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Fig. 1. Transparency and Anti-Aliasing play an important role in visual cues and image quality of computer-generated images. Achieving real-time rendering
with high-quality images is challenging. In this tutorial, we summarize state-of-the-art techniques to handle both problems.

Abstract—Transparency and anti-aliasing are crucial to en-
hance realism in computer-generated images, which have a high
demand for such effects. Transparency is largely used to denote
relationships among objects in a scene, and to render several
structures, such as particles and foliage. Anti-aliasing (AA) is
also important, since jagged edges can be easily spotted and
create disruptive distractions during a scene walkthrough, which
are unacceptable in real-time applications. Figure 1 illustrates
both effects. In common, they have the fact that they rely on
processing discrete samples from a given function, but using the
samples for different purposes. In this tutorial we review state-of-
the-art techniques for transparency and anti-aliasing effects, their
initial ideas and subsequent GPU accelerations. We support our
presentation with a discussion on their strengths and limitations.
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I. INTRODUCTION

Transparency is an important rendering effect, used often
without being noticed by the viewer, as in hair, grass, smoke,

fire, snow and rain. Its presence is obvious only on surfaces of
transparent materials, such as glass and plastic. Anti-aliasing, in
turn, is noticed the most when it is not applied, since its absence
causes the unpleasant sensation of discontinuity in computed
generated images. On the other hand, when applied, transitions
at the boundaries of objects in images become smooth.

The key to render transparency effects is the integration of
the contributions of several fragments, which are generated
along the viewing ray that passes through a pixel center.
Figure 2 illustrates the transparency problem. For the correct
computation of colors associated with a given pixel, fragments
must be processed in visibility ordering (either back-to-front
or front-to-back) using the blending equations described in [1].
There are different ways to achieve the proper ordering of
fragments. For example, sorting primitives in object-space
before they are rendered and blended is one approach. Another
approach is to defer the sorting to be performed at the fragment



Fig. 2. The transparency problem: (a) the view ray for a pixel traversing
the scene and hiting transparent surfaces. (b) out-of-order composition of
fragments leading to incorrect colors. (c) depth-sorted composition of fragments
generating correct colors.

level, which does not impose an ordering on the primitives
sent to the graphics pipeline. The techniques that produce
correct and invariant transparency results are classified as Order-
Independent Transparency (OIT). Fragment-level approaches
have finer computational costs due to the high granularity of
samples compared to primitives, and the variable and unbound
memory usage. Detailed techniques and analysis are provided
in our companion survey about transparency rendering [2].

Transparency and anti-aliasing techniques both manipulate
multiple samples per pixel, but with a different purposes.
While the main goal of anti-aliasing is also to integrate the
contributions of fragments, these come from portions of the
scene that are projected into different locations within the pixel
area. The different fragment contributions must be weighted
by their coverage over the pixel area. Figure 3 illustrates the
anti-aliasing problem. As can be seen, aliasing can create
disruptive transitions (Figure 3 (b)), which can be reduced
by anti-aliasing techniques (Figure 3 (c)), which soften edges
to better capture details that have higher frequency than the
sampling rate. AA techniques can benefit from dedicated
hardware such as GPUs, with some GPUs already having
support for AA in hardware. While good results with respect
to quality and performance are obtained for static scenes, to
maintain temporal coherence (coherence between frames) is
still difficult in real-time applications, especially when relying
only on color information.

In this tutorial we review different OIT and AA approaches,
which serves to understand the techniques separately, and builds
the foundation for algorithms that combine both effects. Section
II briefly reviews recent transparency techniques, and we refer
the reader to the companion tutorial on transparency techniques
for the remaining algorithms [2]. Our emphasis lies mostly on
AA techniques, described in Section III. Section IV discusses
the combination of these effects.

II. TRANSPARENCY RENDERING TECHNIQUES

Transparency rendering relies on sorting transparent primi-
tives with respect to their distance to the viewer. In object space
it is done by sorting meshes and triangles, but this approach can
lead to artifacts when dealing with interpenetrating primitives.
To avoid such problems, the sorting must be done at fragment
level.

Sorting of fragments can be performed by storing them
into buffers during rendering, as proposed by Carpenter in
the A-Buffer algorithm [3]. In the A-buffer approach, once all

Fig. 3. The aliasing problem: (a) the curved shape to be drawn. (b) the
aliased result from sampling the pixels centers. (c) the anti-aliased solution:
each pixel receives an amount of color corresponding to the percentage of its
area covered by the shape.

fragments of a pixel are computed, they are sorted and blended
to produce the final pixel color. Another way to achieve the
same result is called depth peeling, which uses geometry step
to incrementally compute depth layers in visibility order [4].
A third way, which achieves approximate results, is to first
estimate the visibility of each fragment, and use this information
in the blending step, directly [5] or stochastically [6].

