
Kinect and RGBD Images: Challenges and
Applications

Leandro Cruz, Djalma Lucio, Luiz Velho
IMPA - VISGRAF Lab
Rio de Janeiro, Brazil

www.impa.br/∼{lcruz, dlucio, lvelho}

Fig. 1. Kinect

Abstract—Kinect is a device introduced in November 2010
as an accessory of Xbox 360. The acquired data has different
and complementary natures, combining geometry with visual
attributes. For this reason, Kinect is a flexible tool that can
be used in applications from several areas such as: Computer
Graphics, Image Processing, Computer Vision and Human-
Machine Interaction. In this way, the Kinect is a widely used
device in industry (games, robotics, theater performers, natural
interfaces, etc.) and in research.

We will initially present some concepts about the device: the
architecture and the sensor. We then will discuss about the
data acquisition process: capturing, representation and filtering.
Capturing process consists of obtaining a colored image (RGB)
and performing a depth measurement (D), with structured light
technique. This data is represented by a structure called RGBD
Image.

We will also talk about the main tools available for developing
applications on various platforms. Furthermore, we will discuss
some recent projects based on RGBD Images. In particular, those
related to Object Recognition, 3D Reconstruction, Augmented
Reality, Image Processing, Robotic, and Interaction.

In this survey, we will show some research developed by
the academic community and some projects developed for the
industry. We intend to show the basic principles to begin
developing applications using Kinect, and present some projects
developed at the VISGRAF Lab. And finally, we intend to discuss
the new possibilities, challenges and trends raised by Kinect.

Keywords-Kinect, RGBD Images

I. INTRODUCTION

Kinect appeared on November 4, 2010, as an accessory to
Xbox 360 Console. It is a device developed by the PrimeSense
Company in collaboration with Microsoft. In January of 2012,
more than 18 million units were sold. In February of 2012, a
version for Windows was released.

Its announcement in 2009 caused great expectations in
the Computer Graphics and Computer Vision academic com-
munities. The product promised a new way to interact in
games, completely based on gestures and voice (without any
other type of control). Since it was presented, Kinect became
a device widely used in industry (games, robotics, theater
performers, natural interfaces, etc.) and in research.

The main idea of this survey is to present techniques and
technologies used by Kinect and its applications in industry
and research. We will discuss about the new possibilities
introduced by Kinect, the main challenges and trends raised
for this device.

Kinect has an RGB camera and an infrared (IR) emitter
and camera. They are capable of capturing a colored image
and depth of each pixel in the scene. These data contain
visual and geometric informations of the scene. They are
complementary and they allow us to do tasks that are difficult,
if not impossible, when we use only images. Most of the image
processing systems are based only on the color channels of the
images. Nevertheless, others image attributes can be used for
processing, for instance: depth, normal, luminance, etc. These

http://www.impa.br/$\sim $lcruz

Fig. 2. Demos shown in Kinect launch: Ricochet (left), Paint Party (middle) and Milo & Kate (right).

attributes contain further information that allows implementing
some procedures that are hard, when not impossible, using
only colors. Accordingly, the information acquired by Kinect
(RGB + Depth) has a structure that creates a new way to
process images. In this survey, we will explore the new
possibilities generated by this structure, called RGBD Image.
An example of these possibilities is real time tracking of a
human skeleton (a structure widely used on gesture-based
interactions).

Fisrt, in Section II, we will present the birth and the
launch of Kinect. Second, in Section III, we will show the
Kinect architecture and its sensor. Third, in Section IV, we
will discuss data capturing, representation and filtering. After,
in Section V we will present some tools which could be
used in developing of the applications using Kinect. There
are several internet databases of RGBD Images. We will list
some of this databases in Section VI. Beside of this, we
will also discuss about some research (in Object Recognition,
3D Reconstruction, Augmented Reality, Image Processing,
Robotic, and Interaction) developed using RGBD images, in
Section VII. Finally, we will talk about some applications
developed using Kinect, in Section VIII.

Fig. 3. The 15 first games released using the Kinect as control.

II. A BIT OF HISTORY

The depth sensor used in Kinect was developed by Zeev
Zalevsky, Alexander Shpunt, Aviad Maizels and Javier Garcia,
in 2005 [1]. Kinect was officially announced on June 1,
2009, under the name “Project Natal”, at E3 (Electronic
Entertainment Expo). The name “Natal” was a reference to
the Brazilian city Natal. One of the Microsoft directors of the
project, Alex Kipman, is Brazilian and chose the city name,
that means ‘birth’ in latim, to name the project.

Initially, the main functionality of the Kinect was to be a
tool to the user to interact with Xbox 360 using gestures and
spoken commands. For this reason, the sensor is capable of
capturing data at 640x480 pixels in 30Hz. With the depth data,
it is possible to obtain a skeleton of who is in front of the
sensor. And with the skeleton, it is possible to define user
gestures. The way how it is possible to infer user gestures
using Kinect only was revealed in January 2010. In the case
of launch, three demos were shown: Ricochet, Paint Party and
Milo & Kate. The way how these demos were implemented
was unknown and, because of this, caused great expectations.
At E3, fifteen games for Xbox 360 that would be launched on
November 2010 were announced. Figure 3 shows these games.

Ricochet is a game that has an avatar that copies the user
moves. The goal is hitting virtual balls. Paint Party is a paint
program. The user has a few brushes and fills to draw. Milo
& Kate is the most complex demo shown in this occasion. In
this demo, the user can interact with a virtual 10-year-old child
(Milo) or a dog (Kate). This demo uses artificial intelligence
to define the character gestures and answers.

In the Project Natal some games were adapted to use the
Kinect control schemes to help evaluate usability. Two of
these games were Beautiful Katamari and Space Invaders
Extreme, which were demonstrated at the Tokyo Game Show
in September 2009.

In the 60 first days after the launch, more than 8 millions of
units were sold. Because of this, Kinect went to the Guinness
Book as the “fastest selling consumer electronic device”. In
January 2012, it was published that it had already sold more
than 18 million units.

More recently, in June 2011, Microsoft released a SDK for
Windows 7. In February 2012, it was launched the Kinect for
Windows.

Fig. 4. Kinect device and chip.

