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Fig. 1. Overview of our method: input image and their associated skeleton model (left); generated graph (middle); experimental segmentation result (the
best path in the graph) with semantic information included (right).

Abstract—In this paper we propose a skeleton-based model for
human segmentation in static images1. Our approach explores
edge information, orientation coherence and anthropometric-
estimated parameters to generate a graph, and the desired
contour is a path with maximal cost. Experimental results show
that the proposed technique works well in non trivial images.

Keywords-human body parts segmentation, semantic informa-
tion

I. INTRODUCTION

The automatic segmentation of human subjects in static
images is still a challenge, mainly due to the influence of
numerous real-world factors such as shading, image noise,
occlusions, background clutter and the inherent loss of depth
information when a scene is captured into a 2D image, as well
as other factors associated with the dynamics of the human
being (great variability of poses, shapes, clothes, etc).

Some studies found in the literature show that people
segmentation in static images has become a focus of attention
in recent years, and it can be used in several applications,
for example, human pose and shape estimation (2D or 3D),
image editing, among other. Jacques Junior et al. [8] proposed
to solve this problem in an automatic way, starting with a
face detection algorithm, and then using color information and
anthropometric parameters. It can also be initialized from a
pose estimator algorithm as in Freifeld’s work [4] combined
with a cost function that fits the best pose and shape based on
a learned model computed in a previous stage.

1Doctoral thesis.
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Another class of techniques tried to detect and segment
simultaneously human figures in images, also related to pose
estimation algorithms. The approach proposed by Mori et
al. [10] is based on segmenting the limb and torso, which
are assembled into human figures. Lin et al. [9] proposed a
Bayesian approach to achieve human detection and segmen-
tation combining local part-based and global template-based
schemes. In a similar way, Gavrila [5] presents a probabilistic
approach to hierarchical, exemplar-based shape matching.

Guan and collaborators [6] tried to solve the problem
of person segmentation in images using a semi-automatic
approach. Basically they compute shape and pose parameters
of a 3D human body model directly from monocular image
cues, given a user-supplied estimate of the subject’s height
and a few clicked points on the body, generating an initial 3D
articulated body pose and shape estimative. Using this initial
guess they generate a tri-map of regions inside, outside and
on the boundary of the human, which is used to segment the
image using Graph-cuts [2].

This paper proposes a skeleton based approach for silhouette
extraction, allowing the precise segmentation of each body
part. Our approach is described next.

II. OUR APPROACH

In this work we propose skeleton-based human segmenta-
tion algorithm. The adopted skeleton can be obtained manually
or automatically, based on the desired application. Manually,
the user must provide a few clicks locating joints of the
human structure and then the remainder of the segmentation
process is fully automatic. On the other hand, the skeleton
could be acquired automatically, through a 2D pose estimation



algorithm, for example [1]. The basic idea is to create a graph
around the skeleton model and find out the path that maximizes
a certain boundary energy. Next we describe the proposed
model using a semi-automatic approach, aiming to prevent
problems related to 2D pose estimation algorithms. Some
results obtained in a full automatic way using the proposed
model are illustrated on Section III.

A. The skeleton model: input data

In our work, the skeleton model is composed by sixteen
bones and nineteen joints, as illustrated in Fig. 2(a). All these
bones have their widths estimated, parametrized as a function
of the height h of an average person based on anthropometric
values [12]. More precisely, for a certain body part with label
i, the corresponding width wi is given by wi = hfwi, where
the proportionality factors fwi are derived from [12]. Table I
presents all body parts used in this work, along with the
corresponding values for fwi.

(a) (b)

Fig. 2. (a) The adopted skeleton model. (b) Illustration of the three
generated graphs, given the input skeleton, as well some high level information
(connections, distances, etc).