We defer the reader to the companion tutorial on transparency
rendering [2]. To complement that survey, we describe below
three techniques that rely in buffers to store information before
sorting.

A. Adaptive Transparency (AT)

Adaptive Transparency [7] is an OIT technique that combines
fragments out-of depth-sorted order by processing the geometry
twice. The first geometry pass computes and stores a visibility
function, which is used to weigh the composition of shaded
fragments in the second pass.

First, the geometry is rendered without shading. The depth
value of the fragments is used to build a visibility function
inside a fixed size buffer per pixel, which corresponds to
storing the visibility and depth of some fragments in depth-
sorted order. During the insertion of the fragment as a node
of the list, visibility is computed by combining the fragment
alpha and the visibility list using the principles described by
Porter and Duff [1]. In case of overflow, the node removed is
the one that causes the smallest modification in the area below
the function. As shown in Figure 4, visibility may be over or
underestimated. In the second geometry pass, the depth of the
shaded fragment is used to evaluate its visibility according to
the previously computed function. This can be achieved by
searching the list for the depth interval containing the fragment
z, and getting the visibility at that point.

Fig. 4. Adaptive Transparency visibility compression: A node removal
may lead to an overestimation (red), or to an underestimation (green), of the
remaining visibility, indicated in the transmittance axis. Image adapted from
[7].



Fig. 5. Per-Pixel Paged Linked Lists: example showing three transparent
triangles and three transparent lines, which are illustrated over the Head Pointer
Buffer. The Head Pointer Buffer keeps a pointer to the PagedNode Buffer,
which indexes the page of the last received fragment from the respective pixel.
For example, number 18 in the Head Pointer Buffer indicates that the last
fragment for that pixel entry is stored in page 18 of the PagedNode Buffer. The
PagedNode Buffer keeps fragment attributes in pages of size four per node,
with one index to the next page and if there is no more pages, it indicates with
−1. For example, in page 18, the number 6 indicates that the continuation of
the list is in page 6. Image modified from [2].

Since the technique only stores depth and visibility values, it
uses less memory than methods that also store fragment colors.
The price of using less memory is an extra geometry pass to
shade the fragments.

B. Per Pixel Paged Linked Lists (PPPLL)

PPPLL [8] is an extension of the Per Pixel Linked Lists
(PPLL), proposed by Yang et al. [9]. While PPLL builds a
linked list of nodes with one fragment per node, PPPLL allows
storing more fragments per node, favoring memory spatial
locality.

The technique works in a single geometry pass, by storing
all incoming fragments in a shared buffer. These fragments
are blended in a post-processing phase. To emulate the linked
list per pixel, it requires two buffers. The first one has one
entry per pixel, which points to the head of the pixel list into
the shared buffer. The shared buffer has nodes composed by a
pointer to the next node and a page with up to k fragments.
When the page of a node is full, a new fragment causes the
allocation of a next node, which is indexed by the previous
node pointer. Figure 5 illustrates the technique.

Node allocation is protected by critical sections, which re-
duces parallelism. Since it does not count fragments, in overflow
cases the re-allocation of the shared buffer is heuristical and
can be repeated until the storage contains the required size.

C. Dynamic Fragment Buffer (DFB)

DFB[10] is a two-pass OIT technique. It uses a first geometry
pass to count fragments and allocate the exact memory to store
them. In the second pass, it stores the fragments, which are
sorted and blended in a post-processing phase.

First, a geometry pass is performed only to count the
number of fragments generated per pixel into a buffer. An
intermediate step uses the number of fragments to compute a
base+displacement index scheme, which is used to allocate a
consecutive amount of memory per pixel inside a shared buffer.
A second geometry pass shades and stores the fragments in

Fig. 6. DFB storage. The pixel-correspondent value from the countingBuffer
is added to the associated index from the baseBuffer. This composed address
stores the incoming fragment into a free position in the shared buffer.

the reserved space for the respective pixel. At the end, the lists
of each pixel are individually sorted and blended to compose
the final pixel color. Figure 6 illustrates this memory scheme.

DFB is a memory-efficient algorithm, able to allocate the
precise amount of storage required by each frame. In order to
do that, it needs to process the geometry twice.

III. ANTI-ALIASING TECHNIQUES

Anti-aliasing is important because it increases the perceptual
quality of computer-generated images. This feature is desirable,
but high-quality anti-aliasing is costly (both in terms of
processing and memory). The approaches described here
assume tradeoffs between computational cost and image quality,
often ignoring certain kinds of aliasing in order to provide
better performance.

We present techniques classified into three main classes: (i)
Full-Scene Anti-Aliasing (FSAA), (ii) Image Post-Processing
Anti-Aliasing (IAA) and (iii) Geometric Anti-Aliasing (GAA).
Each one presents a singular general approach to the aliasing
problem, with different scope and limitations.