A. Milo and Kate

The Project Milo (or Project Milo and Kate) was developed
by Lionhead Studios to the Xbox 360 launch. It was a demo
which never was released as a game. This application began
as an “emotional AI” work to be introduced in some game. In
this game, the user can interact with a 10-year-old child (Milo
or Millie) and a dog (named Kate). The user and the character
interact through a story.

The character has an AI structure and it responds to human
spoken words, gestures or predefined actions in dynamic
situations. It is capable to talk with the user through a
procedural generation system which is constantly updating a
built-in “dictionary”. In this way, it is capable of matching
key words in talk with inherent voice-acting clips to simulate
lifelike conversations.

This demo caused great expectations. It presented several
very difficult tasks like human machine interaction based on
gestures and spoken words.

B. Kinect Hacking

On the day of the launch Adafruit Industries announced
that they would give $1000,00 to the first person who gets a
Kinect running on Windows, on another operating system. Just
hours after the bounty announcement, Microsoft said it did not
condone modification of the Kinect and would “work closely
with law enforcement. . . to keep Kinect tamper-resistant”. And
that evening a note appeared on the Adafruit blog: “Ok fine,
the bounty is now double, $2000,00”.

By Saturday 6 November, a hacker with the name AlexP
had gained control of the Kinect’s motors. Microsoft tried to
quash the news, saying the Kinect had not been hacked “in
any way”. The hacking community took it as an affront. “This
is silly, so now we’ve made it $3k,” wrote Adafruit. Two days
after AlexP posted a video that demonstrated his control of
Kinect’s video and depth-sensing system, but refused to release

his code unless the community put together $10.000,00 to fund
his research.

While other hackers were still working on getting the Kinect
working on the November 9, Héctor blew past everyone when
Kinect was released in Spain on November 10th. At 10 am,
he bought his Kinect. At 11 am, he caught up with the current
level of work. At noon, he claimed victory, demonstrating
video and depth data streaming from the device.

C. Tools Chronology

Hector Martin open sourced his libfreenect code and made
it available on Github. The initial commit to OpenKinec-
t/libfreenect was made on November 10th 2010.

About a month later, on December 9th, PrimeSense, the
manufacturer of the PrimeSensor camera reference design used
by Microsoft to create the Kinect, acknowledging the interest
and achievements of the open source community, decided to
open source its own driver and framework API (OpenNI), and
to release binaries for their NITE skeletal tracking module and
other applications.

On February 21, 2011 Microsoft announced that it would
release a non-commercial Kinect software development kit for
Windows in spring 2011, which was released for Windows 7
on June 16, 2011 in 12 countries. In March 2012, Microsoft
announced that next version of the Kinect for Windows would
be available in May 2012. Kinect for Windows 1.5 was
released on May 21, 2012.

D. Awards

In 2011, Kinect won the MacRobert award for engineering
innovation, for the work on machine learning on motion
capture. In the same year, it won T3’s "Gadget of Year" and
"Gaming Gadget of the year". The Microsoft SDK was ranked
second in "The Most Innovative Tech Products of 2011" at
Popular Mechanics Breakthrough Awards ceremony.

III. THE KINECT DEVICE

In Kinect origin, the software technology was internally
developed by Rare, a subsidiary of Microsoft Game Studios,
and the depth camera technology by Israeli developer Prime-
Sense. Kinect provides a depth sensor, an RGB camera, an
accelerometer, a motor and a multi-array microphone. And the
PrimeSense Chip is Kinect processing core. Figure 4 shows
the kinect components and chip architecture.

A. Depth Sensing System
It consists of the IR laser emitter and the IR camera. The

IR laser emitter creates a known noisy pattern of structured
IR light.

The IR camera operates at 30 Hz and pushes images with
1200x960 pixels. This images are downsampled to 640x480
pixels with 11-bits, which provides 2048 levels of sensitivity.
Nevertheless, since the USB 2.0 has a small throughput, all
kinect data (depth, RGB, sound and acelerometer) takes about
70% of single hub to transmit its data. Hence, there are
few band to others devices (like mouse, keyboard, etc). And,
because of this, it is not possible to use simultaneously two
Kinects on the same hub.

The field of view in the system is 58 degrees horizontal,
45 degrees vertical, 70 degrees diagonal, and the operational
range is between 0.8 meters (2.6 ft) and 3.5 meters (11 ft).

The depth sensing uses structured light method to measure
the depth. A known pattern of dots is projected from the IR
laser emitter. These dots are recorded by the IR camera and
then compared to the known pattern. Any disturbances are
known to be variations in the surface and can be detected as
closer or further away.

B. RGB Camera
The RGB camera, which operates at 30 Hz, can push images

at 640x480 pixels with 8-bit per channel. Kinect also has the
option to switch the camera to high resolution, running at 10
fps at 1280x1024 pixels. The camera itself possesses a set of
features including automatic white balancing, black reference,
flicker avoidance, color saturation, and defect correction. The
output of the RGB camera is bayered with a pattern of RG,
GB.

C. Motor, Accelerometer and Microphones
Kinect has two inter-related and important systems inside:

a method to tilt the Kinect head to up and to down, and an
accelerometer. The head tilting is done by a motor with some
gearing to drive the head up and down. The accelerometer is
the way used by Kinect to determine what position the head
is in.

An accelerometer is a device that measures acceleration.
The accelerometer tells the system which way is down by
measuring the acceleration due to gravity. This allows the
system to set its head at exactly level and to calibrate to a
value so the head can be moved at specific angles.

The microphone array features four microphone capsules
and operates with each channel processing 16-bit audio at a
sampling rate of 16 kHz.

IV. DATA ACQUISITION

The colored image is obtained by a RGB camera. The depth
measurement is done using an infrared emitter and camera.
The computation is done using structured light. Because
Kinect uses infrared light it is an indoor device (since outdoor
the depth measurement quality is affected). Another infrared
problem is that some materials do not reflect well this light.
Beside this, it is advised to stay about 1.8m away from Kinect,
in the case of using it for interaction.

In this section, we will discuss the capturing process (mainly
depth measurements with structured light method), the data
representation and data filtering.

