
Interactive Graphics Applications with OpenGL
Shading Language and Qt

João Paulo Gois & Harlen C. Batagelo
Centro de Matemática Computação e Cognição

Universidade Federal do ABC
Santo André, Brazil

http://professor.ufabc.edu.br/∼{joao.gois,harlen.batagelo}

Abstract—Qt framework allows the easy development of pro-
fessional cross-platform graphics applications using C++. Qt
provides the QtOpenGL Module that makes easy the development
of hardware-accelerated graphics applications using OpenGL
and OpenGL Shading Language (GLSL). With Qt, matrices,
vectors, vertex buffer objects, textures, shader programs and
UI components are integrated by classes in the object-oriented
paradigm and intercommunicate by the Qt mechanism of sig-
nals/slots. The goal of this survey is to detail the development
of interactive graphics applications with OpenGL and Qt. Along
with it, we compare features of QtOpenGL Module with those
of GLU/GLUT libraries, as the latter is traditionally used in text
books and computer graphics courses.

I. INTRODUCTION

OpenGL [1] is the most popular cross-platform industry
standard API for writing 2D and 3D interactive graphics
applications such as for CAD, video games, scientific visu-
alization, information visualization and virtual reality. Tradi-
tionally, course syllabus and textbooks of computer graphics
are approached with OpenGL and its cross-platform window
management library GLUT [2].

GLUT provides resources to control windows associated to
OpenGL contexts and to perform I/O communication (mouse
and keyboard devices) with the operating system. Although
GLUT is broadly popular for educational purposes, it is quite
limited to produce full-featured applications because its set of
features is relatively restricted.

In this sense, the Qt framework [3], [4], [5] is an alternative
for developing professional interactive graphics applications
based on OpenGL and its shading language GLSL. Qt is open-
source, cross-platform and available under different licenses,
including GNU LGPL 2.1, GNU GPL 3.0 and a commercial
developer license. Prominent corporations have employed Qt
in their projects, e.g., Autodesk, Adobe, Skype (now part
of Microsoft), Wolfram, DreamWorks, Google, Lucasfilm,
Samsung, Siemens, Volvo and Walt Disney Animation Studios
[6].

Qt offers the QtOpenGL Module [7]: a full-feature set of
containers to make easy the development of graphics appli-
cation using OpenGL/GLSL. Qt integrates to GLSL through
QShader and QShaderProgram classes that require small coding
effort to compile, link and bind shader programs to applica-
tions. Matrix and vector classes such as QMatrix2x2, QMatrix3x3,

QMatrix4x4, QVector2D, QVector3D, QVector4D and QQuaternion

allow for operating with matrices, vectors and quaternions,
respectively. In particular, Qmatrix4x4 provides methods for
orthogonal and perspective projections and for camera settings.
The contents of these classes can be easily bound to shaders as
storage qualifiers (attribute or uniform) using different shader
types, e.g. vec2, vec3, vec4, mat2, mat3 and mat4.

For texture manipulation, image files can be loaded to the
application using the Qt class QImage. Through the Qt class
QGLWidget, such images can be directly bound to the OpenGL
texture units used in the shader programs.

The use of some recent OpenGL extensions such as Vertex
Buffer Objects, Frame Buffer Objects and Pixel Buffer Objects,
may make the source code easily cluttered and non-intuitive,
specially for beginner developers. In its turn, Qt provides
classes that encapsulate most details of the many extensions
available for shader programming, thus producing code that is
cleaner and easier to maintain.

A few requirements

There are only a few basic requirements to take the best
advantages of this survey. The reader should have some
familiarity with object-oriented programming, C++ preferred.
Also, previous knowledge on computer graphics is required.
In particular, the reader should be familiar with foundations of
geometric transformations, viewing, lighting and shading [8],
[9]. Since we exemplify applications with GLSL, familiarity
with this shading language is desirable [10], [11].

Structure of the presentation

In the next section we guide the reader through the de-
velopment of an interactive OpenGL/GLSL application with
Qt. First we start up a Qt project with minimal support to
OpenGL. Next we show how to visualize surface meshes
loaded from a file and how to rotate and scale them with
a virtual trackball. Different shader effects (Gouraud shading,
Phong shading, texture mapping and normal mapping) and
simple Qt UI components are also introduced. After presenting
this interactive application, we then discuss how to improve
its interface with richer UI components (Sec. III). Finally, we
conclude our presentation (Sec. IV) and describe directions
for further graphics-based Qt applications (Sec. V).

http://professor.ufabc.edu.br/~joao.gois

II. CREATING AN OPENGL/GLSL APPLICATION WITH QT

A. Starting up a Qt project

The Qt libraries and tools are enclosed in the Qt SDK,
available in the Qt website [3] for Windows, Linux and Mac
OS X. In this work we develop our application under Qt
Framework version 4.8 using the Qt Creator IDE version 2.4.1
(Figure 1) for Linux/Ubuntu. In the following we will detail
this process. First we will create a Qt project to our application.
After that we will design the UI, write the C++ and GLSL
codes and manage the assets of our application.

Fig. 1. Interface of the Qt Creator IDE.

Tip 1. To maintain the coherence with the Qt style, we follow
the Qt Coding Guidelines [12] in our C++ files.

Let us start by creating a Qt project. Clicking at File→New
File or Project on the Qt Creator menu bar, we see that Qt
offers some project templates. In our case, we choose Qt Gui
Application (Fig. 2-(a)), which creates a minimal application
for desktop with a main window, a menu bar, a tool bar, a
status bar and a central widget (Fig. 3-(b)).

Following steps depicted in Fig. 2, first we select the Qt
Gui Application option (Fig. 2-(a)), second we define the
project name, as well as its path (Fig. 2-(b)), third we select
Desktop as the build target and Use Shadow Building to create
a separate directory for storing the compiled sources, objects
and executable files (Fig. 2-(c)). Finally, we specify details of
the main window interface class as shown in Fig. 2-(d). Qt
automatically generated four files:

• myqtglproject.pro: this file, depicted in Listing 1, con-
tains the configurations of the Qt project. It lists the
source files of the project, as well as the modules used.
Initially, only two Qt modules are added: core and gui.
In order to enable QtOpenGL Module, we add opengl in
myqtglproject.pro, as depicted in Listing 2.

• mainwindow.{h,cpp}: these are the files for the
MainWindow class (Listings 3 and 4). In the declaration
of this class, we notice the Qt macro Q_OBJECT, which is
automatically declared under the private access modifier.

(a)

(b)

(c)

(d)

Fig. 2. Step-by-step to start up a Qt GUI Project.

(a)

(b)

Fig. 3. Qt Creator: (a) the Edit mode, (b) the Design mode.

This macro is mandatory for any class that implements
the Qt concept of Signals and Slots (presented in Sec.
II-D). For our application it will not be required to make
changes on these files.

• main.cpp: this file contains the C++ main function (List-
ing 5). We will keep main.cpp as simple as we can. We
will only insert further code on it to format details of
OpenGL context, for instance, to use antialiasing. It will
be detailed in Section II-N.

• mainwindow.ui: this file contains the XML description
of the user interface. This XML file is translated by the
Qt User Interface Compiler (uic) to a C++ header file
that contains declarations of object widgets used by the
application. Fortunately, we do not need to write directly
the XML file. Instead, we can edit the user interface
using the Qt WYSIWYG editor: the Design mode. When
double-clicking on the mainwindow.ui file listed in the
Projects Pane, Qt Creator switches to the Design mode
(Fig. 3-bottom). The interface of Design mode contains
(Fig. 4): (A) components to design the UI; (B) UI
WYSIWYG editor; (C) hierarchy of currently created UI
components; (D) properties of the UI components. To
come back to the text editor, the Edit mode, click on the

Edit button in the leftmost pane of Qt Creator.