There are two different ways to obtain the height of
the person through manual intervention. When the person
is standing in the photograph and the full body is visible,
the user simply clicks on the top of the head and on the
bottom of the feet, obtaining the height directly. In any other
situation, the height is estimated from the size of the face and
anthropometrical relationships. More precisely, the user clicks
on the top of the head and on the tip of the chin, to compute
the height of the face hf . The height of the person is then
estimated by h = hf/0.125, where 0.125 is a weight derived
from anthropometric values [12]. The height of the person
could be obtained automatically in a similar way, estimated
from a skeleton model acquired trough a 2D pose estimation
algorithm [1] and anthropometric relationships, for example.

B. Graph generation

The basic idea behind our model is to split the whole
contour into groups of body parts, finding the local contour
in each of these groups as a path in a graph, and connect
them together to obtain the silhouette of the person. For that

purpose, we define three main graphs: one for the “upper
body” and other two for the “lower body” (left and right sides),
as illustrated in Fig. 2(b) in red (A), green (B) and magenta
(C).

The assumption made in the proposed model is that each
body part, defined from two control points, is limited by
a contour, which should have similar orientation to their
respective “bone” (except the head, hands and feet) as well to
respect some anthropometric distances constraints. The person
contour is described by a path in the graph, which should
satisfy a predefined condition (for example, the best path is
the one that maximizes some kind of energy value). Fig. 3
illustrates this process for one body part.

TABLE I
FIRST COLUMN: THE BODY PARTS INDEX; SECOND COLUMN: THE BODY

PART (BONE); THIRD COLUMN: THE TWO JOINTS THAT FORM EACH BONE
(LEFT AND RIGHT SIDES); FOURTH COLUMN: THE WEIGHTS USED TO

COMPUTE THE WIDTH OF EACH BONE.

i Bone Joints fwi

0 Head (P1 - P2) 0.0883
1 Torso (P2 - P3) 0.1751

2 & 5 Arms (P5 - P4) & (P9 - P8) 0.0608
3 & 6 Forearms (P6 - P5) & (P10 - P9) 0.0492
4 & 7 Hands (P7 - P6) & (P11 - P10) 0.0593

8 & 11 Thigh (P13 - P12) & (P17 - P16) 0.0912
9 & 12 Calf (P14 - P13) & (P18 - P17) 0.0608
10 & 13 Foot (P15 - P14) & (P19 - P18) 0.0564
14 & 15 Shoulders (P4 - P2) & (P8 - P2) 0.0608

(a) (b) (c) (d) (e)

Fig. 3. (a) input image. (b) gradient magnitude. (c) nodes and edges of a
graph. (d) zoom on image (c). (e) the best path.

Let Gi = (S,E) be a graph generated for each body
part i, consisting of a finite set S of vertices and a set of
edges E. The vertices form a grid-like structure, and they
are placed along a region where the contour of the body
part is expected to appear (Fig. 3(d) shows the graph related
to the external contour of the right arm). The vertices form
levels along the grid, and each level is orthogonal to the line
segment connecting two control points (Pi′ and Pi′′ ), which
are associated with the respective body part (“bone”). The
extent of each level, as well as the number of vertices along
the levels are based on anthropometric values (described in
Table I) that provide the expected width of each body part.
The vertices are labeled Sm,n, where m = 1, ...,M denotes
the level of the vertex, and n = 1, ..., N is the position of the
vertex in such level, so that smaller values of n are closer to
the corresponding bone. The values of M and N were set
experimentally to M = 0.1‖(Pi′ − Pi′′)‖ and N = 0.33wi

(where i = 2 for the graph A and i = 8 for the graphs



B and C), i.e. the number of levels for each body part is
proportional to the length of the corresponding bone, and the
number of vertices per level is proportional to the width of
the arm for the upper graph A and to the width of the thigh
for the lower graphs (B and C).