A. Capturing

As said, the depth measurement is done using a structured
light technique. This approach consists in projecting a pattern
of pixels in the scene and capturing the deformation of
projection, that will allows us to compute the pixel distances
(depths). It is necessary to calibrate the IR emitter and camera
to perform this calculation (the distance between Kinect IR
emitter and camera is 7.5cm). This calculation consists of a
triangulation based in emitter, camera and pixel positions.

The pattern used in Kinect is a PrimeSense patent. Some
people did some experiments to try understand better this one.
It is known that the pattern is based on speckle of infrared
lights. It is generated from a set of diffraction gratings, with
special care to lessen the effect of zero-order propagation of
a center bright dot.

For each pixel in the IR image, a small correlation window
(9x9 or 9x7) is used to compare the local pattern at that pixel
with the memorized pattern at that pixel and 64 neighboring
pixels in a horizontal window. The best match gives an offset
from the known depth, in terms of pixels: this is called
disparity. The Kinect device performs a further interpolation
of the best match to get sub-pixel accuracy of 1/8 pixel.
Given the known depth of the memorized plane, and the

Fig. 6. Infrared pattern.

Fig. 5. Kinect provided data: RGB image (left), depth (middle) and infrared image (right).

disparity, an estimated depth for each pixel can be calculated
by triangulation.

A pixel in the RGB image refers to a different point of
the same pixel in depth image. It is because the difference
of position of this two cameras (2.5cm). To correct for this
difference it is necessary to calibrate these cameras. Some
tools, like openNI, can be used to do this correction.

B. RGBD Representation

The most natural data representation obtained with Kinect
is an RGBD Image, i.e., a combination of three color channels
(one for each color: red, green and blue) and another for the
depth data. The color channels can be represented by a matrix
of integers of 8 bits (capable to represent 256 colors each one).
The depth data can be represented by a matrix of integers of
16 bits. The depth device representation uses integer of 16 bits
but transfer the data with integers of 11 bits, to save space.
Kinect quantizes the depth measurement in a range from 1 to
10.000 values, representing the depth distance in millimeters
(from 1 to 10.000mm).

The different nature of colors (visual) and depth (geometric)
allow us to use the RGBD data to do some tasks that were
difficult before, when not impossible. For instance, real time
object segmentation, pose recognition (marker-free), etc.

Beside these attributes, we can add to the data representation
visual information like: the alpha channel, luminance; or
geometric informations like: normal, gradients, etc. The visual
information could be calculated in the same way of image
processing system. The geometric information could (in fact,
should) be obtained using the depth data.

C. Filtering

The data obtained with Kinect has some problems. The
RGB image and the depth data have both noises. Beside this,
it is necessary to calibrate the cameras in order to merge
correctly the RGB image with the depth data.

The image can be captured with 640x480 or 1280x1024
resolution. Both present color noise and aliasing. Analogously,
the depth data has noise and there are pixels observed by the
RGB camera that has not depth information (hole). This hole
results from the difference of position of infrared emitter to
the camera.

We can filter the RGB channels and the depth channel using
Image Processing methods. In this case, we can think of the
depth data as a monochromatic image. It is not the goal of this
survey discuss these methods. On the other hand, we will focus
on methods that exploit the geometric structure improved by
the depth data.

A naive approach to reduce the noise in the depth data is
to apply a Gaussian (or an average, or a median) filter. This
approach is very simple, and analogous to image filtering.
However, it could change low frequency structure (edges in
the raw depth). Another approach is temporal filtering. In this
case we can calculate for each pixel, an average of pixels in
the time interval. If all objects in the scene and the camera
were fixed, this process is optimal. It maintains low frequency
informations and removes high frequency noise. A natural
problem is, in almost all cases, an impossible assumption.

Both previous approaches do not guarantee hole filling. We
can use techniques applied to fill holes in meshes. Assuming
that the depth data is a continuous surface, a naive technique
to fill holes is to calculate an average of its non null neighbors
(the neighborhood radius could be fixed or adaptive).

An important approach to filter data is presented by New-
combe et. al. [2]. In this paper, the authors presented a
technique to mapping complex and arbitrary indoor scenes in
variable lighting conditions. It is a parallelizable technique that
could be implemented using GPUs. Figure 7 shows that Kinect
raw data has a lot of noise and holes. This technique obtains
a better surface, without noise and holes. This approach

Fig. 7. Data with noise and hole filtered with KinectFusion technique.

Fig. 8. Libraries that uses openNI

combines the depth data obtained in several images streamed
from Kinect in a single global implicit surface model. This
technique consists of tracking the camera and poses the depth
data in model space. It uses a coarse-to-fine Iterative Closest
Point (ICP) algorithm, combining the current depth frame with
all other previous observed data. For each vertex, the result on
processing depends of the number of frames captured which
it contains. The filtering processing is based on the Signed
Distance Function, shown by Curless and Levoy [3]. This
function was introduced to join data provided from a scanner.
Hernandez et. al. [4] proved that, the Bayesian Probabilistic
guarantee the optimal surface reconstruction, since we use a
simple Gaussian Noise Model, on the depth measurement, for
vertices that are visible in all frames. It results in a simple
algorithm of averaging weighted signed distance function into
a global frame. In our case, we are only interested in the local
version of this result, because the surface occlusion and SDF
truncations.

First of all, they apply a bilateral filter to the raw depth, in
each frame, to obtain a data with less noise, but preserving
the discontinuities. Since the data is a regular grid it is very
easy to construct a surface based on the pixels grid. With the
filtered vertex, they construct a surface and they calculate the
normal for each vertex (an average of all incident polygons
normal, in the neighbourhood of the vertex). After this, they
define a validity mask for the vertex. They compute a multi-
scale representation of the surface measurement in the pyramid
form (to vertex and normal map).

After surface measurement, this work applies the mapping
and surface reconstruction. Each consecutive frame is fused
into the single 3D reconstruction using the volumetric Trun-
cated Signed Distance Fucntion (TSDF) [3]. Figure 7 shows an
example of object obtained by KinectFusion process. Observe
that, although the original frame is noisy and has holes (left)
the resulting surface is connex and smooth. The middle image
is the normal map of the surface and the right image is the
shaded using the Phong model.