1 QT += core gui

3 TARGET = myqtglproject

5 TEMPLATE = app

7 SOURCES += main.cpp\
mainwindow.cpp

9
HEADERS += mainwindow.h

11
FORMS += mainwindow.ui

Listing 1. File myqtglproject.pro: initial configuration of the Qt project.

QT += core gui opengl

Listing 2. File myqtglproject.pro: including QtOpenGL Module at
myqtglproject.pro.

1 #ifndef MAINWINDOW_H
#define MAINWINDOW_H

3
#include <QMainWindow >

5
namespace Ui {

7 class MainWindow;
}

9
class MainWindow : public QMainWindow

11 {
Q_OBJECT

13
public:

15 explicit MainWindow(QWidget *parent = 0);
~MainWindow ();

17
private:

19 Ui:: MainWindow *ui;
};

21
#endif // MAINWINDOW_H

Listing 3. File mainwindow.h: automatically generated by Qt Creator.

#include "mainwindow.h"
2 #include "ui_mainwindow.h"

4 MainWindow :: MainWindow(QWidget *parent) :
QMainWindow(parent),

6 ui(new Ui:: MainWindow)
{

8 ui->setupUi(this);
}

10
MainWindow ::~ MainWindow ()

12 {
delete ui;

14 }

Listing 4. File mainwindow.cpp: automatically generated by Qt Creator.

#include <QtGui/QApplication >
2 #include "mainwindow.h"

4 int main(int argc , char *argv [])
{

6 QApplication a(argc , argv);
MainWindow w;

8 w.show();

10 return a.exec();
}

Listing 5. File main.cpp: automatically generated by Qt Creator.

Tip 2. It is also possible to include non-Qt libraries in the Qt
project. We show an example in Listing 6, where we include
hypothetical libraries foo and bar in the .pro file. In this case,
we assume they are located at /usr/local/lib/foo and their
header files are at /usr/loca/include/foo.

INCLUDEPATH += /usr/local/include/foo/
2

LIBS += -L/usr/local/lib/foo/ -lfoo -lbar

Listing 6. File myqtglproject.pro: including non-Qt libraries in the Qt
project.

Before building the project, the qmake [13] tool uses the
configuration from the .pro file to automatically generate, in
the shadow building directory, the Makefile file for the target
platform. qmake is also able to generate project files for Apple
Xcode and Microsoft Visual Studio. Further details about qmake
and its configuration variables are found on [13].

Five UI objects are automatically generated by Qt Creator
(Fig. 4-(C)): MainWindow, of class QMainWindow, is the main
window object and the root node of the hierarchy of UI objects.
Its children are centralWidget of class QWidget, menuBar of class
QMenuBar, mainToolBar of class QToolBar and statusBar of class
QStatusBar. We can use the Design mode to create new child
objects. Fig. 5 lists all UI objects of our application. They will
be detailed along the next sections.

Fig. 4. Qt Creator (Design mode): (A) components to design the UI, (B)
UI WYSIWYG editor, (C) hierarchy of currently created UI components and
(D) properties of UI components.

Fig. 5. UI objects of our application: some of them were automatically
generated by Qt Creator and others were added using the Design mode.

So far we learnt how to generate a Qt Project. Our next step
is to create an OpenGL interactive application in this project.
We show how to do it in a two-step process: in the first, we use

the Edit mode to create a custom class that supports OpenGL
functionalities (Sec. II-B). In the second, we use the Design
mode to associate a widget to an object of the previously
created custom class (Sec. II-C) for displaying the OpenGL
scene.

B. Edit mode: extending the class QGLWidget to our OpenGL
application

The Qt class QWidget provides the widget base for all UI
objects. In particular, it is the base for the widget class
QGLWidget used for rendering OpenGL graphics [14]. QGLWidget
provides virtual methods that should be implemented to per-
form common OpenGL tasks. Three of them are the most used
and will be implemented in our applications:

• paintGL(): renders the OpenGL scene whenever the
widget needs to be repainted. It is equivalent to the
callback function registered through the GLUT function
glutDisplayFunc().

• resizeGL(int width, int height): handles the resizing of
the OpenGL window and repaints it. It is equivalent to the
callback function registered through the GLUT function
glutReshapeFunc().

• initializeGL(): it is called whenever the widget is as-
signed to a new OpenGL context. It is intended to contain
the OpenGL initialization code that comes before the first
call to paintGL() or resizeGL().

We will define these methods in our custom class GLWidget,
derived from the base class QGLWidget. An easy approach to
create a new C++ class in a Qt project is as follows: click at
File → New File or Project to open a dialog window (Fig.
6-(a)). Choose the C++ class template and fill-in all fields
(Fig. 6-(b)). Our base class is a QGLWidget and inherits from
QWidget. In Fig. 6-(c) we finish the class creation. Qt Creator
automatically creates both .h and .cpp files for the GLWidget

class (Listings 7 and 8). Notice that Qt does not automatically
declare virtual methods of the parent class. We add the code
for paintGL(),resizeGL() and initializeGL() on the class files,
as depicted in Listings 9 and 10.

#ifndef GLWIDGET_H
2 #define GLWIDGET_H

4 #include <QGLWidget >

6 class GLWidget : public QGLWidget
{

8 Q_OBJECT
public:

10 explicit GLWidget(QWidget *parent = 0);

12 signals:

14 public slots:

16 };

18 #endif // GLWIDGET_H

Listing 7. File glwidget.h: source code automatically generated by Qt
Creator.

#include "glwidget.h"
2

GLWidget :: GLWidget(QWidget *parent) :
4 QGLWidget(parent) { }

Listing 8. File glwidget.cpp: source code automatically generated by Qt
Creator.

...
2 class GLWidget : public QGLWidget

{
4 ...

protected:
6 void initializeGL ();

void resizeGL(int width , int height);
8 void paintGL ();

};

Listing 9. File glwidget.h: declaration of three methods in class GLWidget.

1 void GLWidget :: initializeGL ()
{

3 }

5 void GLWidget :: resizeGL(int width , int height)
{

7 }

9 void GLWidget :: paintGL ()
{

11 glClear(GL_COLOR_BUFFER_BIT);
}

Listing 10. File glwidget.cpp: first implementations.

Tip 3. There is an include file for each class of the QtOpenGL
Module. Several of these classes are used in our project.
Instead of including each one, we can simply write #include

<QtOpenGL> at glwidget.h. The complete listing of glwidget.h

is in Appendix A.

C. Design mode: promoting a QWidget to GLWidget

Now we need to add to the main window a widget that
displays the OpenGL graphics handled by our custom class
GLWidget. However, GLWidget is not in the list of UI components
available in the Design mode (Fig. 4-(A)). To overcome that
we will initially use the base widget QWidget of GLWidget as a
placeholder and then promote it to GLWidget.

Following the steps in Fig. 7, first we drag and drop an
Widget onto the object centralWidget (Fig. 7-(a)), creating
an object named widget of class QWidget. As we need that
the placeholder widget have the specialization of GLWidget, we
apply a Promote Operation: right-click on the widget object
and click on Promote to ... (Fig. 7-(b)). At the new dialog
window, type GLWidget at Promoted class name and select
QWidget at Base class name. Click on Add and finally click
on Promote (Fig. 7-(c)).

Tip 4. By default, widget has a fixed size. In order to
automatically adjust its size when MainWindow is resized, we
must set the sizePolicy – Horizontal/Vertical property of the
widget (Fig. 4-(D)) from the default option – Preferred – to
Expanding. Other resize policies are also available.