The first and most intuitive idea for solving undersampling
artifacts is to take more samples. That is precisely what the
FSAA approaches do. With more samples, fragment to pixel
coverage is better approximated, producing more pleasant edges
with smoother transitions.

The result of eliminating aliasing from high frequencies is
blurred edges. Minor blur is less objectionable to the human eye
than aliasing is. That is the basic idea of the AA approaches,
which search for aliasing directly in the final image, and remove
it by fading high frequencies.

Most of the aliasing problems originate from the edges and
silhouettes of geometric objects. With the intent to solve them,
ignoring the other sources of aliasing, the GAA approaches
concentrate their efforts in processing the geometric edges,
weighting their coverage, so they will appear smooth in the
final image.

Below we describe a collection of techniques that follow
these three approaches.

A. Full-Scene Anti-Aliasing

Full scene means that all parts of the scene get some
processing for AA—even if they are not visible. This is the



Fig. 7. Critical edge angle for ordered and rotated grid sample techniques:
The worst case for OGSS are nearly-vertical/horizontal edges. In such cases
OGSS loses the ability to provide all its shading levels, reducing smoothness.
In the same scenario, RGSS provides more shading levels due to its rotated
samples distribution. Image modified from [11].

first, simplest and most intuitive anti-aliasing approach. The
key idea is to sample the scene at higher frequency than what
is needed for display, by rendering to a higher resolution and,
then, applying a filter to downsample to the desired resolution.

There are variations among the FSAA techniques that
optimize the distribution of the samples inside the pixel area
[11]. The simplest is the ordered grid (OGSS), in which the
samples are taken from a regular subpixel distribution. One
implementation for this technique is to render to a screen n
times larger than the desired resolution. For example, for a
screen with size WxH , a 4-OGSS takes four samples per pixel
by rendering to a framebuffer 2Wx2H , and downsampling
with a box filter to combine each four pixels into one.

However, OGSS has problems to solve the most visible
aliasing cases: nearly-vertical and nearly-horizontal edges, as
you can see in Figure 7. This figure also shows how the rotated
grid technique (RGSS) does not share this limitation, providing
more shading levels and, consequently, smoother edges for the
nearly-vertical and nearly-horizontal edge cases.

RGSS consists in rotating the grid of samples inside each
pixel. A rotation of around 30 degrees leads to good results.
This simple rotation changes the critical angle (in which less
shading levels can be provided) to a less disturbing edge angle,
providing more pleasing images.

Regular patterns are easily perceived by our eyes, so, other
distributions were proposed to alleviate the critical angle cases:
(i) the random distribution, (ii) the Poisson distribution and
(iii) the jittered sampling. Figure 8 illustrates these approaches.

Increasing the number of samples taken for each output
(or displayable) pixel always reduces the artifacts of all
distributions. To halve the aliasing, four times more samples
are needed. Below, we discuss techniques that use more than
one sample per output pixel with different approaches.

Fig. 8. Super Sampling distributions: (a) Ordered Grid. (b) Rotated Grid.
(c) Jittered Grid. (d) Random. (e) Poisson.

1) Super Sampling Anti-Aliasing (SSAA): In SSAA[11] the
number of input pixels is increased with respect to the number
of output pixels and there is a sample for each input pixel.
This means that all the attributes are evaluated and stored for
each sample (ex. depth, color, normal and texture coordinates.
See Fig. 9). This approach gives the best image quality, at the
cost of fully computing these attributes per sample.

2) Multi-Sampling Anti-Aliasing (MSAA): The key dif-
ference between MSAA[11] and SSAA is the amount of
information super-sampled. In other words, MSAA is an SSAA
where some pixel attributes are not evaluated for every sample,
commonly this attribute is the shaded color. In MSAA, these
attributes are evaluated at the center of the pixel and copied
to each sample of the pixel (see Fig. 9).

One example of MSAA is to take four samples per pixel,
computing for each sample its own depth and stencil values,
but each of those samples receiving the same shaded color
sampled at the pixel center. The difference from SSAA is that
the shading computation is performed only once per output
pixel, saving processing time; while the memory requirements
are the same for both approaches.

3) Coverage-Sampled Anti-Aliasing (CSAA): This technique,
called CSAA (by NVIDIA[12]) or Enhanced-Quality Anti-
Aliasing (EQAA) (by AMD[13]), uses the standard MSAA
approach combined with extra samples per pixel to better
capture pixel coverage, as shown in Figure 9. Some of the
samples (not necessary half) capture color, depth, and location
within the pixel. The remaining samples do not receive any of
these attributes. They are only used to capture the fragment
coverage at some location, in order to weight the contribution
of the fragment to the final pixel color. In this web page [14]
you can find details and image comparisons for CSAA and
EQAA.

The image quality is improved by the extra coverage
information, which better approximates a contribution of a
fragment over the pixel area. However, the results are order-
dependent since the coverage samples are not directly subject
to the depth test (so, may be overwritten).