V. TOOLS

The main functionalities used on applications and libraries
development, for Kinect, are available on following projects:
OpenNI, OpenKinect and Microsoft Kinect for Windows.
Some of libraries which use these projects as their backend
implementations are OpenCV, Unity3D, PCL, RGBDemo,
openframeworks, etc.

We will talk more about the OpenNI project because this
is the biggest and the most used. In particular, this tool was
used on the VISGRAF Lab projects (see Section VIII).

A. OpenKinect

OpenKinect is an open source project that uses only open
source libraries that enable Kinect to be used with Linux,
Mac and Windows. The primary OpenKinect focus is the
libfreenect software. The libfreenect software is the core
library for accessing the Microsoft Kinect USB camera. The
library supports access to RGB and depth images, Motors,
Accelerometer and LED. The libfreenect library is written in
C, but provides wrappers to several languages such as Python,
ActionScript, C++, C# and Java.

The library is used as a base for some projects such as
ofxKinect(openFrameworks addon) and RGBDemo. There are
samples that use libfreenect as backend for PCL.

B. Microsoft Kinect for Windows

Kinect for Windows consists of Kinect hardware and Kinect
for Windows SDK, which supports applications built with
C++, C# or Visual Basic. The Kinect for Windows SDK
offers several capabilities like seated skeleton recognition,
skeleton tracking, facial tracking and speech recognition.

C. OpenNI

OpenNI (Open Natural Interaction) is an open source multi-
language, cross-platform framework that defines an API for
writing applications utilizing Natural Interaction. The main
purpose is to make a standard API that enables communication
with visual and audio sensors and visual and audio perception
middleware.

Fig. 9. Some openNI functionalities: hand location (left), skeleton (middle) and hand tracking (right).

The visual and audio sensors are the devices that “see”
and “hear” the figures and their surroundings. The visual and
audio perception middleware are software components that
analyses and understands the audio and visual data that is
recorded from the scene. OpenNI is composed of two set
of APIs, one to be implemented by the sensor devices and
one implemented by the middleware components. OpenNI’s
API breaks the dependency between sensors and middleware,
enabling applications to be written with no additional effort
on top of different middleware modules. OpenNI’s API also
enables middleware developers to write algorithms on top
of raw formats, regardless with sensor devices had produced
them, and offers sensor manufacturers the capability to build
sensors that power any OpenNI compliant application. Hence,
the applications can be written regardless of the sensor and
middleware providers.

OpenNI is used as a backend for many projects such
as OpenCV, Unity3D, TUIO tracker implementations, PCL,
openFrameworks etc.

1) Concepts: The OpenNI Concepts can be seen as a three-
layered view, with each layer representing an integral part.
The top layer represents the software that implements natural
interaction applications. The middle layer is the OpenNI itself,
providing communication interfaces that interact with both the
sensors and middleware components. The bottom layer are the
hardware devices that capture the audio and visual elements.

2) Modules: The abstract layer supplied by OpenNI Frame-
work provides the interface for both physical devices and mid-
dleware components. The API enables multiple components to
be registered in the OpenNI Framework. These components
are referred as modules, and are used to produce or process
the sensory data. Sensor modules and middleware components
are the modules currently supported.

The sensor modules have a 3D sensor, RGB camera, IR
camera and Audio device (microphone or an array of micro-
phones). There are four middleware components that processes
sensory data, which are:

• full body analysis: it generates body related information
(typically data structure that describes joints, orientation,
center of mass, and so on)

• hand point analysis: it generates the location of a hand
point

• gesture detection: it identifies predefined gesture (e.g.
waving hand) and alerts the applications

• scene analyser: it analyses the image of the scene in order
to produce such information as:

– The separation between the foreground and back-
ground

– The coordinate of the floor plane
– The individual identification of the figures in the

scene

3) Production Nodes: Production nodes are defined by
OpenNI as a set of components that have a productive role
in the data creation process required by natural interaction
based applications. Each production node encapsulates the
functionality that relates to the generation of a specific data
type. However, the API of production nodes only defines the
language. The logic of data generation must be implemented
by the modules that plug into OpenNI.

Each production node is a standalone unit that generates a
specific type of data and can provide it to any object, whether
it is another production node or the application itself. The
types of production nodes are Sensor and Middleware.

Fig. 10. Abstract Layered View.

Fig. 11. PCL dependency graph.

Sensor related production nodes:
• Device: it represents a physical device (e.g. depth sensor

or a RGB camera). The main role of this node is to enable
device configuration.

• Depth Generator: it generates a depth-map.
• Image Generator: it generates colored image-maps.
• IR Generator: it generates IR image-maps
• Audio Generator: it generates an audio stream.
Middleware related production nodes:
• Gesture Alert Generator: it generates callbacks to the

application when specific gestures are identified.
• Scene Analyser: it analyses a scene, including separation

of the foreground from the background, identification of
figures in the scene, and detection of the floor plane. The
main output is labelled depth map, in which each pixel
holds a label that states represents a figure or it is part
of background.

• Hand Point Generator: it supports hands detection and
tracking. This node generates callbacks that provide alerts
when a hand point is detected, and when a hand point
currently being tracked changes its location.

• User Generator: it generates a representation of a (full or
partial) body in 3D scene.

4) Production Chains: The dependency of a node with each
other to produce the required data for application is called
Production Chains. Typically an application is only interested
in the top of production node of each chain. This is the node
that outputs the required data on a practical level, for example
a hand point generator.

5) Capabilities: Capabilities reveal additional functionality,
enabling providers to decide individually whether to imple-
ment an extension. A production node can be asked whether
it supports a specific capability. If it does, those functions can
be called for that specific node.

Each module can declare the capabilities it supports. Fur-
thermore, when requesting enumeration of production chains,
the application can specify the capabilities that should be
supported as criteria. Only modules that support the requested
capability are returned by the enumeration.

Supported capabilities:

• Alternative View: it enables any type of map generator
(depth, image, IR) to transform its data to appear as if
the sensor was placed in another location.

• Cropping: it enables a map generator (depth, image, IR)
to output a selected area of the frame as opposed to the
entire frame.

• Frame Sync: it enables two sensors producing frame
data (for example, depth and image) to synchronize their
frames so that they arrive at the same time.