Tip 5. UI components can be consistently arranged within
widgets using Qt layout styles [15]. We can choose, for
instance, the Vertical, Horizontal or Grid layouts. In our
application, centralWidget is laid out vertically. In Design
mode, this is done by clicking at centralWidget and then either

pressing Ctrl+L or clicking on the icon in the Qt Creator
toolbar.

To run our application, either click on the icon Run in
the leftmost Qt Creator pane or press Ctrl+R.

(a)

(b)

(c)

Fig. 6. Creating the class GLWidget extended from QGLWidget: on (a) we select
C++ Class, on (b) we name the class, define the base class QGLWidget and set
type information Inherits QWidget. On (c) we finalize.

D. Introducing Signals and Slots

OpenGL applications using GLUT [2] make use of the
concept of callback functions to handle window events, input
device events and timers. With Qt, callback functions can be
avoided as it provides not only methods to handle events (Sec.
II-I) but also a mechanism for object intercommunication,

(a)

(b)

(c)

Fig. 7. Promoting the class QWidget to GLWidget.

named Signals and Slots [16].
A signal is emitted when an event associated to some sender

object is triggered, for instance, when a push button is clicked
in the UI. A slot, in turn, is a method of a receiver object
which is called in response to a particular signal. Slots can be
qualified as private, protected or public. Signals are implicitly
declared as protected. Differently from callback functions,
signal and slots are type-safe, i.e., the signature of a specific
sender signal must match the signature of the receiver slot. The

complete description of signals and slots is found on [16].
First we will show how to connect a pre-defined signal to a

pre-defined slot for creating an Exit push button that quits the
application. At Design mode, drag and drop a QPushButton
to centralWidget and change the text property of this newly
created button from PushButton to Exit (Fig. 8-(a)).

The signal corresponds to the event of pressing the button. It
is associated to the method clicked() of the object pushButton

of QPushButton class. The slot quits the application. It is
associated to the method close() of the object MainWindow of
QMainWindow class. Qt Creator provides different ways to make
this signal/slot connection. We will show how to do that in
the Design mode.

Click at the Signal & Slots Editor tab (highlighted at Fig.
8-(b)). At this moment, there is no signal/slot connection as
shown in Fig. 8-(a). To add our first signal/slot connection,
click on the icon. A row with four combo boxes appears,
which are changed as follows:

• Sender combo box: select pushButton;
• Signal combo box: select the signal clicked() of

pushButton;
• Receiver combo box: select MainWindow;
• Slot combo box: select the signal close() of MainWindow.

At this moment we had concluded our first signal/slot
connection.

(a)

(b)

Fig. 8. Signal/slot connection: on (a) we create a button, whereas on (b) we
make a signal/slot connection.

Now we will exemplify another signal/slot connection,
where the signal is pre-defined but the slot is customized.
We will create a checkbox button (Fig. 9) that toggles the
background color of the widget between white and black
using OpenGL commands. The signal is the action of toggling
the checkbox, whereas the slot is a method of GLWidget

that changes the OpenGL clear color. Before we make the
signal/slot connection, let us create the custom slot:

1) In Edit mode, declare the custom slot as shown in Listing
11;

2) In Edit mode, define the custom slot as shown in Listing
12;

3) In Design mode, insert the new signature of the custom
slot to the Signals/Slots dialog of the receiver object: to
open this dialog, right-click on widget and select Change
signals/slots. . . (Fig. 10-(a)). Note that this option is
only available to our custom OpenGL widget. Now click
at the plus button located right below the Slots list widget
(Fig. 10-(b)) and enter the signature of the custom slot:
toggleBackgroundColor(bool). Click OK to finish.

(a)

(b)

Fig. 9. Creating a checkbox button: on (a) we drag and drop a Check Box
to the centralWidget. On (b) we rename it and set its initial state to checked.

After these steps we proceed as in the previous signal/slot
connection example:

• Sender combo box: select checkBox;
• Signal combo box: select the signal toggled(bool) of

checkBox;

(a)

(b)

Fig. 10. Inserting the new signature of the custom slot to the Signals/Slots
dialog: the menu on (a) is displayed after a right-click on the widget. On (b)
we add the new slot signature.

• Receiver combo box: select widget;
• Slot combo box: select the signal

toggleBackgroundColor(bool) of widget.
As type-safe methods, the signatures of both sender

and receiver methods must match. The parameter of
toggleBackgroundColor() must be of the same type of toggled()
– the bool type. It is also acceptable for a signal to have a
signature with more arguments than a slot has. In this case
the extra arguments are ignored [16].

...
2 class GLWidget : public QGLWidget

{
4 ...

public slots:

6 void toggleBackgroundColor(bool toBlack);
...

8 };
#endif // GLWIDGET_H

Listing 11. File glwidget.h: defining a slot.

1 void GLWidget :: toggleBackgroundColor(bool toBlack)
{

3 if (toBlack)
glClearColor (0, 0, 0, 1);

5 else
glClearColor (1, 1, 1, 1);

7
updateGL ();

9 }

Listing 12. File glwidget.cpp: implementing the slot.

Obs 1. Observe in Listing 12 the QGLWidget command
updateGL(). We will use it whenever we need to repaint the
widget.

E. Loading a Geometric Model

Our OpenGL application displays a triangular mesh model
loaded from a file in Object File Format (OFF) format [17].
The user can choose the OFF file from a file selection dialog,
accessed by File → Open on the menuBar.

To create such options File → Open, at Design mode click
at Type Here on the menuBar and rename it to File. Qt Creator
automatically creates the object menuFile of the class QMenu and
opens a submenu. Click at Type Here on the submenu and
change it to Open. Qt Creator automatically creates the object
actionOpen of the class QAction.

We want that, whenever the user selects Open at menu bar,
the emitted signal, QAction::triggered(), connects to a slot that
displays a file selection dialog. We declare the slot as shown
in Line 27 at Appendix A and define it as shown in Listing
13.

1 void GLWidget :: showFileOpenDialog ()
{

3 QByteArray fileFormat = "off";
QString fileName;

5 fileName = QFileDialog :: getOpenFileName(this ,
"Open File",

7 QDir:: homePath (),
QString("%1 Files (*.%2)")

9 .arg(QString(fileFormat.toUpper ()))
.arg(QString(fileFormat)));

11 if (! fileName.isEmpty ()) {
readOFFFile(fileName);

13
genNormals ();

15 genTexCoordsCylinder ();
genTangents ();

17
createVBOs ();

19 createShaders ();

21 updateGL ();
}

23 }

Listing 13. File glwidget.cpp: slot showFileOpenDialog().

Before detailing the new commands in the previous listing,
let us conclude this signal/slot connection:

• Sender combo box: select actionOpen;
• Signal combo box: select the signal triggered() of

actionOpen;
• Receiver combo box: select widget;
• Slot combo box: select the signal showFileOpenDialog()

of widget.

In Listing 13, Line 5, the method
QFileDialog::getOpenFileName() displays file open dialog
box and returns the string containing the complete file path.
At Line 12, the string is passed to the method readOFFFile()

(Listing 14), which reads the OFF file using the C++ Standard
Library class std::ifstream. In the array GLWidget::vertices,
the mesh vertices are stored as QVector4D objects. The face
indices are stored in the array GLWidget::indices as unsigned

int values. The number of vertices and faces are stored in
GLWidget::numVertices and GLWidget::numFaces, respectively.
This method also centers and resizes the mesh.