4) Directionally-Adaptive Edge AA (DAEAA): DAEAA
[15][16] consists of an MSAA process with improved image
filtering in the final stage. The hardware-optimized MSAA is



used to take samples of each pixel. These samples approximate
the value of isolines passing inside a pixel, which estimate the
primitive coverage and provide better color weighting.

Pixels are selected to be processed when they present
different MSAA sample colors inside them, which means that
they are from more than one fragment and the pixel may
present aliasing (or, at least, a pixel that needs processing).
Some regions, e.g. corners, may be excessively blurred, so they
are masked before processing. For the remaining pixels, the
gradient of primitive edges is computed by sampled isolines
(see Fig. 9).

The isolines are calculated as straight lines, assuming low
curvature along the pixel area. So, the function values, which
the isolines represent, are approximated by the tangent plane
at the pixel center, and resolved by least squares with the pixel
samples. The last step is a stochastic integration, using a 3x3
box filter over the samples, which are weighted by the isoline
length inside the pixel.

The image quality of 4xDAEAA is comparable with a
16xMSAA [15], at the cost of four full-screen shader passes.

5) Subpixel-Reconstruction Anti-Aliasing (SRAA): [16][17]
this technique was developed to work with deferred
shading[18](DS). It is inspired by MLAA and MSAA tech-
niques, and operates as a post-process over more information
than the simple color buffer. The technique super samples
depth and geometry normal attributes, and uses them to fill
gaps among pixels of a normal size color buffer, in other words,
it builds a virtual super-sampled image, then downsamples to
the output resolution.

A separate forward geometry pass is performed to construct
the super-sampled depth and geometry normal buffers, by
using the hardware MSAA. The DS pass is performed at final
resolution and, after fragment shading, a super-sampled image
is reconstructed by a cross-bilateral filter. The reconstruction
takes depth and normal samples from a neighborhood, weighted
by their distance to the pixel center. This process produces
subpixel information, which is combined by a box filter to
produce the final image with lower resolution.

To take advantage of this technique, a high shading costs
is required in order to hide the AA poor performance, since
the techniques needs an extra geometry pass to collect MSAA
depths and normals, and the final filters are computationally
intensive.

6) Enhanced Subpixel Morphological AA (SMAA): [19] was
built on top of the PMLAA pipeline, with improvements in
edge detection, subpixel-feature management and temporal
stability. It uses local luma contrast and a wider neighborhood
search to detect edges, MSAA to improve subpixel features
and temporal SSAA re-projection to provide temporal stability.
The technique may operate in four different modes:

SMAA 1x: works only in the final image, so it cannot solve
subpixels and temporal instability. It searches for aliased pixels
by comparing the local luma contrast of the neighborhood with
the PMLAA pre-defined patterns, and a new diagonal pattern.
Only if the diagonal search fails the remaining patterns are
verified. Sharpness of corners is improved by a wider search in

Fig. 9. FSAA sampling approaches comparison: SSAA with full shading of
all 8 samples per pixel. MSAA with 8 color+coverage samples and central
shading per pixel. DAEAA with 8 MSAA samples to estimate isolines passing
through the pixel. CSAA with 4 color+coverage samples and 4 coverage-only
samples per pixel. SRAA with 4 color+coverage samples, 2 geometry samples,
and the color reconstruction from other samples. A-Buffer has a bitmask with
8x4 coverage samples per fragment.

the direction indicated by the detected edge, which identifies
a corner and applies a reduced blur. To save processing time,
only the top and left neighbors of q pixel are analyzed, the
bottom and left ones are covered by other pixels.

SMAA S2x: operates over the SMAA 1x with addition of
MSAA to solve subpixel aliasing. The pre-computed textures
are modified to provide correct coverage for each subpixel
position.

SMAA T2x: operates over the SMAA 1x with addition
of temporal supersampling to solve temporal instability. The
subsamples of the previous frame are projected into the current
frame, weighted by their relative velocity with the current
subsamples.

SMAA 4x: operates over the SMAA 1x with MSAA and
temporal supersampling. This mode helps solving aliasing
patterns detection, subpixel features and temporal instability.

7) Accumulation, Area-averaged and Anti-aliased buffer (A-
Buffer): This technique, besides the correct OIT computation,
was mainly developed to solve anti-aliasing. If an opaque
fragment does not cover a pixel entirely, then a list of visible
fragments is built for that pixel. During the post-processing
phase, the fragments in the list are combined.

Each fragment coverage is encoded in a bitmask (see Fig. 9),
and all visible fragments are stored in a per-pixel linked list.
When the geometry pass is over, the algorithm traverses the
per-pixel lists, sorts them in front-to-back order and weights
the fragments by their coverage when there is no interception.
For interpenetrating fragments, the zmin and zmax values are
used to approximate the visibility of the coverages, and weight
the fragment contributions.

