Motion segmentation from texture and depth images
using graph homomorphism

David da Silva Pires, Roberto M. Cesar-Jr
Department of Computer Science
Institute of Mathematics and Statistics (IME-USP)
Sédo Paulo, Brazil
www.ime.usp.br/~{cesar, davidsp}

Luiz Velho
Visgraf Laboratory

National Institute for Pure and Applied Mathematics (IMPA)

Rio de Janeiro, Brazil
http://lvelho.impa.br

Fig. 1.

Abstract—We present an approach for motion segmentation
from videos captured by depth-sensing cameras. QOur method
uses the technique of graph matching to find groups of pixels
that move to the same direction in subsequent frames. In order
to choose the best matching for each patch, we minimize a cost
function that accounts for distances on RGB and XYZ spaces.

I. INTRODUCTION

This work aims at showing the benefits of using the
additional information given by the depth image registered
with a texture image, presenting an algorithm that detects the
direction of movement at real-time rates.

Given a video sequence, such as the one in Fig. the
application builds a graph for each frame and compare them.

WK1

(]

» \ 3 b
Input data is a video sequence of one texture and one depth map

images per frame. The texture image provides RGB values while the depth
map image gives us triplets (z, y, 2).

Fig. 2.

We use the theory of graph matching to find a correspon-
dence between two point sets. This approach has been used
to solve many computer vision problems such as interactive
natural image segmentation [1]] and object tracking [2], among
others [3]].

Detection and segmentation of movement (right) using our method
applied to texture (left) and depth (middle) images. Red and blue colors
indicate movement to right and to left, respectively.

II. METHODOLOGY

a) Input data: Our algorithm takes as input a sequence
of pairs of registered RGB texture and depth map, which are
captured from a Kinect™ device. The developed software also
accepts input from a variety of other sources, such as video
files, web-cam, video 4D files [4] and sequences of image
files.

b) Texture and depth filters: Our system implements two
texture filters: (i) flip on the horizontal direction and (ii)
decreasing of the resolution. The first one is used because
when a user interacts with the system, it is easier to look at
the results as if it was in front of a mirror. The filter to decrease
resolution, besides accelerating all the computations that are
done, is closely related to two other factors: the velocity and
the distance of each moving object to the capture device. We
also implemented a depth map filter that allows us to choose
data that is enclosed by two thresholds, determining the near
and far planes of the visualization volume.

¢) Graph based approach: In order to find a matching,
we used six values for each pixel on input data: RGB and
(z,y,z) data. The frame representation is given by an at-
tributed relational graph. The recognition of the direction of
the movement is done through an inexact graph matching.

d) Graph generation: The model and the input graph
are built from consecutive pairs of texture and depth map
input frames. In order to build the graph, we consider the
representation of the input images (texture and depth map)
composed by patches of n x n pixels.

e) Graph matching: A matching is an ordered pair of
vertex descriptors, from the model to the input graph. For
each vertex belonging to the model graph, we find the vertex
on the input graph that is closest to it according to a distance


http://www.ime.usp.br/~cesar
http://lvelho.impa.br

measured by a cost function. The cost function c is given by
a weighted average between two distances: drgp and dxy z:

C=O4~dRGB+(1—Oé)'dxyz.

The drgp value measures the distance of the color of the
patches being compared on RGB space, while the dxy 7 value
measures the distance between the (z,y) texture coordinates
and between the Z depth values. We used o = 0.5 and
implemented two distance functions: city block (Manhattan)
and Euclidean.

Matching visualization: Matchings can be drawn in three
ways: arrows, colored or gray-level patches. The first one
draws, for each matching, an arrow that goes from a vertex
location on the model graph to the position of the matching
vertex on the input graph. The other modes represent each
direction by a colored label and the program paints the whole
area of each patch with the corresponding label.

Computation of directions: In order to compute the
direction to which a patch is moving on, we calculate the arc-
cosine of the normalized dot product between the vector that
represents the shift of the patch and the unit vector (1, 0), that
points to the direction of the x axis. After that, we discover
to which quadrant the vector belongs to by considering the
signal of its y coordinate.

f) Median filter: Final results visualization shows that
there are many patches that correctly identify the direction
of the movement, but still others represent bad matchings. In
order to eliminate these ones and treat this lack of spatial
continuity, the median filter is applied to the image of the
labeled patches.

III. RESULTS AND DISCUSSION

(© (@
Fig. 3.

Typical input and output data.

Typical input and output data are shown in Fig. 3| Fig.
(a) shows the captured depth of two subjects walking at
opposite directions, with occlusion occurring between them
and also between their respective legs, while Fig. [3] (b) shows

this depth after background elimination filtering. Fig. [] (c)
shows the texture for the same scene. Note that the depth is
already registered with the texture. Finally, Fig.[3](d) shows the
detected motion represented as color labels. As we can see, the
method accounts for the effects of occlusion. This experiment
shows the identification of motion present on the scene. The
leftmost subject is more distant to the capture device, as
indicated by the gray levels in the depth map; it is walking
from left to right. The other subject, closer to the capture
device, executes a movement from right to left. Note the
correct classification of both movements, even on the region
where they intercept each other. The green pixels that arise
in Fig. 3| (d) were identified as moving up, a reasonable result,
except for the green blob that appears at left-bottom corner: it
appears due to error on depth capturing. This same experiment
is also an example of how our method gets successful results
even in the presence of occlusion of moving objects. Note
how a leg is partially occluded by another one and still has
its motion correctly identified.

Fig. @] (a) shows the nice visual appealing that the represen-
tation of matchings as arrows brings. Fig. {4 (b) exemplifies the
fine grained result obtained when patches of size 2 x 2 pixels,
instead of 10 x 10, are used in the video shown in Fig.

(b)

Fig. 4. Visualization of the matchings as arrows, indicating that the arm is
moving up and to the right direction, and fine grained result using patches of
2 x 2 pixels.

IV. FUTURE WORK

o To parallelize texture and depth filters to run on different
processes, since they are independent from each other.

o To take a temporal approach to deal with patches that are
in the interior of moving objects that are too thick and
thus have the tendency to not be shown on results.

e To determine motion by considering directions on 3D
space.

o To detect the rigid parts of an articulated object.

REFERENCES

[1] A. Noma. (2012, May) Interactive natural image segmentation. [Online].
Auvailable: |http://structuralsegm.sourceforge.net/

[2] A. B. V. Graciano, “Rastreamento de objetos baseado em reconhecimento
estrutural de padrdes,” Master’s thesis, University of Sdo Paulo, Sdo
Paulo, Brazil, March 2007.

[3] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” Intl. Journal of Pattern Recognition and
Artificial Intelligence, vol. 18, no. 3, pp. 265-298, 2004.

[4] M. B. Vieira, L. Velho, A. S4, and P. C. Carvalho, “A camera-projector
system for real-time 3D video,” in Proceedings of IEEE International
Workshop on Projector-Camera Systems (PROCAMS), San Diego, Cali-
fornia, USA, June 2005, jointly with CVPR 2005.


http://structuralsegm.sourceforge.net/

	Introduction
	Methodology
	Results and Discussion
	Future work
	References