1 void GLWidget :: readOFFFile(const QString &fileName)
{

3 std:: ifstream stream;
stream.open(fileName.toAscii (), std:: ifstream ::in);

5
if (! stream.is_open ()) {

7 qWarning("Cannot open file.");
return;

9 }

11 std:: string line;

13 stream >> line;
stream >> numVertices >> numFaces >> line;

15
delete [] vertices;

17 vertices = new QVector4D[numVertices];

19 delete [] indices;
indices = new unsigned int[numFaces * 3];

21
if (numVertices > 0) {

23 double minLim = std:: numeric_limits <double >::min();
double maxLim = std:: numeric_limits <double >::max();

25 QVector4D max(minLim , minLim , minLim , 1.0);
QVector4D min(maxLim , maxLim , maxLim , 1.0);

27
for (unsigned int i = 0; i < numVertices; i++) {

29 double x, y, z;
stream >> x >> y >> z;

31 max.setX(qMax(max.x(), x));
max.setY(qMax(max.y(), y));

33 max.setZ(qMax(max.z(), z));
min.setX(qMin(min.x(), x));

35 min.setY(qMin(min.y(), y));
min.setZ(qMin(min.z(), z));

37
vertices[i] = QVector4D(x, y, z, 1.0);

39 }

41 QVector4D midpoint = (min + max) * 0.5;
double invdiag = 1 / (max - min).length ();

43
for (unsigned int i = 0; i < numVertices; i++) {

45 vertices[i] = (vertices[i] - midpoint)*invdiag;
vertices[i].setW (1);

47 }
}

49
for (unsigned int i = 0; i < numFaces; i++) {

51 unsigned int a, b, c;
stream >> line >> a >> b >> c;

53 indices[i * 3] = a;
indices[i * 3 + 1] = b;

55 indices[i * 3 + 2] = c;
}

57
stream.close();

59 }

Listing 14. File glwidget.cpp: method readOFFFile().

In Listing 13, Line 14, the method genNormal() (Listing 15)
estimates the normals at the mesh vertices and stores them in
the array GLWidget::normals of QVector3D objects.

1 void GLWidget :: genNormals ()
{

3 delete [] normals;
normals = new QVector3D[numVertices];

5
for (unsigned int i = 0; i < numFaces; i++) {

7 unsigned int i1 = indices[i * 3];
unsigned int i2 = indices[i * 3 + 1];

9 unsigned int i3 = indices[i * 3 + 2];

11 QVector3D v1 = vertices[i1]. toVector3D ();
QVector3D v2 = vertices[i2]. toVector3D ();

13 QVector3D v3 = vertices[i3]. toVector3D ();

15 QVector3D faceNormal = QVector3D :: crossProduct(v2 -
v1, v3 - v1);

normals[i1] += faceNormal;
17 normals[i2] += faceNormal;

normals[i3] += faceNormal;
19 }

21 for (unsigned int i = 0; i < numVertices; i++)
normals[i]. normalize ();

23 }

Listing 15. File glwidget.cpp: method genNormals().

In Listing 13, Line 15, the method genTexCoordsCylinder()

(Listing 16) generates cylindrical texture coordinates for the
mesh vertices. They are stored in the array GLWidget::texCoords

of QVector2D objects.

1 void GLWidget :: genTexCoordsCylinder ()
{

3 delete [] texCoords;
texCoords = new QVector2D[numVertices];

5
double minLim = std:: numeric_limits <double >::min();

7 double maxLim = std:: numeric_limits <double >::max();
QVector2D max(minLim , minLim);

9 QVector2D min(maxLim , maxLim);

11 for (unsigned int i = 0; i < numVertices; i++) {
QVector2D pos = vertices[i]. toVector2D ();

13 max.setX(qMax(max.x(), pos.x()));
max.setY(qMax(max.y(), pos.y()));

15 min.setX(qMin(min.x(), pos.x()));
min.setY(qMin(min.y(), pos.y()));

17 }

19 QVector2D size = max - min;
for (unsigned int i = 0; i < numVertices; i++) {

21 double x = 2.0 * (vertices[i].x() - min.x()) /
size.x() - 1.0;

23 texCoords[i] = QVector2D(acos(x) / M_PI ,
(vertices[i].y() - min.y()) /

25 size.y());
}

27 }

Listing 16. File glwidget.cpp: method genTexCoordsCylinder().

In Listing 13, Line 16, the method genTangents() (Listing
17) estimates per-vertex tangent vectors required by Normal
Mapping [10]. Our code is based on the method described by
Lengyel [18], [19]. The tangent vectors are stored in the array
GLWidget::tangents of QVector4D objects.

1 void GLWidget :: genTangents ()
{

3 delete [] tangents;

5 tangents = new QVector4D[numVertices];
QVector3D *bitangents = new QVector3D[numVertices];

7
for (unsigned int i = 0; i < numFaces; i++) {

9 unsigned int i1 = indices[i * 3];
unsigned int i2 = indices[i * 3 + 1];

11 unsigned int i3 = indices[i * 3 + 2];

13 QVector3D E = vertices[i1]. toVector3D ();
QVector3D F = vertices[i2]. toVector3D ();

15 QVector3D G = vertices[i3]. toVector3D ();

17 QVector2D stE = texCoords[i1];
QVector2D stF = texCoords[i2];

19 QVector2D stG = texCoords[i3];

21 QVector3D P = F - E;
QVector3D Q = G - E;

23
QVector2D st1 = stF - stE;

25 QVector2D st2 = stG - stE;

27 QMatrix2x2 M;
M(0,0) = st2.y(); M(0,1) = -st1.y();

29 M(1,0) = -st2.x(); M(1,1) = st1.x();
M *= (1.0 / (st1.x()*st2.y() - st2.x()*st1.y()));

31
QVector4D T = QVector4D(M(0,0)*P.x()+M(0,1)*Q.x(),

33 M(0,0)*P.y()+M(0,1)*Q.y(),
M(0,0)*P.z()+M(0,1)*Q.z(),

35 0.0);

37 QVector3D B = QVector3D(M(1,0)*P.x()+M(1,1)*Q.x(),
M(1,0)*P.y()+M(1,1)*Q.y(),

39 M(1,0)*P.z()+M(1,1)*Q.z());

41 tangents[i1] += T;
tangents[i2] += T;

43 tangents[i3] += T;

45 bitangents[i1] += B;
bitangents[i2] += B;

47 bitangents[i3] += B;
}

49
for (unsigned int i = 0; i < numVertices; i++) {

51 const QVector3D& n = normals[i];
const QVector4D& t = tangents[i];

53
tangents[i] = (t - n * QVector3D :: dotProduct(n,

55 t.toVector3D ())).normalized ();

57 QVector3D b = QVector3D :: crossProduct(n,
t.toVector3D ());

59 double hand = QVector3D :: dotProduct(b,
bitangents[i]);

61 tangents[i].setW((hand < 0.0) ? -1.0 : 1.0);
}

63
delete [] bitangents;

65 }

Listing 17. File glwidget.cpp: Method genTangents().

The remaining methods, createVBOs() and createShaders(),
will be detailed in due course.

F. Encapsulating Resources

Graphics applications commonly make use of external asset
files such as textures, icons, XML data and other text or binary
files.

Qt provides a mechanism called Resource System [20]
that stores external binary and text files into the application
executable, encapsulating both application and their resources
into a single binary file. This embedment of resource files is
done during the build process. In our application, we will use
this mechanism to store textures and GLSL programs.

In order to use the Resource System, we first add to our Qt
project a resource collection file [20]. This is an XML file, with
extension .qrc, that lists the resource files to be embedded.
Again, we do not have to edit this XML file directly because
Qt Creator provides a friendly interface, the Resource Editor,
for managing resources (Fig. 12).

