

Transparency + Anti-Aliasing

- Both refer to visibility computation

 Fragment coverage over pixel area
 Fragment visibility along depth
- Could both be combined into a single visibility

→Introduction

- →Transparency Problem and Basic Approach →Raster-based Transparency Techniques
- →AA Problem and Basic Approaches →AA Techniques
- \rightarrow Applications \rightarrow Conclusions

Outline
→Introduction
→Transparency Problem and Basic Approach
→Raster-based Transparency Techniques
→AA Problem and Basic Approaches
→AA lechniques
→ Applications

→Conclusions

Outline							
→Transparency Problem and Basic Approach							
→Transparency Fundaments							
→Transparency in Practice							
→Primitive Sorting							
→Raster-based Transparency Techniques							
→Buffer-Based							
→Depth Peeling							
→Sort Independent							
→Stochastic							

Transparency Fundaments

- Opacity (α):
 - how much light the surface transmits?
- Visibility:

– how much of the transmitted light the eye can see?

Transparency Fundaments

Blending equations [Porter and Duff, 1984]
 Back-to-Front

Back-lo-Front
$$C' = (1)$$

$$C'_{acc} = (1 - \alpha_i)C_{acc} + \alpha_i C_i$$

- A new fragment reduces visibility from the accumulated color
 - C' acc Accumulated color
 - Color from fragment i
 - α_{acc} Accumulated opacity
 - α_i Opacity from fragment *i*

Outline
ightarrowTransparency Problem and Basic Approach
→Transparency Fundaments
→Transparency in Practice
→Primitive Sorting
→Raster-based Transparency Techniques
→Buffer-Based
→Depth Peeling
→Sort Independent
→Stochastic
20

Outline						
→Transparency Problem and Basic Approach						
→Transparency Fundaments						
→Transparency in Practice						
→Primitive Sorting						
→Raster-based Transparency Techniques						
→Buffer-Based						
→Depth Peeling						
→Sort Independent						
→ Stochastic						
25						

Outline
ightarrowTransparency Problem and Basic Approach
→Transparency Fundaments
→Transparency in Practice
→Primitive Sorting
→Raster-based Transparency Techniques
→Buffer-Based
→Depth Peeling
→Sort Independent
→ Stochastic
31

Depth-Peeling Summary

- Fixed and small amount of memory
- Slow geometry multipass

Sort-Independent Transparency

- 2 Geometry passes
- Alpha accumulation
- Good approximation for low alpha
- Inaccurate for high alpha

Outline							
→Transparency Problem and Basic Approach							
→Transparency Fundaments							
→Transparency in Practice							
→Primitive Sorting							
→Raster-based Transparency Techniques							
→Buffer-Based							
→Depth Peeling							
→Sort Independent							
→ Stochastic							
61							

Stochastic Transparency

- MSAA samples to represent visibility

 Pre-passes to estimate visibility
- Small number of samples per pixel leads to noise

Outline

 \rightarrow Introduction

→Transparency Problem and Basic Approach →Raster-based Transparency Techniques

→AA Problem and Basic Approaches →AA Techniques

 \rightarrow Applications \rightarrow Conclusions

Outline	Outline
→Introduction	→AA Problem and Basic Approaches
	→The Aliasing Problem
→Transparency Problem and Basic Approach	→Single Sample Problem
→Raster-based Transparency Techniques	→Super Sampling
	→Sample Distribution
→AA Problem and Basic Approaches	→AA Techniques
→AA Techniques	→FSAA
N Angeliantiana	→IAA
	→GBAA
	2

Outline
→AA Problem and Basic Approaches
→The Aliasing Problem
→Single Sample Problem
→Super Sampling
→Sample Distribution
→AA Techniques
→FSAA
→IAA
→GBAA
9

			Sir	ngle	e Sa	m	ole	Pro	ble	em			
	Rendering into a normal resolution												
1	+	+	+	+	+	+	+	+	+	+	+	+	-
	+	+	+	+	+	+	+	+	+	+	+	+	
	+	+	+	4	+	+						+	
	+	+	+	+	+	+	+	+	+	+	+	+	
10													_

Outline		Rendering					
ightarrowAA Problem and Basic Approaches						in	
→The Aliasing Problem							
→Single Sample Problem							
→Super Sampling			_	-	_		_
→Sample Distribution		+	+	+	+	+	+
→AA Techniques		+	+	+	+	+	+
→FSAA	_	+	+	+	+	÷	+
\rightarrow 1 Δ Δ		+	+	+	+	+	+
		+	+		÷		
-7 GBAA		+	+	+	+	+	+
13	14			1		1	

Outline
→AA Problem and Basic Approaches
→The Aliasing Problem
→Single Sample Problem
→Super Sampling
→Sample Distribution
→AA Techniques
→FSAA
→IAA
→GBAA
2

Outline
→AA Problem and Basic Approaches
→The Aliasing Problem
→Single Sample Problem
→Super Sampling
\rightarrow Sample Distribution
→AA Techniques
→FSAA
→IAA
→GBAA
25

- Pros
 - High image quality
 - Temporal stability
 - Subpixel anti-aliasing
- Cons
 High memory consumption

Image Post-Processing AA

- Input: digital image
 - Search for aliased pixels
 - Selection of aliased pixels
 - Intelligent blur of aliased pixels
- Output: anti-aliased image

Image Post-Processing Summary

- Pros
 - Very fast
 - Low resource consumption
- Cons
 - Does not adequately handle subpixels
 - Temporal instability

Geometric Anti-Aliasing

- Input: 3D scene
 Extra information to edge pixels
 Post-processing blur
- Output: anti-aliased image

Geometry-Buffer Anti-Aliasing Pixel distance to triangle edge Computed analytically Encoded into RGB texture Major direction Distance-guided blur Only if less than half pixel

Geometric Anti-Aliasing Summary

- Pros
 - Image quality
 - Temporal stability
- Cons - Does not resolve thin primitives

Outline
→Introduction
→Transparency Problem and Basic Approach →Raster-based Transparency Techniques
→AA Problem and Basic Approaches →AA Techniques →FSAA →Image Post-Processing →Geometric AA
→ Applications
→Conclusions

Future...

- OIT and AA with Deferred Shading
- Deferred Shading - G-buffers
- Shading as a post-processing stage
- +0IT
 - Overburden G-buffers
- +AA
 - Overburden G-buffers
 - Decoupling of sample from fragment
 MSAA impractical