• Mirror: it enables mirroring of the data produced by a
generator.

• Pose Detection: it enables a user generator to recognize
when the user is posed in a specific position.

• Skeleton: it enables a user generator to output the skeletal
data of the user. This data includes the location of the
skeletal joints, the ability to track skeleton positions and
the user calibration.

• User Position: it enables a Depth Generator to optimize
the output depth map that is generated for a specific area
of the scene.

• Error State: it enables a node to report that it is in error
status.

• Lock Aware: it enables a node to be locked outside the
context boundary.

• Hand Touching FOV Edge: it alerts when the hand point
reaches the boundaries of the field of view.

6) Licensing: OpenNI provides a simple licensing mecha-
nism that can be used by modules and applications. A license
is composed of a vendor name and a license key. Vendors who
want to use this mechanism can utilize their own proprietary
format for the key.

The license mechanism is used by modules, to ensure that
they are only used by authorized applications.

7) Framework Utilities: Some OpenNI utilities are:

• USB access abstract layer
• Basic data type implementation (list, hash and so on)
• Log and dump system
• Memory and performance profiling
• Events
• Scheduling of tasks

D. PCL

The Point Cloud Library (PCL) is a large scale open project
for 2D/3D images and point cloud processing. PCL presents
an advanced and extensive approach to the subject of 3D
perception, and it is meant to provide support for all the
common 3D building blocks that applications need. The library
contains algorithms for filtering, feature estimation, surface
reconstruction, registration, model fitting, segmentation etc.

PCL is split into a series of smaller libraries to provide
modularity, thus reducing computational and size constraints.

The following describes some libraries:

• filters: it implements data filters such as downsampling,
outlier removing, index extraction, projections, etc.

• features: it implements surface normals and curvatures,
boundary point estimation, moment invariants, principal
curvatures, PFH and FPHF descriptors, spin images,
integral images, RIFT, RSD, VFH, SIFT on intensity data,
etc.

• io: it implements I/O operations such as writing/reading
point cloud data files etc.

• segmentation: it implements cluster extraction, model
fitting, polygonal prism extraction.

• registration: it implements point cloud registration meth-
ods such as ICP, etc

• keypoints: it implements different keypoint extraction
methods that can be used as a preprocessing step to decide
where to extract feature descriptors.

• range image: it implements supports for range images
created from point cloud datasets.

E. Comparing tools

The Table 1 shows a comparison between some tools that
could be used to access and process Kinect data.

TABLE 1

Fig. 12. An instance of NYU RGBD dataset.

VI. RGBD DATABASE

We said that the depth information improves new possibil-
ities in image processing and computer vision. Although, a
drawback is to capture this data. This is not a big problem for
two reasons: Kinect is a low cost device, and there are several
RGBD datasets available on Internet. For instance, we can
cite the NYU Depth Dataset [5], RGB-D Object Dataset [6],
Cornell-RGBD-Dataset [7], among others [8], [9], [10]. With
this data, it is possible to do a lot of research (about RGBD
Image and Video Processing, Pattern Recognition, etc.) even if
the person has not access to a Kinect. In general, each dataset
was constructed with an specific goal, and besides of this they
have specific features.

The NYU Depth Dataset [5], in its second edition, is a
database of indoor scenes. The data consists of a colored
image, a depth image and a labeled image. The last one is an
image with dense pixel clusters, each one referred to an object
in the scene. The main goal of the research that motivates this
dataset is the work by Siberman et. al. [11] to segment indoor
scene. Figure 12 shows a data instance: the colored image
(left), the depth (middle) and the labels (right).

The RGB-D Object Dataset [6] shows 300 common house-
hold objects, captured from a short distance, placed in a
turntable. These objects are organized in 51 categories. For
each object, there are captured instances at three different
heights and different angles with horizon. Each class is com-
posed by different objects (for instance, a glass class is com-

Fig. 13. Instances of the Washington RGB-D Object Dataset.

Fig. 14. KinectFusion Applications.

posed by instances on different viewpoint of several glasses).
Each instance has an RGB image and the depth. Beside of
these 300 objects there are 8 annotated videos of indoor natural
scenes. This dataset was developed by Computer Science
and Engineering of University of Washington and Intel Labs
Seattle it was used in several works [12], [13], [14], [15],
[16], [17], [18], [19], [20]. Figure 13 shows an example of an
instance of a tea-cup and some segmented objects.

Another database is Cornell-RGBD-Dataset [7]. This dataset
is part of the Personal Robotics Project, developed by the
Robot Learning Lab from Cornell University. It is composed
by 24 labeled office scenes and 28 labeled home scenes. This
data is priority oriented to scene understanding and robotic
navigation [21], [22], [23].

VII. RGBD RESEARCHES

A. 3D Reconstruction

3D scanning has been a very popular task in the last years.
There are several technologies that could be used to capture
the geometry of an object (or a scene), such that: LIDAR, time
of flight, stereo cameras, and structured light. Nevertheless, a
scanner is an expensive and a big machine. On the other hand,
Kinect is a low cost and handheld device capable of capturing,
in real time, geometry and colors of a scene. Naturally, there
is a tradeoff. Kinect data resolution is typically 640x480. It
is lower than most of the scanners. However, it is enough
for several applications. Furthermore, we can infer better data
from the captured one, i.e., reconstructing a surface from the
depth data.

3D reconstruction is a task that has motivated much research
in the last years. KinectFusion [2], [24] is a 3D reconstruction
project that creates a dense surface, without artifacts, from a
set of Kinect frames. We can apply this 3D model in several
applications in Augmented Reality, Robotic Navigation, Image
Processing, etc.

The two main contributions of the work by Newcombe et.
al. [2] is dense surface mapping and camera tracking. This
work creates a dense surface fusing the live depth frame to
the already construct 3D model. The sensor tracking relative
to global model uses a coarse-to-fine Iterative Closest Point
(ICP) [25], [26] to calculate the 6 degrees of freedom of the
camera. The surface mapping is done using a Signed Distance
Function [3].