In Qt Creator, first select File→New File or Project then
select Qt and Qt Resource file (Fig. 11-(a)). We name it
resources.qrc (Fig. 11-(b)).

Double click the file resources.qrc at Qt Creator to open the
Resource Editor. Before we include the resource files, we must
create a path prefix to organize the lists of files. We will create
two prefixes, one for GLSL programs and other for texture
files. Click at Add → Add Prefix and type /shaders. Repeat
the process and type /textures. Now, to include resource files,
click at the corresponding prefix and at Add → Add Files
(Fig. 12). In Sections II-G and II-L we show how to access
these resources.

(a)

(b)

Fig. 11. Creating a Resource System using Qt Creator: on (a) we select the
option Qt Resource file. On (b) we name our Resource System as resources.

Obs 2. Resource files embedded into the application exe-
cutable are only accessible by Qt classes. For instance, if we
want to open a text file managed by the Resource System,
we cannot do that using std::ifstream, instead we should use
QFile [21].

Obs 3. If we try to run the application but Qt Creator produces
an error message related to resource files, make sure to run
Qmake by selecting, on the Qt Creator menu bar, Build →
Run qmake before trying to run the application again.

G. OpenGL Shaders and Qt

Qt provides facilities to handle GLSL shaders and shader
programs. Qt Creator features a built-in GLSL editor, while
the QtOpenGL Module implements the classes QGLShader and
QGLShaderProgram. The former class allows OpenGL shaders
to be compiled and the later class allows OpenGL shader
programs to be linked and bound to the OpenGL pipeline.
In the Qt Creator, GLSL shaders can be included into the Qt
project similarly as adding C++ classes and resources.

Fig. 12. Using the Resource System in our application: there are two prefixes,
/shaders and /textures.

In our application, the user can use the keyboard to select
among four shader effects that render a:

• Gouraud shaded model;
• Phong shaded model;
• Phong shaded model with texture mapping;
• Phong shaded model with normal mapping.
The source code of these shaders are listed in Appendix C.
When the user selects a shader effect, the previously se-

lected is firstly released from the OpenGL pipeline in order
to the shaders of the current effect be compiled, linked and
bound to the OpenGL application in run time. Details about
compiling, linking and binding GLSL shaders are found in [8],
[9], [10].

In Listing 18, we present our methods responsible to release
and destroy the previous shader program and to compile and
link the new one. The binding will be done in the paintGL()

method (Sec. II-M, Listing 27).
It is worth to mention that we opt to use Qt Resource System

to store our GLSL shaders. However, we could instead load
them as text strings into the C++ sources or from external files
[8], [9], [10].

In order to load the shader files managed by the Qt Resource
System to the application, their paths must begin with a
colon followed by the resource prefix that we specified in the
Resource Editor, i.e., :/shaders (Listing 18, Lines 5 and 11).
On Lines 18 and 22 we create QGLShader objects for vertex
and fragment shaders. On Lines 19 and 23 the corresponding
GLSL source files stored in the Resource System are compiled.
In our application, only the vertex and fragment shaders of the
currently selected effect are compiled.

After compiling the shaders (using compileSourceFile()),
we add (addShader()) them to the object shaderProgram of
class QGLShaderProgram (Lines 27 and 28) and link (link())

the shader program (Line 30).

1 void GLWidget :: createShaders ()
{

3 destroyShaders ();

5 QString vertexShaderFile [] = {
":/ shaders/vgouraud.glsl",

7 ":/ shaders/vphong.glsl",
":/ shaders/vtexture.glsl",

9 ":/ shaders/vnormal.glsl"
};

11 QString fragmentShaderFile [] = {
":/ shaders/fgouraud.glsl",

13 ":/ shaders/fphong.glsl",
":/ shaders/ftexture.glsl",

15 ":/ shaders/fnormal.glsl"
};

17
vertexShader = new QGLShader(QGLShader :: Vertex);

19 if (! vertexShader ->compileSourceFile(vertexShaderFile[
currentShader]))

qWarning () << vertexShader ->log();
21

fragmentShader = new QGLShader(QGLShader :: Fragment);
23 if (! fragmentShader ->compileSourceFile(

fragmentShaderFile[currentShader]))
qWarning () << fragmentShader ->log();

25
shaderProgram = new QGLShaderProgram;

27 shaderProgram ->addShader(vertexShader);
shaderProgram ->addShader(fragmentShader);

29
if (! shaderProgram ->link())

31 qWarning () << shaderProgram ->log() << endl;
}

33
void GLWidget :: destroyShaders ()

35 {
delete vertexShader;

37 vertexShader = NULL;

39 delete fragmentShader;
fragmentShader = NULL;

41
if (shaderProgram) {

43 shaderProgram ->release ();
delete shaderProgram;

45 shaderProgram = NULL;
}

47 }

Listing 18. File glwidget.cpp: methods destroyShaders() and
createShaders().

In Sec. II-M, where the method paintGL() is detailed, we
will present how to set up the input attributes and uniform
variables of the shader program currently in use.

H. Buffer Objects

For a long time, the OpenGL’s immediate mode and display
lists [9] have been the standard approach to upload rendering
data to the graphics server, but both features are now dep-
recated. Another option is to use OpenGL vertex arrays, but
they are stored in the client side, which means that they must
be sent to the server every time the scene is updated.

The concept of Vertex Buffer Objects (VBOs) [8], [22],
introduced in OpenGL 1.5, allows the direct manipulation of
the data stored in the server side. This is the approach used
in our examples.

Qt provides the class QGLBuffer [23] to handle buffer ob-
jects. In our application we make use of four vertex buffers,
according to Listing 19:

• vboVertices: vertex positions of type QVector4D (Line 5);
• vboNormals: vertex normals of type QVector3D (Line 13);
• vboTexCoords: texture coordinates of type QVector2D (Line

21);
• vboTangents: tangent vectors of type QVector4D (Line 29).

For each vertex buffer, we first create a buffer object using
the parameter QGLBuffer::VertexBuffer in the constructor of
QGLBuffer. We then create (create()) the buffer in the server
and associate (bind()) it to the current OpenGL context. Since
our vertex data will be set only once and used many times
for rendering, we set the QGLBuffer::StaticDraw usage pattern
at setUsagePattern(). Additional patterns can be found in the
documentation [23].

We use the method allocate() to send the vertex data to the
VBO as a contiguous untyped data. According to the specified
usage pattern, OpenGL will decide where the data must be
stored and when it must be sent [22]. Lastly, we can delete
the array of vertex attributes passed to allocate() because it
was already copied to the VBO.

