result in a high value of this
trace. Variable ai gives information about the fraction of edges
that connect the vertices in group i. Therefore, if the number
of connections inside a group is no better than random, Q = 0.
When Q approaches 1, it means that the network has a strong
division considering the g identified dense subgroups.

C. Classification of Multiple Observation Sets via Modularity
Measurement

The method for the classification of multiple pattern obser-
vations deals with the problem defined in Problem 1, Section
II. First, the method constructs a k-NN network to represent
the topological relations among the labelled patterns X(l).
Each pattern set is represented by one exclusive network.
Then, if we are given P different pattern groups, the method
constructs P different networks, each one corresponding to a
different pattern class. This step can be viewed as the training
phase.

Next, the method computes the modularity measurement as-
sociated with the unlabelled sets X(u). To do so, the unlabelled
set X(u) is joined to each constructed network using the same



k-NN network formation method: each unlabelled pattern in
X(u) is connected to its k most similar neighbors. These
similar neighbors can be selected from the constructed network
as well as from the unlabelled set. After joining the unlabelled
set X(u), a new network is formed. Then, the modularity
measurement Q is calculated according to Eq. 3 considering
g = 2 densely connected subgroups, i.e., one is the group
of densely connected vertices corresponding to the initial
constructed k-NN network and the other group corresponds to
the unlabelled vertices joined to the constructed network. This
process is performed for the P different networks constructed
in the training phase. At the end of the process, the unlabelled
group is classified as belonging to the pattern network whose
Q has presented the lowest value, indicating that the unlabelled
patterns are more similar to the patterns in that network.

Algorithm

In a concise form, the proposed method can be summarized
by Algorithm 1.

Algorithm 1 : Proposed Modularity Method
Input:
X(l) : labelled data sets
X(u) : unlabelled set
c : number of classes
l : number of labelled sets
Parameters:
k : number of nearest neighbors
Output:
c∗ : Estimated class for the unlabelled data
Training:
for i = 1 → l do
Net

(l)
i = Create k-NN network from labelled set X(l)

i

end for
Classification:
for i = 1 → l do
Neti = Join unlabelled set X(u) into Net

(l)
i

Qi = Compute modularity from Neti
end for
c∗ = argmini(Qi)

Computational Complexity

The computational complexity of Algorithm 1 is determined
mainly by the k-NN network construction in the training
phase, as the modularity calculation can be approximated
by a logarithm complexity [13]. The network construction
takes O(n2), where n is the number of labelled patterns,
due to the dissimilarity calculation among all patterns. In the
classification phase, each constructed network takes O(n∗m),
where m is the number of unlabelled observations os the same
patter. Therefore, considering both phases, the algorithm runs
in O(n2)+O(n∗m). On the other hand, as the training phase
must run only once before usage, the method takes O(n ∗m)
to classify a new set of multiple observations.

Fig. 2. Samples from the digit images data set. Each class, from “0” to “9”,
corresponds to the same invariant pattern.

IV. RESULTS

In this section the proposed modularity method is tested
on two real databases publicly available. One is composed
of handwritten digits collections and the second is composed
of multi-view images. The method is also compared to some
state-of-the-art algorithms.

A. Handwritten Digits

The first simulations were performed on a digit images
database [14]. This collection contains 20 × 16 pixels binary
images from “0” to “9”. Each of the 10 classes contains
39 examples. Some samples can be seen in Fig. 2. The
simulations in this subsection had the following configuration:
first, the data sets were randomly split into training and
test sets. The training sets were composed of two random
examples per class. Each example was augmented by four
new virtual examples generated by successive rotations of the
original example. The rotation angles were sampled regularly
in [−40◦, 40◦]. The test sets were composed of m (Eq. 1)
randomly chosen examples and each example was rotated by
a randomly chosen angle in the same interval [−40◦, 40◦], in
a uniform manner. These virtual samples were generated to
account for the robustness to pattern transformations. The use
of these samples can reinforce the transformation invariance
into classification algorithms [15]. Therefore, the classification
method becomes more robust to transformations of the test
instances. Values of m = 10, 30, 50, 70, 90, 110, 130 and 150
were considered for the test set size.

We compared the proposed modularity method with two
other network-based methods: Label Propagation (LP) [16]
and Manifold-Based Smoothing under Constraints (MASC)
[15]. The LP algorithm forms a k-NN network with weighted
edges. Next, it computes a real-valued label matrix via a
regularization framework function with a cost function [16].
The idea is to find a label matrix which is smooth along the
edges of similar pairs of vertices and at the same time close to



the initial labels (the labelled set X(l)). On the other hand, the
MASC algorithm is a specialized version of the LP algoritm
to deal with the problem of multiple observation sets. Since
all test samples belong to the same class in this problem, the
optimal solution can be obtained with a full search, as long
as the number of classes stays reasonable. Thus, MASC has
been formulated as a discrete optimization problem [15].