This method consists of four steps:

• Surface Measurement: creation of vertex and normal
map pyramid of the depth that comes from Kinect;

• Surface Reconstruction Update: The fusion of current
frame with global model already reconstructed;

• Surface Prediction: Closing loop between mapping and
localization by tracking the position of the current frame
against the global model;

• Sensor Pose Estimation: camera tracking.

Izadi et. al. [24] shows how to implement the KinectFusion
procedures using generic programming in the GPU. It enables
a real-time 3D reconstruction system.

The KinectFusion algorithm to handheld scanning scenes
with Kinect this is available in PCL library.

B. Augmented Reality

The depth data can also be used to help the creation of
systems of Augmented Reality (AR). Using this data it is
possible to construct a marker-free application to AR. The
3D scene model obtained by KinectFusion is an example of
this help.

The Figure 14 shows three examples of Augmented Reality
applications developed using the KinectFusion system. In
the first example, the authors captured a scene (Figure 14A
shows the scene and Figure 14B shows its 3D model and
the camera position) and added a lot of artificial spheres
(Figure 14C). These spheres interact among themselves and
with the real objects in scene. After reconstruct the scene
model, an user could interact with this elements. The Figure
14D shows an example of multitouch system. In this example,
they tracked the user hand and mapping his finger track on
the object surface. On the last example, the user touched in
an object (teapot) and the system creates an image with only
the respective segment (Figure 14E).

Another Augmented Reality example, using Kinect, is the
MirageTable [27]. This work combines a depth camera with an
stereoscopic projector to create an augmented reality system
in a curved screen. The depth camera tracks the user position
(mainly eyes position) and gestures.

It is a complete immersive system, because combines ges-
tures interaction with stereoscopic visualization. The authors
show how to use the MirageTable technique in applications
like games, virtual 3D model creation, and 3D teleconferenc-
ing experience.

Fig. 15. The RGBD image segmentation pipeline.

C. Image Processing

A difficult task in Image Processing is Image Segmentation
(using only the color information). Adding the depth channel,
this problem becomes simpler because we can define the
segment boundary like the edges on depth data. However, as
already mentioned, the depth data has several problems, such
as noise and holes. In particular, in the silhouettes of these
objects, these problems are very recurring.

If we have a good method to fix the depth problems,
the segmentation task becomes easy. Otherwise, we can use
the depth data to help traditional segmentation methods like
Intelligent Scissor or Graph Cut.

Prada et. al. [28] modify the Grab Cut method to use the
depth data. This method is based in some priors that are
combined in the method. Figure 15 shows the pipeline of
this work. It shows the input data (RGB color and depth),
the priors processing (Depth Range Estimation, Background
Planar Surfaces and foreground and background seeds) and
the output (segmented image). Another segmentation work was
introduced by Silberman et. al. [11].

With segmentation, we can apply effects like filtering in
certain regions. This filtering could simulate camera focus, or
could be style filters, among others. The Figure 16 shows an
example of image which only the boy is on focus.

D. Interaction

The main motivation on Kinect creation was to do a device
to control the Xbox 360 with natural gestures, ie, an interaction
tool. Shotton et. al. [29] to infer the skeleton of persons in front
of Kinect. The Figure 17 shows de depth data comes from
Kinect, the identified body parts and its joint. The authors
use an object recognition approach, designing an intermediate
body parts representation. They describe them dataset as large
and highly varied training and argue that because of this
features they can define a classifier to estimate a body parts
invariant to pose, body shape, clothing, etc. The algorithm
presented by Shotton et. al. is used on Kinect gaming platform.

In this method, each depth frame is segmented into a dense
probabilistic body part labeling. Each part is defined to be near
of skeletal joints. Each pixel is separately evaluated, avoiding
a combinatorial search over the different body joints.

Shotton et. al. train a deep randomized decision forest
classifier. They used hundreds oh thousand training images

to avoid overfitting. They use a 3D translation invariant
method, from a simple, discriminative depth comparison image
features. As this method is calculated for each pixel, it could
be parallelized. An optimized implementation runs under 200
fps on the Xbox 360 GPU.

With the skeleton it is possible to define user gestures.
Nowadays, we have not yet an official body gestures vocabu-
lary, like we have for other natural interfaces (like multitouch
device). This is a challenge for developers (that have always to
think in gestures they will define) and users (that have always
to learn new gestures). Nevertheless, the applications using
body gestures try to use gestures that are natural on user life.

Another interesting possibility of skeleton use is to do an
user head tracking. It provides new possibilities on visualiza-
tion.

Fig. 16. Image Effect.

Fig. 17. Human Pose Recognition.

Fig. 18. The input point cloud (left) and the predicted labels (right).

E. Robotic

Kinect has been also used in robotic navigation. If we have
an environment model, we can use it to control the robot
moves. The KinectFusion [24] shows a technique to use this
data with the Simultaneous Localisation and Mapping (SLAM)
method.

A more complex possibility is to recognize the objects in
visible scene to decide the new robot action [21]. The Figure
18 shows an example of points cloud labeling obtained by this
method.

It enables more than navigation, but the robot can interact
with environment objects. Jiang et al [23] introduced a way
to a robot learn how to place new objects in an environment.

F. Object Recognition

A lot of works were developed using the depth data to
help the object recognition task. Lai et. al. [17] use a slid-
ing window detectors trained from object views to define a
probabilities of the window’s pixels belongs to objects classes
previously defined. They use a Markov Random Field over
voxels (the scene model is represented by voxels), combining
cues from view-based detection and 3D shape, to label the
scene.

Spinello and Arras [30] introduced a work to detect people
in RGBD data. The authors combine Histogram of Oriented
Depths and Histogram of Oriented Gradients to create a
probabilistic function to detect people. This method locally
encodes the direction of depth changes. The Figure 20 shows
an example of RGBD image with detected peoples. The
authors achieve a rate of 85% of success.

Bo et. al. [12] introduced an Unsupervised Feature Learning
work. This method relies on hierarchical matching pursuit
for RGBD data. It uses a sparse coding to learn hierarchical
feature representation from raw RGBD data, provided from
Kinect, in an unsupervised way.

VIII. APPLICATIONS

Although the main motivation of Kinect is its use on games
of Xbox 360, it is not only limited to this kind of applications.
There are several other possibilities of to use the Kinect:
robot navigation and control, entertainment (like shows), and
interaction (on other platforms besides Kinect).