A-buffer produces high-quality images at the expense of
unbounded memory and extra processing time.

B. Image Post-Processing

This approach to handle aliasing is based in the processing of
the final image. Differently from the FSAA approach, aliased
pixels are detected and selected, so their processing does not



Fig. 10. Examples of L (red), Z (green) and U (yellow) shapes detected in
an aliased image by the MLAA technique.

interfer with the entire image. The aliasing removal of those
pixels consists in attenuate the neighborhood high frequencies.

One pixel is considered aliased by the analysis of its
neighborhood in the color buffer, with or without the aid of
extra information, such as depth and normal. This exploration
identifies high frequencies and builds a mask to select the
pixels which need processing. The last step is the filtering of
the selected pixels, which are combined with their neighbors
in order to reduce the high frequency by smoothing them. In
this phase, the absence of the selection mask would cause
the entire image to be excessively blurred. As the result is
approximated by blurring aliased pixels in the final image, this
approach cannot handle subpixel issues.

1) Morphological Anti-Aliasing (MLAA): [20] [16], is an
image-based technique, which aims to minimize aliasing from
edges and silhouettes. This technique was developed with the
intent of removing aliasing from ray-tracing-generated images
without considering more samples, which in ray-tracing are
especially costly.

The working flow is simple: (i) find visible discontinuities
between pixels by difference thresholds, (ii) identify aliasing
patterns from these discontinuities and (iii) blend them with
the neighborhood. The discontinuity can be determined by any
metric, the first proposal used the sum of the 4 most significant
bits of each color channel.

The image is scanned for discontinuities by comparing
segments of different luminance between neighbor columns
and lines, creating lists of vertical and orthogonal segments.
These are classified as L, U or Z shapes, as shown in Figure 10.
The U and Z shapes can be decomposed as two L shapes and
processed separately.

From the L shapes, the longest edge is first selected, and
it forms a triangle with the middle of the shortest edge. The
triangle area is used to weight the blending with the neighboring
pixels.

MLAA, when proposed, was able to significantly reduce
the aliasing of ray-traced images very fast, because it only
requires the color buffer to produce good results for nearly-
vertical/horizontal edges, which are the most noticeacle kind
of aliasing.

Its limitations are, the inability to handle subpixel features,
blur of border pixels even when there is no aliasing, and it
is not well suited to animation due to temporal instability
(because each frame is processed individually).

2) Practical Morphological Anti-Aliasing (PMLAA): [16] is
a modification of the original sequentially processed MLAA,

which leverage the GPU features. The technique works in the
same three steps, each one was improved with relation to the
original MLAA. The edge detection can make use of more
information, such as depth, ids, normal and combinations of
them to improve aliasing detection. The coverage estimation
counts with bilinear filter and pre-computed areas acceleration.
And the final blending also makes use of the fast filtering
offered by the GPU hardware.

The edge detection phase masks the pixels requiring anti-
aliasing, avoiding unnecessary processing. After that, the edge
reconstruction takes place to estimate the coverage area. For
each pixel, the algorithm searches for the end of the edge it
belongs to in the top and left borders. This is done by bilinear
filtering the pre-processed image, which makes possible analyze
more than one pixel at time. Once the end of the edge is found,
the crossing edges patterns also are established by bilinear
filtering. With a small offset, the filtering is able to recognize
four different types of crossing edges.

With identified edge width and crossing edges patterns, the
algorithm uses these information to access a texture with pre-
computed area coverage patterns. These values are summed
into an accumulation buffer and used to blend the pixel
neighborhood. The final phase uses the accumulated areas
to weight the blending of the 4 neighbors of each pixel by
bilinear filtering in sRGB space.

When compared to MLAA, PMLAA presents great im-
provement in terms of processing time, due to the efficient
parallelization in GPU, and in terms of image quality, by using
more information to correct select pixels. However, it maintains
the main limitations. It may cause excessive blur in sharp edges
and presents temporal instability.

3) Directionally Localized Anti-Aliasing (DLAA): [16][21]
was developed for the PS3 console to handle the most disturbing
aliasing type, which are the nearly vertical and horizontal edges.
It was prototyped in Photoshop R© [22], using high-pass filters,
blur filters, contrast modifiers, thresholds and masks. The main
goal was, receiving only the final image, produce a better
looking image as fast as possible.

The technique workflow is straightforward. First, a Sobel-
like filter is applied to detect only vertical edges. A curved
threshold function selects the desired edges by ignoring grayish
values, so masking the vertical edges. A vertical blur is applied
to the entire image, and the previously created mask is used
to select the edges regions to be blended with the original
image, producing anti-aliased vertical edges. All these filters
are rotated by 90 degrees and the same process is repeated
for horizontal edges. In short, the technique process can be
resumed to:

1) Vertical blur filtering.
2) Vertical edge detection.
3) Threshold application over edge detection to mask

vertical edges.
4) Mask use to blend vertical anti-aliased edges with the

original image.
5) Repeat the process to anti-alias horizontal edges.
Different kernel sizes may be required, depending on the



width of the edge. In order to detect long edges, the rate of
blur is increased, then the high-pass filter is applied, followed
by a contrast adjustment. In this process only the long edges
will survive, creating a long edges mask, which are blurred
with a bigger kernel.

