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Abstract—On image recovery and reconstruction, signal detec-
tion is often performed by some photon-counting process, thereby
leading to data that can be modeled as Poisson variables. With
such problems in mind, we provide a new parameter methodology
choice for the regularization of linear inverse problems where the
data are affected by Poisson noise.
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I. INTRODUCTION

Imaging technologies often detect the signal to be later
recovered or reconstructed as an image by counting the arrival
of photons emitted by or transmitted through the object. This is
the case, to mention a few examples, of CCD (Charge-Coupled
Device) sensors [1], and emission [2], [3] and transmission
tomography [4]. Since counting processes are usually well
modeled by a Poisson distribution, it is natural to consider
these data as Poisson distributed random variables. Furthermore,
image reconstruction from tomographic data or image recovery
from blurred or otherwise distorted images are well known to
be ill-posed problems, requiring some sort of regularization to
offer meaningful solutions from noisy data.

Contributions: The present paper introduces a new pa-
rameter choice method for the regularization of linear ill-posed
problems with Poisson data, which is a modification of the
approach by Santos and De Pierro [5].

A. Tykhonov-Like Regularization

One of the most popular regularization methods is Tykhonov
regularization [6] and its variants. The basic form of Tykhonov
regularization for the linear system of equations Ax = b with
A ∈ Rm×n, x ∈ Rn and b ∈ Rm is:

min ‖Ax− b‖22 + γ‖x‖22,

where γ ≥ 0 is the so-called regularization parameter, which
control the smoothness imposed to the solution. For larger
values of γ, the solution becomes smoother at the cost of being
less correlated to the data. This bias is not only acceptable, but
desired: it is best to have a biased estimator with reasonable
variance than an unbiased one whose variability is too large.

More sofisticated models inspired on Tykhonov’s method
exist, as measures other than the squared 2-norm are useful

and some constraints may convey important information about
the problem. In general, one will try to solve problems such as

min
x∈C

f(Ax, b) + γr(x).

Such optimization-based regularization procedures are very
important and widely used in practice, but require careful
choice of the regularization parameter γ. Choosing γ in order
to obtain a good trade-off between smoothness and data-fitness
is the problem we tackle in the present paper. When the error
is gaussian, a large amount of methods exists for the choice of
γ [7]. However, when it comes to Poisson data, there are much
fewer choices, among which we mention Bardsley and Goldes’
approach [8], Bertero et al.’s method [9] and Santos and De
Pierro’s technique [5]. We briefly review these methods and
introduce our own in the next section.

II. PARAMETER CHOICE RULES FOR LINEAR ILL-POSED
PROBLEMS WITH POISSON DATA

This section describes existing methods for choosing an
adequate regularization parameter for the solution of a system
Ax = b.

A. Bardsley and Goldes’ Discrepancy Principle

The classical Morozov’s Discrepancy Principle [6] is in-
tended to be used with gaussian data. Based on the fact that, in
such a case, E

[
‖(Ax)i − bi‖22

]
= σ2, where σ is the standard

deviation of the bi, it selects γ such that

‖Axγ − b‖22 = mσ2.

However, for Poisson noise, we actually have the different
relation E

[
‖(Ax)i − bi‖22

]
= E[bi]. Because of that, it is

justifiable to use the following equality as a criterion:

‖ diag(Axγ)−1/2(Axγ − b)‖22 = m, (1)

where diag(x) is the diagonal matrix with non-zero entries
corresponding to the components of x.

B. Bertero et al.’s Discrepancy Principle

Another approach is given in [9]. The key idea is to observe
the following result, proven in [10]:

Lemma 1. Let

F (x, λ) = 2
{
x log

x

λ
− x+ λ

}
,
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then, if xλ is a random variable which is Poisson distributed
with parameter λ, we have

E[F (xλ, λ)] = 1 +O

(
1

λ

)
.

Therefore, if the bi are large enough we have

KL(b, Ax†) ≈ m

2
,

where KL is the Kullback-Leibler cross-entropy [11]. Thus it
makes sense to consider choosing a value of γ for which we
have

KL(b, Axγ) =
m

2
. (2)

C. Santos and De Pierro’s Approach

A completely different route was taken by Santos and De
Pierro in [5]. Their approach consists of trying to approximate

E[KL(Ax†, Axγ)]

in order to minimize this value, the procedure proposed by
the authors is to first generate ω ∈ Rm as a sequence of
independently distributed standard gaussian variables and then
to find γ such that it minimizes

m∑
i=1

(Axγ)i − bT log(Axγ)

−
mωT diag(b){log(Axγ+)− log(Axγ−)}

δ‖ω‖22
, (3)

since this minimizer will, in average and approximately, also
minimize E

[
KL(Ax†, Axγ)

]
.

III. A NEW RULE FOR PARAMETER CHOICE

Now we present a new approach for the problem of
selecting an appropriate regularization parameter. Our rationale
is basically the same of the previous one, except that we try
to minimize

E
[
‖Ax† −Axγ‖22

]
.

Our main tool is the following result, the proof of which we
omit due to space constraints:

Theorem 1. Assume Fλ := Axγ is twice continuously
differentiable and let ω ∼ N (0, I), then we have

E
[
‖Ax† −Axγ‖22

]
= K + E

[
‖Axγ‖22

]
− 2E[bTAxγ ]

+ E

[
ωT diag(b)

(
Fγ(b+ δω)− Fγ(b− δω)

)
δ

]

+ E

[
O

(
‖ε‖32 +

‖ε‖22
δ

+ δ

)]
,

where K is a constant independent of γ.

We remark that the fourth term on the right hand side above
stems from a different estimator for the trace of a matrix than
the one used by Santos and De Pierro in [5] and by Helou
in [12], therefore arising to a different approximation than
what would be obtained by straightforward application of [12,

Theorem 1]. We have also been able to improve the error
estimate of [12] because our particular case was simpler than
the more general results presented there.

Theorem 1 right above immediately provides us with a
practical recipe for finding a suitable regularization parameter:
first generate a vector of m independent standard normal
variables ω, then compute, for the selectable values of the
regularization parameter {γ1, γ2, . . . , γr}, the reconstructions
xγi , xγi(b + δω) and xγi(b − δω). Finally, find which γi
minimizes

‖Axγi‖22 − 2bTAxγi

+
ωT diag(b)A

(
xγi(b+ δω)− xγi(b− δω)

)
δ

. (4)

Since the above quantity is, in average, a good approximation
to E

[
‖Ax− b‖22

]
, this parameter choice should lead to good

results most of the time.

IV. CONCLUSIONS AND FUTURE WORK

We have already performed experiments regarding tomo-
graphic image reconstruction which show that our approach is
competitive and, in fact, performs better than existing methods
most of the time, however lack of space makes it impossible
to present them here. We plan to extend these experiments and
generalize our method within a short period of time in order
to publish the results as a full paper.
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