We can cite some specific examples, such as, a police officer
using gestures and word commands to remotely control a
robot, exploring a building that may contain explosives. In
the healthcare industry, you can envision a doctor gesturing
to go through a series of X-rays. In a factory or any other
environment where change management is critical, you can
envision Kinect being used for simulations of specific tasks.
An architect could use Kinect to spin virtual models and
manipulate them with his hands.

So the Kinect can be used in various contexts. Enjoying
this possibilities, at VISGRAF Lab, there were developed
several applications, such as, Lambe-lambe 3D, Kinect Stereo
Viewer, GrabCut+D, Feature track and detection, AC/DC Bot
and INTEGRARTE ENTREGARTE.

A. VISGRAF Lab Projects

1) Lambe-lambe 3D: The project [31] is about use of the
Kinect device as a 3D face scanner. The image captured
by the device will be converted into a triangle mesh that is
subsequently adjusted and applied some shading. Figure 19a
shows a face scanned with this application.

2) Kinect Stereo Viewer: The project [32] goal is the
implementation of a viewer who is able to show the data
generated by Kinect (depth map and texture) combined in
the form of a cloud of points in 3D stereo format, such
as, anaglyphic, quad-buffer, vertical and horizontal split. The
Figure 19b shows two visualization way.

3) GrabCut+D: This project [28] Prada creates an image
segmentation application adding, besides the RGB data, the
depth data to define three Grab-Cut like optimization methods.
With the depth data, the author defines some priors that
are combined on optimization problem, in each method. The
Figure 19c shows an image segmented with this application.

Fig. 20. People detection in RGB-D data.

Fig. 19. Visgraf Lab applications: (a) Lambe-lambe 3D, (b) Kinect Stereo Viewer, (c) GrabCut+D, (d) Feature track and detection, (e) ACDC and (f)
Integrarte Entregarte.

4) Feature track and detection: detect and track features in
a RGBD video: The project [33] goal is obtain some features
on RGBD images. This features are defined using methods like
SIFT and SURF. Before defined, the author track this features
along an RGBD Video. The Figure 19d shows some features
tracked along two different frames.

5) ACDC: In this project [34] was developed a robot that
can move around a flat floor using motorized wheels, and by
analyzing the image that provides him a Kinect camera, can
recognize the 3D environment around. This robot provides a
mechanic arm that let him to connect him to power supplies
in the wall. To do that it need to analyze the image from the
camera, and recognize these power connectors in the space.
The Figure 19e shows the robot created, using Kinect, on this
project.

6) INTEGRARTE ENTREGARTE: This project [35] ex-
plores the body and its possible visual and audible out-
spread. The person moves were converted in visual shapes
and sounds, from different body relations. The application
was implemented with Processing programming language,
and SimpleOpenNI library, which is used to access the data
provided by Kinect. The Figure 19 the author using the
application.

IX. OTHER DEVICES

There are other devices with the same purpose of Kinect,
such as Asus XTion PRO and 3D PrimeSense Sensor. Before
these devices, many others devices have been used to generate
3D point clouds. The devices are classified as Time-Of-Flight
(TOF) cameras, 2D and 3D scanning laser, Structured light
scanner, Forward Looking Infrared (FLIR) cameras, Stereo-
on-a-chip (STOC) cameras and Mobile GeoSpatial Imaging
System.

Figure 21 shows some of these devices.

X. CONCLUSION

Along this survey, we introduced the Kinect. This device
was developed to be a control tool to Xbox 360 Console.
Besides its original goal (games), nowadays Kinect is used
in industry and research.

This survey was motivated by recently developed research
at VISGRAF Lab using Kinect. It began with an Image
Processing course [36] and the projects developed by students.

In this survey, we discussed the Kinect architecture and
sensor. We show that Kinect provides a depth sensor, an
RGB camera, an accelerometer, a motor and a multiarray of
microphones. The captured data is an RGB image and a depth
measurement.

Unfortunately the Kinect depth has some problems like
noise and holes. We presented some filtering approaches, from
the naive solution to the more advanced filtering techniques.

There are some tools, such as OpenNI, libfreenect and
Microsoft Kinect for Windows that make it easy developing
applications for this device in various platforms. These help
the development of many projects based on RGBD Images,
besides games.

Despite the fact that Kinect is a device that was only
recently launched (November 2010), this data already was
used in several areas, such as 3D reconstruction, robotic, image
processing, augmented reality, interaction, object recognition,
etc. Beside these, we can cite its natural application on games
(in particular, in the Xbox 360 console).

The main reason for the success of this device is the
different nature of its data (visual and geometric). It opens new
processing possibilities. The RGBD images enable to attach
old problems with new approaches.

Fig. 21. Other devices.

ACKNOWLEDGMENT

We would like to thank the CNPq, for funding the first
author of this article, and the VISGRAF Lab, at IMPA, by
providing an environment for fruitful research.

REFERENCES

[1] “The kinect patent - method and system for object reconstruction,” 2005,
http://www.wipo.int/patentscope/search/en/WO2007043036.

[2] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison,
P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion:
Real-time dense surface mapping and tracking.” IEEE International
Symposium on Mixed and Augmented Reality, 2011.

[3] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images.” ACM SIGGRAPH, 1996.

[4] C. Hernandez, G. Vogiatzis, and R. Cipolla, “Probabilistic visibility for
multi-view stereo,” in Computer Vision and Pattern Recognition, 2007.

[5] “Nyu depth dataset,” http://cs.nyu.edu/~silberman/datasets/nyu_depth_
v2.html.

[6] “Rgb-d object dataset,” http://www.cs.washington.edu/rgbd-dataset/.
[7] “Cornell-rgbd-dataset,” http://pr.cs.cornell.edu/sceneunderstanding/data/

data.php.
[8] “B3do: Berkeley 3-d object dataset,” http://kinectdata.com/.
[9] “Iros 2011 paper kinect dataset,” http://projects.asl.ethz.ch/datasets/

doku.php?id=kinect:iros2011kinect.
[10] A. Janoch, S. Karayev, Y. Jia, J. Barron, M. Fritz, K. Saenko, and

T. Darrell, “A category-level 3-d object dataset: Putting the kinect to
work.” ICCV - WCDCCV, 2011.

[11] N. Silberman and R. Fergus, “Indoor scene segmentation using a
structured light sensor.” International Conference on Computer Vision
- Workshop on 3D Representation and Recognition, 2011.