The results are comparable with MLAA, without the need
of search for specific patterns, neither compute coverage
estimations. As the filter was designed for nearly vertical and
horizontal edges, as the MLAA, it does not performs well
along diagonal aliased edges. Temporal instability and loss of
subpixel features are also limitations of this technique.

4) Fast approXimate Anti-Aliasing (FXAA): As the name
says, FXAA [16][23] does not aim to acquire correct anti-
aliasing. The proposal is a very fast algorithm which reduces
some aliasing artifacts, improving image quality. It works
by determining the need of anti-aliasing by local contrast
examination. The selected pixels are processed by a directional
edge blur filter.

The algorithm receives as input a color buffer only. The first
step of the algorithm is to determine which pixels actually need
anti-aliasing. In order to do that, each pixel is tested with a 4-
neighbors (neighboring edges), which compares the luminance
of the neighbors to verify if the contrast is higher than a
user defined threshold. The local contrast is determined by
the difference between the maximum and minimum values of
luminance among the current pixel and its four neighbors. If the
contrast is low, the pixel is discarded from further processing.

For the pixels classified as needing anti-aliasing, a local
luma gradient is computed. The directions perpendicular to
the gradient are used to sample the neighborhood and blur the
pixel. The user can define a scale factor, which controls how
many neighbors are considered, varying from 2 to 8 samples.
After performing the blur, the local contrast is tested again and,
if it is too high, the default 2-samples blur is applied, ignoring
the scale.

As the pixels are processed individually, this algorithm does
not present good results for long nearly vertical and nearly
horizontal edges, which are the most disturbing artifacts. A
palliative solution is to use fractional super sampling (FSS)
as input image, so, when FXAA downsamples to the target
resolution, these artifacts are reduced. As the other IAA
techniques, this one also presents temporal instability.

C. Geometric Anti-Aliasing

Most of the aliasing in computed generated images comes
from geometric edges, so, this approach works with these edges
to select and weight contributions of pixels in the color buffer.

During the geometry rasterization, the line equations of the
edges are passed to the fragments. Analytically, the distances
from the pixel center to the actual edge are encoded in the
fragments. In the post-processing stage, the distances are used
to identify aliased pixels and weight their contributions.

The post-processing stage resembles the IAA approach with
distance information. Since this approach only work with
geometric edges, it is not capable of handle aliasing from
other sources, such as alpha texture and interpenetractions.

Fig. 11. Extra information is associated to edge pixels: the distance from
its center to the geometric edge. This data is used to weight the blur in a
post-processing phase. Image modified from [24].

1) Distance-to-Edge Anti-Aliasing (DEAA): [16][24] is a
post-processing anti-aliasing technique. It encodes in each pixel
the distance to the edges of the triangle it belongs to. After
rendering, these distances are analyzed to verify if the pixel
needs anti-aliasing.

During the rendering, in the vertex shader, each vertex of the
triangle receives either the R, G or B color. The rasterization
will generate the fragments with these colors interpolated
and the distance to the RGB base approximates the fragment
distance to the triangle edge. Four distances are encoded in
a RGBA texture of each fragment: up, down, left and right
directions, each one in an 8 bits channel.

In the post-processing stage, the smallest distance of each
pixel is verified, if it is less than one pixel, the current pixel
is marked as belonging to a border, as shown in Figure 11.
Only border pixels are processed. If two neighbor pixels have
competing distances, which means, both indicate primitive
coverage in the neighbor area, the smallest one is chosen
and blended into the neighbor, pondered by the coverage area
indicated by the distance.

This solution does not solve sub-pixels problems, because
no extra samples are taken. Other cases untreatable by this
technique are interpenetrations (because the geometric edge is
not the limit of the primitive in screen space), and cases where
edges are not present, such as shadows and textures.

2) Geometric PostProcessing AA (GPAA): [16][25] gets the
silhouettes information from the pipeline. A preprocessing stage
evaluates only the silhouettes edges, computing their equations
in screen space and passing this information to the pixel shader.
As the DEAA, the blur is weighted by the distance of the pixel
center to the edges.

This technique presents high-quality results, with accurate
coverage even in nearly vertical and horizontal edges, and
temporal stability. However, the edge extraction increases
memory consumption and processing time, degrading fast with
geometry augment.