We also create a buffer object to the indices of the mesh
triangles (vboIndices, Lines 37–43). It only differs from vertex
buffers, on the use of QGLBuffer::IndexBuffer in the construc-
tor.

void GLWidget :: createVBOs ()
2 {

destroyVBOs ();
4

vboVertices = new QGLBuffer(QGLBuffer :: VertexBuffer);
6 vboVertices ->create ();

vboVertices ->bind();
8 vboVertices ->setUsagePattern(QGLBuffer :: StaticDraw);

vboVertices ->allocate(vertices , numVertices *
10 sizeof(QVector4D));

delete [] vertices;
12 vertices = NULL;

14 vboNormals = new QGLBuffer(QGLBuffer :: VertexBuffer);
vboNormals ->create ();

16 vboNormals ->bind();
vboNormals ->setUsagePattern(QGLBuffer :: StaticDraw);

18 vboNormals ->allocate(normals , numVertices *
sizeof(QVector3D));

20 delete [] normals;
normals = NULL;

22
vboTexCoords = new QGLBuffer(QGLBuffer :: VertexBuffer);

24 vboTexCoords ->create ();
vboTexCoords ->bind();

26 vboTexCoords ->setUsagePattern(QGLBuffer :: StaticDraw);
vboTexCoords ->allocate(texCoords , numVertices *

28 sizeof(QVector2D));
delete [] texCoords;

30 texCoords = NULL;

32 vboTangents = new QGLBuffer(QGLBuffer :: VertexBuffer);
vboTangents ->create ();

34 vboTangents ->bind();
vboTangents ->setUsagePattern(QGLBuffer :: StaticDraw);

36 vboTangents ->allocate(tangents , numVertices *
sizeof(QVector4D));

38 delete [] tangents;
tangents = NULL;

40
vboIndices = new QGLBuffer(QGLBuffer :: IndexBuffer);

42 vboIndices ->create ();
vboIndices ->bind();

44 vboIndices ->setUsagePattern(QGLBuffer :: StaticDraw);
vboIndices ->allocate(indices , numFaces * 3 *

46 sizeof(unsigned int));
delete [] indices;

48 indices = NULL;
}

50
void GLWidget :: destroyVBOs ()

52 {
if (vboVertices) {

54 vboVertices ->release ();
delete vboVertices;

56 vboVertices = NULL;
}

58
if (vboNormals) {

60 vboNormals ->release ();
delete vboNormals;

62 vboNormals = NULL;
}

64

if (vboTexCoords) {
66 vboTexCoords ->release ();

delete vboTexCoords;
68 vboTexCoords = NULL;

}
70

if (vboTangents) {
72 vboTangents ->release ();

delete vboTangents;
74 vboTangents = NULL;

}
76

if (vboIndices) {
78 vboIndices ->release ();

delete vboIndices;
80 vboIndices = NULL;

}
82 }

Listing 19. File glwidget.cpp: methods createVBOs() and destroyVBOs().

Obs 4. A key feature of the buffer objects is their capability to
map their data into the client side. These allow us to efficiently
update VBO data. In Listing 20 we show a simple example,
where the methods map()/unmap() are employed to this purpose.
Further options of buffer object mappings are found in [23].

vboVertices ->setUsagePattern(QGLBuffer :: DynamicDraw);
2 ...

vboVertices ->bind();
4 QVector4D* pt = (QVector4D *) vboVertices ->map(QGLBuffer ::

WriteOnly);
// change here the VBO data by directly manipulating pt array

6 ...
vboVertices ->unmap();

Listing 20. An example of mapping VBO data into client side.

I. Mouse and Keyboard Events

So far we learnt with signals and slots how to communicate
between Qt objects. In this section, we will see that Qt
also offers the capability to handle events from the window
system [24]. In particular, we are interested in events generated
by mouse and keyboard. Recalling GLUT, the mouse and
keyboard events are handled by callback functions [2]. Qt, in
turn, provides virtual methods in QGLWidget which are called
in response to mouse or keyboard events.

In Listing 21 we present the method keyPressEvent() that
handles keyboard events. This is the method responsible to
switch among the shader effects (Sec. II-G) by pressing the
keys 0 (Gouraud shading), 1 (Phong shading), 2 (Phong +
texture) and 3 (normal mapping). Also, pressing the escape
key, the application quits (qApp is a Qt global pointer to the
unique application object).

void GLWidget :: keyPressEvent(QKeyEvent *event)
2 {

switch(event ->key())
4 {

case Qt::Key_0:
6 currentShader = 0;

createShaders ();
8 updateGL ();

break;
10 case Qt::Key_1:

currentShader = 1;
12 createShaders ();

updateGL ();
14 break;

case Qt::Key_2:
16 currentShader = 2;

createShaders ();
18 updateGL ();

break;
20 case Qt::Key_3:

currentShader = 3;

22 createShaders ();
updateGL ();

24 break;
case Qt:: Key_Escape:

26 qApp ->quit();
}

28 }

Listing 21. File glwidget.cpp: method keyPressEvent().

Obs 5. By default, widgets are set to not receive the keyboard
or mouse focus. Therefore they will not catch any events from
such input devices. In order to ensure that GLWidget will receive
focus, we change (in Design mode) the focusPolicy property
to a policy differing from the default Qt::NoFocus. In our
application, we use Qt::StrongFocus, as it allows the widget
to receive focus by both tabbing and clicking.

We also handle mouse events (Listing 22) for manipulating
a virtual trackball. Appendix D presents the class TrackBall.
This class implements the methods mouseMove(), mousePress()

and mouseRelease() which are called in the event handlers
in Listing 22. The only parameter of these trackball class
methods is the current mouse position (event->posF()). For
the wheelEvent() we simply implement a zooming operation,
where event->delta() provides the distance that the mouse
wheel is rotated (in eights of a degree).

void GLWidget :: mouseMoveEvent(QMouseEvent *event)
2 {

trackBall.mouseMove(event ->posF());
4 }

6 void GLWidget :: mousePressEvent(QMouseEvent *event)
{

8 if (event ->button () & Qt:: LeftButton)
trackBall.mousePress(event ->posF());

10 }

12 void GLWidget :: mouseReleaseEvent(QMouseEvent *event)
{

14 if (event ->button () == Qt:: LeftButton)
trackBall.mouseRelease(event ->posF());

16 }

18 void GLWidget :: wheelEvent(QWheelEvent *event)
{

20 zoom += 0.001 * event ->delta();
}

Listing 22. File glwidget.cpp: methods for mouse events used by the virtual
trackball and for zooming.

J. Matrix and Vector classes

Qt provides a set of classes of vectors (QVector2D, QVector3D,
and QVector4D) and matrices (QMatrix2x2, QMatrix2x3, . . . ,
QMatrix4x3, QMatrix4x4) to work with geometric transforma-
tions and camera settings. Their contents can be bound to
shader attributes declared as native data types vec2, vec3, vec4,
mat2, mat3, mat4 or shader arrays, using methods of the class
QGLShaderProgram. This binding procedure is shown in Sec.
II-M.

In GLWidget, we declare two QMatrix4x4 objects,
modelViewMatrix and projectionMatrix (App. A). In our
application, they will replace the deprecated OpenGL matrix
modes GL_MODELVIEW and GL_PROJECTION, respectively. However,
we are now under the object-oriented paradigm, instead of
the traditional state-machine OpenGL.

In the method resizeGL(), in Listing 23, we set up
projectionMatrix. First we initialize the projection matrix to
the identity matrix (equivalent to a call of glLoadIdentity()

under glMatrixMode(GL_PROJECTION)). We then right-multiply it-
self by the matrix corresponding to the perspective projection,
using the method QMatrix4x4::perspective(). This method has
the same parameters of gluPerspective().

1 void GLWidget :: resizeGL(int width , int height)
{

3 glViewport (0, 0, width , height);

5 projectionMatrix.setToIdentity ();
projectionMatrix.perspective (60.0,

7 static_cast <qreal >(width) /
static_cast <qreal >(height), 0.1, 20.0);

9
trackBall.resizeViewport(width , height);

11
updateGL ();

13 }

Listing 23. File glwidget.cpp: method resizeGL().

In the method paintGL() (Listing 27), we set up
modelViewMatrix. As projectionMatrix, we first set it to
the identity matrix. After that, we use the method
QMatrix4x4::lookAt() which, similarly to gluLookAt(), creates
a viewing matrix derived from the triple: a observer point,
a look-at point and an up-vector. We also apply two ge-
ometric transformations: first a rotation, provided by the
trackball object (App. D), and second a translation. No-
tice that, as the deprecated OpenGL geometric transforma-
tions (glTranslate/glRotate/glScale), Qt matrix transforma-
tions correspond to right-multiplications.