Connecting individual graphs and special cases: The
graph definition described so far is focused on a single body
part. The three main graphs used in our work are formed by
several body parts, so that the graphs related to each individual
body part must be connected. When a body part is connected
to another, the regions delimited by the corresponding graphs
may overlap or leave gaps, depending mostly on the angle
α formed by the connection joint. In a general way, there is
overlap when α < 180◦, so that levels must be removed, and
gaps when α > 180◦, so that levels must be inserted to fill the
gaps. An example of creation and removal of levels is shown in
Fig. 2(b), in particular the connection of the calf and the foot.
In the outer contour of such connection, the graphs overlap and
levels must be removed; in the inner part of the connection,
however, there is a gap between the individual graphs, so that
new levels must be created. Also, it should be mentioned that
if α = 180◦, then the graphs are simply concatenated. As the
number of nodes at each level is the same for each main graph
(A, B and C), the connectivity is maintained along the “bone”
direction.

In addition, as it will be discussed next, a path in a main
graph is generated from the first level to the last one, which
ensures that the computation of each arm/leg will be made
separately. These constraints ensure the connectivity of the
limbs in most cases, except when the movements of the limbs
are not approximately on the image plane (which affect the
anthropometrical estimates in the projected image).

Although most body parts generate a graph placed in a
rectangular region, as described previously, some specific body
parts present a different shape, such as head, hands and feet.
The hands and feet are modeled as circular sectors, and the
levels are radial lines discretized by an angle of 22.5◦, chosen
experimentally.

The head is modeled by an hexagonal shape. Basically, the
“bone” of the skeleton associated with the head is decreased in
the top by a factor (set experimentally to wneck/2) and in the
bottom to wneck, where wneck = 0.0333h (based on [12]).
So the initial graph of the head is generated with the same
width of the arms around the hexagon, to maintain a certain
global coherence in the graph A. Finally, the graph of the head
is connected to the graph of the shoulders in the intersection
point of their boundaries, as illustrated in Fig. 2(b).

Each “bone” of the shoulders is initially decreased by a
factor (set experimentally to the half of neck’s width) in the
side of the neck. The graph generation is similar to a regular
body part (arms and legs, for example), but now the graph is
created only for one side of the “bone” (the upper side), using
the same width used for the arms.

The torso is modeled by two different graphs (one for
each side - left and right). Basically, we create two line

segments, connecting each femur (points P12 and P16)
to their associated shoulder, in the average point of each
respective shoulder “bone”. This line segment is decreased
in the top by a factor (set experimentally to the length of
the chest lchest, where lchest = 0.0980h), to deal with the
underarms, and the graph of the torso is generated as other
regular body parts. Finally, the internal parts of the graphs of
the legs are also cut on their upper extremity by an estimated
distance (the length of the hip lhip, where lhip = 0.0492h).

Weights of the edges: The edges in the proposed graph
relate to line segments connecting two nodes. The weight
w(ek) of each edge ek is given by the average energy of the
pixels that lie in the corresponding line segment, i.e.,

w(ek) =
1
qk

qk∑
j=1

Ek(xj , yj), (1)

where qk is the number of image pixels in a raster scan
along edge ek, Ek is the energy function, and (xj , yj) are the
coordinates of the pixels along such scan. The proposed energy
map is composed by several factors: edge, anthropometry and
angular constraints, as explained next.

Given the luminance component I of the original image,
we initially compute the discrete gradient image ∇I using the
Sobel operator. If the contour of the person passes trough a
graph edge ek, the gradient magnitude ‖∇I‖ is expected to be
large in the pixels along ek, and the orientation of the gradient
vector should be orthogonal to the line segment related to ek.
Hence, the first term of the energy map is given by |tk · ∇I|,
where tk is a unit vector orthogonal to ek, as illustrated in
Fig. 4.

Fig. 4. Illustration of the graph generation for the outer part of the right
arm.