3) Geometry Buffer Anti-Aliasing (GBAA): [16][25], differ-
ently from GPAA, stores the geometric information during
the rendering, without the need for a preprocessing stage. The
distances are calculated for each vertex in the vertex shader,
and interpolated by the rastering process. In this sense, it is
similar to DEAA, the final step after rendering checks the
distances in each pixel, if smaller than half a pixel, the pixel



receives anti-aliasing, so the coverage of neighboring pixels is
computed and they are blended.

The memory requirement is smaller than for GPAA and the
overall quality is maintained. However, the entire processing
is still expensive for high demands of FPS.

IV. DISCUSSION

Current GPUs have special components to handle trans-
parency, and others to anti-aliasing. Often, the transparency
components are used to support anti-aliasing and vice-versa.
Here, we will comment the usage of these resources, along
with rendering issues related to the application of OIT and AA
effects.

The hardware standard to support the transparency effect is
the fourth color channel, called alpha channel. This channel
is used to encode the opacity attribute, and it weights the
contribution of the fragments to the final pixel color. The
hardware also supports the blending equations proposed by
Porter and Duff [1].

In order to provide anti-aliasing, the classical hardware
support is for the MSAA. The components required are a multi-
sampled texture, to store the samples information (depth, color,
etc), and a multi-sampled rasterization algorithm. Recently,
other techniques have gain support, such as CSAA, EQAA,
FXAA, and others.

An intriguing problem nowadays is how to combine AA
and/or OIT with deferred shading, because of the high memory
consumption and technicalities involving the decoupling of
samples from their originating surfaces.

Table I summarizes the main features discussed for each
technique.

A. AA with the aid of transparency hardware

AA techniques can make use of the opacity channel to
weight the fragment visibility by its coverage over the pixel
area (ex.: [26]). The blending of such fragments become order-
dependent, which means that artifacts may be generated if they
are combined out-of depth-sorted order.

To obtain and store information for more than one sample per
pixel is costly. The storage space can be saved by encoding the
coverage of the fragments into the alpha channel. For example,
if 1 of 4 samples is covered, the opacity of the fragment will be
multiplied by 0.25; if it was opaque, it will become transparent
with 0.25% of opacity. This can be compared to what is done
by coverage AA techniques, where the fragment contribution
is weighted by the amount of spatial samples it covers.

This approach inserts the transparency order-dependency into
the AA problem. If the fragments are combined out-of-order,
their visibility will be incorrect due to the blending equation.

Rendering of billboards often use this approach by drawing
the opaque background first. For particles effects, which present
alpha textures and similar colors, out-of-order algorithms may
be used to approximate the result. The performance of this
approach is quite superior to other anti-aliasing techniques, but
the set of cases to which it is applicable is restricted.

B. OIT with the aid of anti-aliasing hardware

Since the graphic hardware is prepared to store more than one
sample per pixel to handle AA, some OIT techniques use this
memory to store transparent fragments. The storage capacity
implemented for AA is adequate to compute transparency, in
case the number of layers per pixels does not exceed the limit
of slots for samples.

The Stencil Routed technique [27] is one usage proposal of
the MSAA textures to handle OIT, with multiple geometry steps
if necessary. This technique basically uses the high-performance
of these textures to store and combine up to n fragments per
geometry pass, combined with the stencil buffer for fragment
counting.

Stochastic Transparency [6] also make use of the MSAA
hardware, but with a different approach. It requires three
geometry passes to estimate visibility and generate, for each
fragment, a coverage probability. When the fragment arrives,
this probability is used to fill the MSAA samples individually.
Higher probabilities tend to fill more samples, which mean
that the fragment is more visible. As the pixels are processed
individually with the computed probabilities, the generated
image contains large amounts of noise.

For low amounts of transparent layers, the MSAA hardware
is a fast approach. The AA of the transparent scene could
be performed with an IAA technique, without the benefit of
temporal stability.

C. AA for transparent scenes

Apply anti-aliasing to a transparent scene is an interesting
problem, mainly because of the treatment for AA samples
and the order dependency. A GAA technique would remove
the samples management, but not the ordering problem. And
an IAA approach, applied only to the final image, brings
reasonable results; however, it is unable to solve temporal
instability.

Buffer-based OIT needs high amounts of memory, and to
take more samples to perform AA for this approach may be
impractical. For example, a 4xMSAA algorithm for opaque
scene in a 640x480 screen needs 9.4MB (RGBA + depth), if
storing five transparent layers per pixel with their samples, the
memory requirement goes up to 46.87 MB. Now, think about
a bigger screen and you will see the problem. Coverage-only
techniques have being used with the recent OIT algorithms
proposals; however it relies in sorting by the central z, not
having the ability to solve interpenetration cases.

For depth peeling approaches, a NxSSAA would cost n
times more processing at each geometry step, and the other
multi-sample techniques can easily degenerate to SSAA brute-
force. Again, the solution relies in applying IAA and losing
temporal stability.

