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Abstract—In this work we discuss the integration of three
depth based methods to the object extraction problem in RGBD
images. Each of these three methods provides an insight in the
connectedness, proximity, and planarity of the scene. Depth and
color are combined in a GraphCut framework.

I. INTRODUCTION

Object extraction can be stated as follows: Given certain
user interaction, identify automatically the set of pixels that
belongs to the referenced object. Classical approaches to object
extraction are based only in color data [1]. The aim of our
work is to show how the use of structured depth information
provided by Kinect lead to reinforce this task.

II. RELATED WORK

In most works on RGBD images, the way depth data is
used to gain structural information is the result of determin-
istic and/or heuristic ideas. By deterministic ideas, we mean
methods that are able to identify if certain input (e.g., depth
map) satisfies some property. Related work in this context is
Kahler [2] in recognition of planar patches. On the other hand,
heuristic methods are based on reasonable priors about the
image content. In Silberman [3]] the authors classify objects in
13 categories: bed, wall, table, etc., defining location and depth
priors. Our work proposes three priors which are completely
different to them. Both methods exemplify the importance of
having depth/location assumptions to get robust results.

III. STRUCTURAL INFORMATION FROM DEPTH DATA
A. Depth Connected Component (DCC)

We say two arbitrary pixels are depth connected, if there is a
path joining them, where depth difference between consecutive
pixels is smaller than a fixed threshold. Depth connectedness
induces a partition of the image pixels, and we call each of
these components a DCC (Fig. [T). Whenever the object is not
adjacent to any other element of the scene, the information
gained throughout DCC is almost a perfect object extraction.
In this work DCC is implemented as Breadth First Search.
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Fig. 1.

B. Depth Range Estimation (DRE)

The objective of this technique is identifying an interval in
the depth histogram that closely contains the object (Fig. [2).
From the set of pixels in the Selection Center, we applied K-
means to identify n clusters of depth (we took n = 5). Clusters
associated to the object are identified as follows:

1) Sort the n clusters from closest to farthest. Let
d(1,2),d(2,3), -, d(n—1,n) be the distance between the
center of consecutive clusters.

2) Label the closest cluster as FG.

3) If d1,2) < dy the second cluster is labeled FG. Other-
wise finish.

4) Fori e {3,4 .. n}, if d(ifl’i) < mtd(i,Q’i,D, the i-th
cluster is labeled FG. Otherwise finish.
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Fig. 2. (a) Rectangular Selection. (b) Depth Histogram. (c) Depth Range
Estimation
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C. Background Planar Surfaces (BPS)

DCC and DRE have a problem in common: when there
is adjacency between object and background we cannot gain
any distinction using just raw depth data. To overcome this
difficulty we require more structured information about the
image. The environment around the object in indoor spaces
is frequently conformed of planar surfaces. This is the case
whenever the object is over the floor, in front of a wall, etc.
Then, planar pixels near Selection Border are highly probable
background pixels. This idea is captured in the next procedure:

1) Take a sample of pixels from the Selection Border and

store them in a queue. These pixels will be called
component’s generators (Fig. E[)
2) Fix tolerance parameters e,, for normal and e for color.
3) Pick the first pixel p of the queue and identify the depth
connected set of pixels around p satisfying ||n, —n,|| <
en and ||z, — 2g|| < e.. Call this set of pixels PN (p),
the planar neighborhood of p.

4) In order to confirm PN (p) as a valid plane the following

two conditions must hold:
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o PN(p) is greater than 5% of Rectangular Selection.
o At most 25% of PN(p) belongs to the Selection
Center.

5) If the previous conditions holds, PN(p) is a planar
component, and we label its pixels as planar pixels.

6) Repeat the process using the next component’s generator
in the queue.
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Fig. 3. (a) Component’s Generators. (b) Rectangular Selection. (c) Planar
Components
IV. INTEGRATION WITH GRAPHCUT
A. Seeds

e [nitial Seeds: Let m and M be the minimal and maximal
depth value in the set of pixels belonging to the FG clusters,
w= # and 0 = M — m. FG seeds are all non planar
pixels in Ipg = [u— o, u+o]. BG seeds are all planar pixels
and pixels in Ipg = (—oo, u — 20] U [u + 20, 00).

e Seeds Refinement: Select the largest subset of FG seeds
that belong to a same DCC, and reaffirm these pixels as
FG seeds. The pixels initially identified as FG seeds but not
belonging to the chosen DCC are then moved to the set of BG
seeds.

B. Energy Function

The energy function in its general formulation is given by,
E(z,z,d) = acUc +vcVe +apUp +7pVp

Here Uy and Vo are the Color Terms defined in [1]. Up is
the Depth Data Term which is set according to the structural
information obtained through the three depth based methods.
Vp is the Depth Smoothness Term and it is selected to avoid
cuts in regions of almost constant depth. a¢, y¢, ap, and yp
are control parameters.

V. CONCLUSIONS

From depth based method we can discover aspects of the
scene geometry hardly attainable from color data. Within a
GraphCut framework, they allowed design a more robust seeds
selection, and define a more flexible Energy Function.

DCC led to satisfactory results in non-adjacency scenes, but
this depended on having accurate depth data. DRE obtained
good results in scenes with large depth ranges, however, in
scenes where object had a non-uniform depth range, DRE
partially identified the clusters belonging the object. BPS gave
robust results in almost all the experiments done. Very good
results were obtained for objects surrounded of planar surfaces.
In the non-adjacency case, BPS had some limitations but still
contributed with valuable information.

Fig. 4. In Top Down order: Rectangular Selection, Raw Depth, Depth Range
Estimation, Background Planar Surfaces, Seeds and Final results.

Seeding process was robust and segmentation results were
satisfactory (Fig. [d). Regarding to the Energy Function further
work is required on parameter fitting. Some strategies that we
consider worth for future research are learning the parameters
from an overview of the scene structure, and allowing the
parameters to change locally.

REFERENCES

[1] C.Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground
extraction using iterated graph cuts,” in SIGGRAPH, 2004.

[2] O. Kahler, E. Rodner, and J. Denzler, “On fusion of range and intensity
information using graph-cut for planar patch segmentation,” in Intelligent
Systems Technologies and Applications, 2008.

[3] N. Silberman and R. Fergus, “Indoor scene segmentation using a struc-
tured light sensor,” in 3DRR Workshop, ICCV, 2011.



	Introduction
	Related Work
	Structural information from depth data
	Depth Connected Component (DCC)
	Depth Range Estimation (DRE)
	Background Planar Surfaces (BPS)

	Integration with GraphCut
	Seeds
	Energy Function

	Conclusions
	References