Another useful information is provided by anthropometric
measures, since the expected width wi of each body is related
to the person height, as shown in Table I. In this work, we
also prioritize edges that lie at close to a distance wi/2 from
the respective “bone”. More precisely, we create two line
segments parallel to the “bone” (each one at a distance wi/2)
and then compute the Distance Transform (DT), generating an
anthropometric distance map Ri for each body part given by

Ri(x, y) = e
−Di(x,y)2

(wi/4)2 , (2)



where Di is the DT for body part i, and the scale factor of
the Gaussian is given by wi/4. For the sake of illustration, the
energy term combining gradient magnitude and anthropomet-
ric distances (‖∇I‖Ri(x, y)) for the right arm is illustrated in
Fig. 5(c).

(a) (b) (c)

Fig. 5. (a) Input image and their associated “bone”. (b) Illustration of
the energy term ‖∇I‖ (without the anthropometric distances constraint). (c)
Illustration of the energy term ‖∇I‖Ri(x, y).

The graph is influenced by the adjacent body parts close to
the joints. In such portions of the graph, the anthropometric
distance map is computed as a weighted average of the
distance maps related to the adjacent body parts, and the
weights are proportional to the distance of the pixel under
consideration to each body part. Hence, the overall distance
map R(x, y) presents smooth connections.

The third term in the energy map (Eq. 3) aims to prioritize
graph edges that are approximately parallel to the orientation
of the corresponding bone. In fact, such term is characterized
by |u · tk|, where tk are unit vectors orthogonal to ek, as
already explained, and u is a unit vector orthogonal to the
bone, as illustrated in Fig. 4.

Finally, the energy map for pixels related to a graph edge
ek is given by

Ek(x, y) = |tk · ∇I(x, y)|R(x, y)|u · tk|. (3)

C. Finding the maximum cost paths

The procedure defined so far is used to create three main
graphs (A, B and C), related to the upper and lower (left
and right) body parts. The silhouette of the person in each
of these parts is defined as the maximum cost path along the
corresponding graphs. Since the graph is acyclic, such path
can be computed using dynamic programming, as in Dijkstra’s
algorithm [3]. In the connection of the main graphs, the
contours may intersect or leave gaps, as illustrated in Fig. 6(a)
- left. The connection points of the arms are those nearest to
the beginning of the contour of the torso. The internal points
of the thighs with the smallest distance from one another are
connected (if there are more than one, we use the one closest
to P3). The final silhouette is shown in Fig. 6(a) - right.

III. EXPERIMENTAL RESULTS

In this section we illustrate some results of the proposed
model2. It is important to notice that each point of the contour
has a label associated to it, so all body parts are identified.

2See www.inf.pucrs.br/∼smusse/ICIP12 for more results.

(a) (b)

Fig. 6. (a) Connecting the three main paths (b) Results.

The semantic information is also illustrated in the results by
a red contour, which divides two consecutive body parts. One
limitation of the proposed approach is to deal with poses when
the movements of the limbs are not approximately on the
image plane (which affect the anthropometrical estimates in
the projected image). Fig. 6 shows some experimental results.
Fig. 7 shows a comparison of the proposed method and the
approach described in [4]. As it can be observed, the proposed
method adapts better to the contours, while the human body
shape priors in [4] enforce a smoother contour. It is important
to notice that in Freifeld’s work [4] the skeleton is acquired
automatically (Fig. 7(c)) whilst in our approach the skeleton
(shown in Fig. 7(a)) is acquired through user intervention.

Freifeld et.al [4] compared their results with those acquired
through Grab-Cut [11] segmentation algorithm, as shown in
Figure 8(b-c). In such case, we can lose a lot of information,
when comparing a semantic contour against a blob. For
example, consider a person with the arms in front of the torso,
as illustrated in Figure 9(a). It can be observed that the con-
nectivity of the contour, as well as the semantic information,
are maintained in the proposed model (Figure 9(b)), whilst
it is lost inside a blob (as illustrated in Figure 9(c) – result
acquired through user intervention, using the Graph-Cuts [2]
algorithm).