As the modularity method uses the k-NN network formation
method, the results for different values of k were analysed. In
all cases, the dissimilarity among the examples was calcu-
lated using Eq. 2 with a unit standard deviation (by setting
σ = 1/

√
2). Fig. 3a shows that the higher the value for

parameter k, the higher the classification error. In other words,
the modularity method must use low values for k to achieve
the best results.

The results are shown in Fig. 3b. For each value of m rang-
ing from 10 to 150, 1000 runs were averaged, corresponding to
100 runs for each of the 10 classes. For all algorithms, we set
k = 5, the value for which the LP algorithm achieved its best
results. Despite its simplicity, the modularity method achieved
the best results for most test set numbers of observations m.
Furthermore, the results were even better when k took lower
values (Fig. 3a).

B. Image Collections

The next data set simulated was an image collection of
multiple views of objects called ETH-80 [17]. All patterns
of this set are shown in Fig. 4a. In total, there are 80 different
classes, each one composed of 41 different views, totalling
3280 instances. Each class belongs to one of the following
categories: apple, pear, tomato, cow, dog, horse, cup and car.
As an example, the class “red car” can be viewed in Fig. 4b.
It must be stressed that the invariant patterns in this data set
suffer from different rotation angles.

In order to compare the proposed modularity method, four
methods specialized in multiple image observations were sim-
ulated: Manifold-Based Smoothing under Constraints (MASC)
[15], summarized in the previous subsection, Mutual Sub-
space Method (MSM) [18], Kernel Mutual Subspace Method
(KMSM) [19] and KL-divergence (KLD) [20]. In a few words,
these methods work as follows:

• MSM: It represents each image by its principal compo-
nents and computes the similarity between a test and a
training image via principal angles [21].

• KMSM: It is an extension of the MSM method. In-
stead of using the PCA to compute the image principal
component, it uses kernel PCA to take into account
nonlinearities.

• KLD: It formulates the problem of classification of multi-
ple observations of images as a statistical hypothesis test.
Each set is assumed to fit a Gaussian distribution and the
method computes the KL-divergence among the sets.

The simulations were performed with the following config-
urations: the original image size is 128 × 128 pixels but, for
computations ease, the images were downsampled to 32× 32;
the training and test sets were composed of 21 and 20 samples
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Fig. 3. (a) Classification error rates (%) using different values for parameter
k on the handwritten digits images data set. Each value was averaged over 50
runs. The number of observations for the test set is m = 30. (b) Simulation
results for the digit images data set. All algorithms used k = 5 for the network
construction. Each point was averaged over 1000 runs.

randomly chosen from the original sets, without repetition;
the dissimilarity between patterns was calculated using Eq.
2 with a unit standard deviation (by setting σ = 1/

√
2),

after extracting and comparing the patterns’ features. These
features were extracted by the spatiogram measurement [22]
and compared using the discrete Bhattacharyya coefficient [23]
(as the norm measurement in Eq. 2). Spatiograms are able to
capture higher-order spatial moments. A 2nd-order spatiogram
model of an object is identical to a histogram of its features,
except that it also stores additional spatial information, namely
the mean and covariance of the spatial position of all pixels
that fall into each histogram bin.

In order to compare the results, the value of k = 5 was
used in the simulations (the value for which the LP algorithm
achieved its best results), as in the previous subsection -
although for the proposed method the results were even better



TABLE I
CLASSIFICATION ACCURACY AVERAGE (%) (STANDARD DEVIATION) FOR THE ETH-80 IMAGES DATA SET.

MASC MSM KMSM KLD Proposed Modularity Method
88.88 (1.71) 74.88 (5.02) 83.25 (3.40) 52.50 (3.95) 92.71(2.65)

(a)

(b)

Fig. 4. (a) The 80 different patterns in ETH-80 data set. (b) The 41 different
views composing the “red car” class in ETH-80 data set.
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Fig. 5. (a) Classification error rates (%) using different values for parameter
k on the ETH-80 data set. Each value was averaged over 50 runs. The number
of observations for the test set is m = 30.

using smaller values for k, as it can be seen on Fig. 5. Table I
shows that the proposed modularity method achieved the best
classification results (avereged over 50 runs) for the ETH-80
data set, overcoming an already good result obtained by the
MASC method.

V. CONCLUSIONS

A new network-based method for the classification of mul-
tiple observation sets has been proposed in this paper. In the
context studied, each multiple observation set correponds to a
single pattern. The method consists of two stages: network
construction and modularity calculation. The network con-
struction provided a topological representation of the relations
among the different patterns and the modularity measurement
numerically represented the connectedness of the constructed
network: the more the network was close to a single densely
connected component, the more probable the objects could
belong to the same pattern. The simulation results showed that
the proposed method performed well in the handwritten digits
and multiple views objects collections, overcoming many
recent and state-of-the-art multi-view classification methods.
As future extensions we suggest the study of different net-
work measurements, which could take into account different
characteristics of the topological representations.

This work is related to the author’s ongoing doctoral thesis.
During his doctoral research, he has presented his ongoing
works in several conferences and has authored and co-authored
5 articles in international journals (see [24], [25], [26], [27],
[28]).
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