The GAA techniques was thought to blur surviving fragments
in the color buffer, this means that it does not resolve thin
primitives neither temporal aliasing. Its application for different
layers of OIT was never properly explored.



Class Technique Samples
Per Pixel

Shadings
Per Pixel

Geometry
Passes

Pattern
Detection

Pre
Process On the fly Solve

Subpixel
Order

Dependent

FSAA

SSAA N N 1 • •
MSAA N 1 1 • •
CSAA N+K 1 1 • • •

DAEAA N 1 1 • •
SRAA N 1 2 • •
SMAA N N 1 • • •

A-buffer N 1 1 • • •

IAA

MLAA 1 1 1 •
PMLAA 1 1 1 •
DLAA 1 1 1
FXAA 1 1 1 •

GAA
DEAA 1 1 1 •
GPAA 1 1 2 •
GBAA 1 1 1 •

TABLE I
ANTI-ALIASING COMPARISON TABLE: TECHNIQUES ARE CLUSTERED BY CLASS, SAMPLES PER PIXEL COLUMN INDICATES THE SAMPLING RATE PER PIXEL,

SHADINGS PER PIXEL INDICATES HOW MANY TIMES THE COLOR IS EVALUATED PER PIXEL, GEOMETRY PASSES INDICATES HOW MANY TIMES THE
GEOMETRY MUST BE PROCESSED, PATTERN DETECTION INDICATES THE PRESENCE OF A MODULE TO DETECT ALIASING PATTERNS IN THE FINAL IMAGE,
PRE-PROCESS INDICATES THE NEED FOA A PRE-PROCESSING STEP, ON THE FLY INDICATES ANTI-ALIASING PROCESSING DURING THE RENDERING, SOLVE
SUBPIXEL INDICATES IF THE TECHNIQUE IS ABLE TO SOLVE SUB PIXEL ALIASING, AS THIN PRIMITIVES AND TEMPORAL ALIASING, ORDER DEPENDENT

INDICATES IF THE ORDER IN WHICH THE FRAGMENTS ARRIVE IMPACTS IN THE RESULT.

D. The deferred shading issue

Deferred shading (DS) is a rendering pipeline which supports
expensive shading computations. A classic forward pipeline
shades the fragments which pass the depth test and stores only
their color, which is replaced when a new fragment passes the
depth test. The DS strategy consists in storing the geometric
information, into the so called G-Buffers, when a fragment
passes the depth test. Only the final visible fragments are
shaded at the end of the rendering process, saving expensive
computations for fragments which are not visible.

The G-Buffers represent a big memory budget, because they
store all the information needed to shade the fragment. To apply
SSAA in the DS pipeline would be necessary to store all the
information for all the samples, implying prohibitive memory
consumption. The benefits of the MSAA are lost due to the
decoupling of samples from their original surface, degenerating
to SSAA brute-force.

IAA techniques, due to their detachment of the pipeline, are
compatible with any rendering process, including deferred
shading. However, the price to use such AA approach is
given up the ability to handle subpixel features and temporal
instability. GAA techniques may be used efficiently.

DS pipeline is incompatible with OIT because its main idea
is to avoid processing occluded fragments, while OIT implies
in partial occlusion, requesting the processing of more than
one fragment per pixel in depth-sorted order. The simplest way
to combine them is rendering OIT in a second stage, when the
opaque depth buffer is set, with a forward rendering pipeline.

Combine order-independent transparency with high-quality
anti-aliasing in a deferred shading pipeline is a challenge. The
issues involved are: (i) high shading costs, which motivates the
use of DS pipeline, (ii) depth-sorted order-dependency, intrinsic
to the OIT problem, and (iii) high memory requirements,
associated to all the three.

V. CONCLUSIONS

We presented two rendering effects which have in common
the primarily need for multi-samples per pixel, either spatially
or in depth. Both transparency and anti-aliasing problems
were exposed, along with the approaches and main techniques
developed, during the last three decades, to solve them. Each
technique is most suited for the specific set of features it was
developed to, being able to acquire real time performance.

Transparency relies in depth-sort the fragments, in order to
correct accumulate their contributions to the pixel color. For
the OIT effect be part of a real time application, the techniques
must balance image quality with resources consumption, which
often involves the storage and sorting of transparent fragments.

Anti-aliasing, in the turn, handles the spatial sampling
problem over the projection plane. Generally, it involves the
acquisition and management of more samples per pixel to
acquire supixel treatment and temporal stability.

We also discussed the hardware features to support the two
effects, how AA can make use of the OIT feature, and how OIT
can also make use of the AA hardware. At last, we exposed
the implications of using them combined, and of combine them
with deferred shading pipelines.

This tutorial was written to provide the basic knowledge
to guide the reader towards approaches to real time rendering
of transparency and anti-aliasing effects. It highlights the
issues related to both effects and the combination of them,
aiming to provide the reader the required information to choose
and combine the specific techniques best suited for her/his
application.
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