The proposed model can work fully automatically if the
input data is obtained in a similar way. For example, Fig-
ure 10(b) illustrates the result obtained using the 2D pose
estimated from Kinect 3, whilst Figure 10(c) illustrates the
result achieved through user intervention. In Figure 10(b-
c) and Figure 11, the red lines illustrate the results of the
proposed model, whilst the blue ones are those informed
by a user (for qualitative comparison). It can be observed
that the results obtained automatically do not outperform
those acquired semi-automatically, although the latter may
considered very convincing. Such problem can be correlated
to the challenges related to pose estimation algorithms (for
example, the estimated pose, or a part of it, could be not well
centered over the associated human figure, as illustrated on
Figure 11).

The experimental results shown in Figure 10(b) and Fig-
ure 11 are generated in a fully automatic manner using the
2D estimated poses given by the Kinect sensor. We believe

3Kinect for Windows: http://www.microsoft.com/en-us/kinectforwindows/

www.inf.pucrs.br/~smusse/ICIP12
http://www.microsoft.com/en-us/kinectforwindows/


that the depth map (given by the Kinect sensor and not used in
our experiments) could be incorporated in the Energy equation
(Eq. 3) in a future work, aiming to include depth information
and deal with low contrast or camouflage, for example. A very
simple way to include such feature (depth information) to the
model could be made by computing the gradient of the depth
map and merge it with the current gradient map (generated
from the grayscale image). Of course, other approaches could
be used. It is important to notice that such new feature (depth)
will make a hard restriction to the model: the need to work
with the Kinect sensor or similar devices.

The Figure 12 illustrates some experimental results using
images with very low contrast (in some specific body parts).
As it can be observed, the proposed model works very well.

In addition, it was observed during the experiments that
the model is very robust regarding the user provided skeleton
(small variations in the input data - informed joints and height
of the person - do not drastically affect the results). For
example, if the user/algorithm provides a bad joint, it will
affect mainly their associated body part and the adjacent body
parts, without propagating the error to the whole body.

(a)

(b)

(c)

Fig. 7. (a) Our results. (b) Results obtained with [4]. Skeleton acquired
through a 2D pose estimation [1], used in the Freifeld’s work [4].

(a) (b) (c)

Fig. 8. (a) Our result. (b) Result obtained with [4]. (c) Result shown in
Freifel’s work [4], obtained using the Grab-Cut [11] algorithm.

(a) (b) (c)

Fig. 9. (a) Input image. (b) Proposed model. (c) Blob, obtained using the
Graph-Cuts [2] algorithm.

(a) (b) (c)

Fig. 10. (a) Input image. (b) Proposed model (full-automatic), using the 2D
pose estimated from Kinect. (c) Proposed model (semi-automatic).

(a) (b)

Fig. 11. (a) Proposed model (full-automatic). (b) Zoom on image (a) -
problem related to 2D pose estimation algorithms: body part not well centered
over their associated shape.



(a) (b) (c)

Fig. 12. Experimental results using images with very low contrast.

IV. CONCLUSION

In this paper we propose a skeleton-based model to segment
human in images (part of the work presented in this paper
was accepted for publication on ICIP’12 [7]). The proposed
approach does not use complex 3D models of the human
form (as in [6]) or databases to learning appearance/shape/pose
models (as in [4], [5], [9], [10]). Based on the provided
skeleton, a graph is built around the expected contour region,
and the silhouette of the person is obtained as a combination
of maximum cost paths in the graph, where the weights of the
edges are based on edge information, anthropometric distances
and orientation constraints.

The experimental results showed that our method performs
visually well for a variety of images, being able to handle non
trivial images containing self-occlusions. When comparing to
a competitive approach that also provides the segmentation of
individual body parts [4], our method shows to produce more
accurate (but less smooth) contours.

Future work will concentrate on exploring color infor-
mation, including extensions to multi-view images and/or
depth-color data (e.g. Microsoft’s Kinect sensor), as well as
quantitative evaluations of the proposed model.
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