Obs 6. QMatrix4x4 provides other matrix transformation meth-
ods, e.g., projection matrices frustum(), ortho() and the
geometric transformation scale(). Overloaded operators for
matrix-matrix and matrix-vector operations are also provided.
Further methods as well as their details are found in the
QMatrix4x4 documentation [25].

K. Signals/Slots – Part 2

So far we learnt how to work with signals/slots using Qt
Creator. In this section we show other objects, not directly
related to UI, that are also able to intercommunicate using
signals/slots.

We exemplify with an instance of the class QTimer, timer,
declared in GLWidget. It emits signals to widget in order to
repaint the OpenGL window during the application’s idle time.

Instead of defining the signal/slot connection in Design
mode, we do that directly in the source code. In Listing 26,
Line 12, the Qt command connect() connects the pre-defined
signal timeout() emitted by timer to the custom slot animate()
(Listing 24) of the widget. In Line 13 of Listing 26, we start
the timer with a timeout interval of zero milliseconds, which
means that a timeout signal will be emitted whenever the
application is idle.

1 void GLWidget :: animate ()
{

3 updateGL ();
}

Listing 24. File glwidget.cpp: slot method animate().

We also exemplify a custom signal defined in our class
GLWidget that connects to a pre-defined slot. This signal will
be connected to a slot of the status bar that shows on it the
number of vertices and faces of the loaded mesh. When the
mesh model is successfully loaded in readOFFFile() (Listing
14), widget emits the statusBarMessage() signal. This is done
by inserting Lines 4-6 to the end of readOFFFile(), as shown
in Listing 25. We create the connection in Design mode,
associating our custom signal statusBarMessage() from widget

to the pre-defined slot showMessage() of statusBar.

void GLWidget :: readOFFFile(const QString &fileName)
2 {

...
4 emit statusBarMessage(QString("Samples %1, Faces %2")

.arg(numVertices)
6 .arg(numFaces));

}

Listing 25. File glwidget.cpp: inserting a signal emitted from the method
readOFFFile().

Obs 7. Signals do not need to be defined, only declared: in this
last example we do not define the method statusBarMessage();
it is only declared in GLWidget (Listing 30, Lines 22 and 23)
using the reserved Qt keyword signals.

L. Texture Mapping
We will use two texture maps: a diffuse map and a

normal map [8]. In Listing 26, Lines 5-6, we create the
objects texColor and texNormal of class QImage by loading
image files from the resource collection file. After that, in
Lines 7-10 we generate corresponding 2D GL textures for
the first two texture units (GL_TEXTURE0 and GL_TEXTURE1). The
method QGLWidget::bindTexture() calls the OpenGL command
glGenTextures(), binds the new texture and returns the texture
identifier for future usage.

void GLWidget :: initializeGL ()
2 {

glEnable(GL_DEPTH_TEST);
4

QImage texColor= QImage(":/ textures/bricksDiffuse.png");
6 QImage texNormal= QImage(":/ textures/bricksNormal.png");

glActiveTexture(GL_TEXTURE0);
8 texID [0] = bindTexture(texColor);

glActiveTexture(GL_TEXTURE1);
10 texID [1] = bindTexture(texNormal);

12 connect (&timer ,SIGNAL(timeout ()), this ,SLOT(animate ()));
timer.start (0);

14 }

Listing 26. File glwidget.cpp: method initializeGL().

Obs 8. The concept of pixel buffer objects is another op-
tion to work with textures in OpenGL. The class QGLBuffer

supports pixel buffer objects by using the Qt buffer types
QGLBuffer::PixelPackBuffer and QGLBuffer::PixelUnpackBuffer.
One of the advantages of pixel buffer objects is the asyn-
chronous communication between the CPU and the GPU,
which is useful, for instance, in applications where the textures
need to be changed in run time [22].

M. The method paintGL()

The method paintGL() (Listing 27) is called whenever the
OpenGL scene must be redisplayed. For each call, paintGL()

performs the following tasks:

1) The model-view transformations;
2) The binding of the shader program;
3) The uploading of the uniform data to the GPU;
4) The binding of the buffer objects and textures to the

GPU;
5) The releasing of the buffer objects and the shader

program.
The model-view transformations (Lines 8-11) were afore-

mentioned in Sec. II-J. After binding the shader pro-
gram (Line 13), we upload the matrices modelViewMatrix

and projectionMatrix to the mat4 uniform shader variables
modelViewMatrix and projectionMatrix (see the vertex shaders
in App. C). We also upload the transpose of the inverse of
the top-left 3× 3 part of modelViewMatrix to the mat3 uniform
variable normaMatrix (Line 17). This matrix is used to apply
the model-view transformation to the vertex normals. In Lines
19-28, we upload the coefficients of the Phong lighting model
(we assume only one light source).

The texturing code is shown in Lines 33-37. First we assign
the sampler shader variables texColorMap and texNormalMap to
the first two texture units (Lines 33-34). We see in the fragment
shader ftexture.glsl (Listings 36) the use of texColorMap,
whereas in the fragment shader fnormal.glsl (Listing 38) the
use of both texColorMap and texNormalMap. Finally, in Lines 33-
36 we bind both textures to the corresponding texture units.
Here we use the native OpenGL command glBindTexture(),
passing as parameters the texture identifiers that we kept from
the last call to QGLWidget::bindTexture() when the textures
were created (as shown in Sec. II-L, Listing 26).

In Lines 38-53 we bind the different buffer objects
and assign them to the corresponding shader program at-
tributes. For instance, in Lines 38-40, vboVertices is bound.
shaderProgram enables the array attribute vPosition (see its
declaration on the vertex shaders in App. C) and finally,
the method QGLShaderProgram::setAttributeBuffer() formats
vPosition, where its parameters are: the type of elements in the
vertex array, the starting position in the bound buffer object,
the number of per vertex components and the stride between
consecutive vertices.

Just before calling the native OpenGL command
glDrawElements() to draw the mesh, we bind the index
buffer in Line 54.

The method paintGL() ends with the releasing of all buffer
objects as well as of the shader program.

Obs 9. In our application, the uploading of shader vari-
ables and the binding of shader attributes in paintGL() is
done irrespective of the shader effect currently set. This is
acceptable because any variables and attributes not referenced
in the shader program are simply ignored. For instance,
the shader program for rendering a non-textured model with
Phong shading does not require texture coordinates or tangent
vectors passed as attributes. In such case, the binding of the
corresponding buffer objects and textures are ignored.