[12] L. Bo, X. Ren, , and D. Fox, “Unsupervised feature learning for rgb-d
based object recognition.” ISER, 2012.

[13] ——, “Hierarchical matching pursuit for image classification: Architec-
ture and fast algorithms.” NIPS, 2011.

[14] ——, “Depth kernel descriptors for object recognition.” Proceedings of
the International Conference on Intelligent Robots and Systems, 2011.

[15] L. Bo, K. Lai, X. Ren, , and D. Fox, “Object recognition with hierar-
chical kernel descriptors.” Proceedings of the International Conference
on Intelligent Robots and Systems, 2011.

[16] L. Bo, X. Ren, , and D. Fox, “Kernel descriptors for visual recognition.”
NIPS, 2010.

[17] K. Lai, L. Bo, X. Ren, , and D. Fox, “Detection-based object labeling in
3d scenes.” Proceedings of the International Conference on Robotics
and Automation, 2012.

[18] ——, “A scalable tree-based approach for joint object and pose recog-
nition.” AAAI, 2011.

[19] ——, “Sparse distance learning for object recognition combining rgb
and depth information.” ICRA, 2011.

[20] ——, “A large-scale hierarchical multi-view rgb-d object dataset.”
ICRA, 2011.

[21] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3d point clouds for indoor scenes.” Proceedings of the
Advances in Neural Information Processing Systems, 2011.

[22] Y. Jiang, M. Stephen, and A. Saxena, “Efficient grasping from rgbd
images: Learning using a new rectangle representation.” ICRA, 2011.

[23] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new
objects in a scene.” International Journal of Robotics Research, 2012.

[24] S. Izadi, R. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges,
P. Kohli, A. Davison, and A. Fitzgibbon, “Kinectfusion: Real-time
dynamic 3d surface reconstruction and interaction.” ACM SIGGRAPH,
2011.

[25] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm.”
IEEE 3-D Digital Imaging and Modeling, 2001.

[26] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart, “Tracking
a depth camera: Parameter exploration for fast icp.” IEEE Intelligent
Robots and Systems, 2011.

[27] H. Benko, R. Jota, and A. Wilson, “Miragetable: freehand interaction on
a projected augmented reality tabletop.” Conference on Human Factors
in Computing Systems, 2012.

[28] F. Prada and L. Velho, “Grabcut+d.” VISGRAF PROJECT, 2011, http:
//www.impa.br/~faprada/courses/procImagenes/.

[29] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from a single depth image.” IEEE CVPR, 2011.

[30] L. Spinello and K. Arras, “People detection in rgb-d data.” International
Conference on Intelligent Robots and Systems, 2011.

[31] D. Lucio and L. Velho, “Lambe-lambe 3d.” VISGRAF PROJECT,
2011, http://dlucio.impa.br/wiki/pmwiki.php/Sg3d/Projeto.

[32] ——, “Kinect stereo viewer.” VISGRAF PROJECT, 2011, http://dlucio.
impa.br/wiki/pmwiki.php/ProcessamentoDeImages/Projeto.

[33] F. Benavides and L. Velho, “Feature track and detection: detect and
track features in a rgbd video.” VISGRAF PROJECT, 2011, http:
//www.impa.br/~francisc/IProc/report.html.LyXconv/report.html.

[34] J. Lucio and L. Velho, “Acdc.” VISGRAF PROJECT, 2011, http://
www.juliolucio.com/ACDCBot/.

[35] B. Castro and L. Velho, “Integrarte entregarte.” VISGRAF PROJECT,
2011, http://ctrlbarbara.wordpress.com/category/integrarte-entregarte/.

[36] “Fundamentals and trends in image processing: Rgbd video - 2011,”
http://lvelho.impa.br/ip11/.

http://www.wipo.int/patentscope/search/en/WO2007043036
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://www.cs.washington.edu/rgbd-dataset/
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://kinectdata.com/
http://projects.asl.ethz.ch/datasets/doku.php?id=kinect:iros2011kinect
http://projects.asl.ethz.ch/datasets/doku.php?id=kinect:iros2011kinect
http://www.impa.br/ ~ faprada/courses/procImagenes/
http://www.impa.br/ ~ faprada/courses/procImagenes/
http://dlucio.impa.br/wiki/pmwiki.php/Sg3d/Projeto
http://dlucio.impa.br/wiki/pmwiki.php/ProcessamentoDeImages/Projeto
http://dlucio.impa.br/wiki/pmwiki.php/ProcessamentoDeImages/Projeto
http://www.impa.br/ ~ francisc/IProc/report.html.LyXconv/report.html
http://www.impa.br/ ~ francisc/IProc/report.html.LyXconv/report.html
http://www.juliolucio.com/ACDCBot/
http://www.juliolucio.com/ACDCBot/
http://ctrlbarbara.wordpress.com/category/integrarte-entregarte/
http://lvelho.impa.br/ip11/

	Introduction
	A Bit of History
	Milo and Kate
	Kinect Hacking
	Tools Chronology
	Awards

	The Kinect Device
	Depth Sensing System
	RGB Camera
	Motor, Accelerometer and Microphones

	Data Acquisition
	Capturing
	RGBD Representation
	Filtering

	Tools
	OpenKinect
	Microsoft Kinect for Windows
	OpenNI
	Concepts
	Modules
	Production Nodes
	Production Chains
	Capabilities
	Licensing
	Framework Utilities

	PCL
	Comparing tools

	RGBD Database
	RGBD Researches
	3D Reconstruction
	Augmented Reality
	Image Processing
	Interaction
	Robotic
	Object Recognition

	Applications
	VISGRAF Lab Projects
	Lambe-lambe 3D
	Kinect Stereo Viewer
	GrabCut+D
	Feature track and detection: detect and track features in a RGBD video
	ACDC
	INTEGRARTE ENTREGARTE

	Other Devices
	Conclusion
	References