Obs 10. The set up of shader attributes could be done
outside paintGL() just after the model is loaded and the shader

program is created, assuming that our application is composed
of only one mesh model rendered with only one shader effect.
Also, since the contents of our textures do not change along the
execution of our application, we could perform the texturing
work only once. However, we opt to leave these commands at
paintGL() as it is done in more sophisticate applications with
several mesh models, shader effects and textures.

void GLWidget :: paintGL ()
2 {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
4

if (! vboVertices)
6 return;

8 modelViewMatrix.setToIdentity ();
modelViewMatrix.lookAt(camera.eye ,camera.at,camera.up);

10 modelViewMatrix.translate(0, 0, zoom);
modelViewMatrix.rotate(trackBall.getRotation ());

12
shaderProgram ->bind();

14
shaderProgram ->setUniformValue("modelViewMatrix",

modelViewMatrix);
16 shaderProgram ->setUniformValue("projectionMatrix",

projectionMatrix);
shaderProgram ->setUniformValue("normalMatrix",

modelViewMatrix.normalMatrix ());
18

QVector4D ambientProduct = light.ambient * material.
ambient;

20 QVector4D diffuseProduct = light.diffuse * material.
diffuse;

QVector4D specularProduct = light.specular * material.
specular;

22
shaderProgram ->setUniformValue("lightPosition", light.

position);
24 shaderProgram ->setUniformValue("ambientProduct",

ambientProduct);
shaderProgram ->setUniformValue("diffuseProduct",

diffuseProduct);
26 shaderProgram ->setUniformValue("specularProduct",

specularProduct);
shaderProgram ->setUniformValue(

28 "shininess", static_cast <GLfloat >(material.
shininess));

30 shaderProgram ->setUniformValue("texColorMap", 0);
shaderProgram ->setUniformValue("texNormalMap", 1);

32
glActiveTexture(GL_TEXTURE0);

34 glBindTexture(GL_TEXTURE_2D , texID [0]);
glActiveTexture(GL_TEXTURE1);

36 glBindTexture(GL_TEXTURE_2D , texID [1]);

38 vboVertices ->bind();
shaderProgram ->enableAttributeArray("vPosition");

40 shaderProgram ->setAttributeBuffer("vPosition", GL_FLOAT ,
0, 4, 0);

42 vboNormals ->bind();
shaderProgram ->enableAttributeArray("vNormal");

44 shaderProgram ->setAttributeBuffer("vNormal", GL_FLOAT ,
0, 3, 0);

46 vboTexCoords ->bind();
shaderProgram ->enableAttributeArray("vTexCoord");

48 shaderProgram ->setAttributeBuffer("vTexCoord", GL_FLOAT ,
0, 2, 0);

50 vboTangents ->bind();
shaderProgram ->enableAttributeArray("vTangent");

52 shaderProgram ->setAttributeBuffer("vTangent", GL_FLOAT ,
0, 4, 0);

54 vboIndices ->bind();

56 glDrawElements(GL_TRIANGLES , numFaces * 3,
GL_UNSIGNED_INT , 0);

58 vboIndices ->release ();
vboTangents ->release ();

60 vboTexCoords ->release ();
vboNormals ->release ();

62 vboVertices ->release ();
shaderProgram ->release ();

64 }

Listing 27. File glwidget.cpp: method paintGL().

N. Formatting the OpenGL context

Qt provides the class QGLFormat [26] that allows to specify
the display format of an OpenGL context. For instance, it
allows to set double or single buffering (double buffering by
default), alpha channel (disabled by default), stereo buffers
(disabled by default), the color mode (rgba by default), the
depth buffer (enabled by default) and antialiasing (disabled by
default). The functionalities of this class are similar to those
of the function glutInitDisplayMode().

We must format the OpenGL context prior to the creation of
GLWidget. In our application, we first create a QGLFormat object
format based on the default Qt format (Listing 28, Line 7) and
enable the support to antialiasing (Lines 8-9). After that we
set format to the new default OpenGL context format (Line
12). As can be noticed, this process is done in the main()

function before the creation of the MainWindow object. When
the MainWindow object is defined, our GLWidget automatically
creates an OpenGL context using the new default format.

#include <QtGui/QApplication >
2 #include <QGLFormat >

#include "mainwindow.h"
4

int main(int argc , char *argv [])
6 {

QGLFormat format = QGLFormat :: defaultFormat ();
8 format.setSampleBuffers(true);

format.setSamples (8);
10 if (! format.sampleBuffers ())

qWarning("Multisample buffer is not supported.");
12 QGLFormat :: setDefaultFormat(format);

14 QApplication a(argc , argv);
MainWindow w;

16 w.show();

18 return a.exec();
}

Listing 28. File main.cpp: setting the default format for the OpenGL context.

III. IMPROVING THE USER INTERFACE

So far the UI of our application is quite simple, as shown in
Fig. 13. Qt provides several other UI components to improve
the graphical interface of our application [4], [5]. In Fig. 14
we present a richer GUI with several tabs containing different
sets of components. On (a) we can select the shader either
by keyboard or by a combo box. On (b) we can change the
colors of the light and the materials in the Phong lighting
model by sliding dials. On (c) we can take a screenshot of
the OpenGL scene by pressing a push button (see App. F
for the source code of the slot associated to this button), we
can set the background color using a QColorDialog object, as
shown on (d), and we can toggle a check box to display the
frame rate as an overlaid text string rendered by the method
QGLWidget::renderText().

IV. FINAL CONSIDERATIONS

In this work we present how to develop an interactive
graphics application with the Qt framework, OpenGL and
GLSL using the Qt SDK. We show how such an application
is built with reasonably small effort while keeping coding
effectiveness. In our exposition we exploit programmable

Fig. 13. Simple Qt with OpenGL application.

(a) (b)

(c) (d)

Fig. 14. An improved Qt application with OpenGL: several tabs and
parameters can be tuned by the UI.

OpenGL pipeline features with Qt, e.g., buffer objects and
shader programs. In particular, we do not use OpenGL 3.0
deprecated functions. We employ the Qt object-oriented pro-
gram framework, allowing to encapsulate the newest OpenGL
functionalities while maintaining the source code clean and
organized.

We believe that OpenGL with Qt is a reasonable choice not
only to develop academic and professional applications, but
also to educational purposes as we have successfully applied
this combination on both graduate and undergraduate computer
graphics courses.

V. DIRECTIONS FOR FURTHER GRAPHICS-BASED QT
APPLICATIONS

The power of Qt for interactive graphics applications is not
limited to the scope of this presentation which relied on the

Qt OpenGL Module.
For instance, for 2D graphics applications, Qt provides the

classes QGraphicsScene and QPainter, which allow to draw and
organize complex 2D vector elements, text fonts and pixmaps
[4]. Furthermore, QPainter can be combined with QGLWidget

to render scenes with 2D and 3D graphics elements (see, for
instance, Qt Boxes Demo [27]).

Qt framework 5.0 will be released soon. This new major
release will feature the Qt3D Module [28], which implements a
scene graph using the Qt Meta Language QML. The scene can
be described by nodes that correspond to geometry, material,
effects and transformations.

Acknowledgments

The authors gratefully thank professor Siang Wun Song for
his valuable comments on this work. The authors also thank
professor Marcelo Walter, chair of SIBGRAPI’s Tutorial 2012.

APPENDIX A
GLWidget CLASS DECLARATION

1 #ifndef GLWIDGET_H
#define GLWIDGET_H

3
#include <QtOpenGL >

5
#include <iostream >

7 #include <fstream >
#include <limits >

9
#include "camera.h"

11 #include "light.h"
#include "material.h"

13 #include "trackball.h"

15 class GLWidget : public QGLWidget
{

17 Q_OBJECT
public:

19 explicit GLWidget(QWidget *parent = 0);
virtual ~GLWidget ();

21
signals:

23 void statusBarMessage(QString ns);

25 public slots:
void toggleBackgroundColor(bool toBlack);

27 void showFileOpenDialog ();
void animate ();

29
protected:

31 void initializeGL ();
void resizeGL(int width , int height);

33 void paintGL ();
void mouseMoveEvent(QMouseEvent *event);

35 void mousePressEvent(QMouseEvent *event);
void mouseReleaseEvent(QMouseEvent *event);

37 void wheelEvent(QWheelEvent *event);
void keyPressEvent(QKeyEvent *event);

39
private:

41 void readOFFFile(const QString &fileName);
void genNormals ();

43 void genTexCoordsCylinder ();
void genTangents ();

45 void createVBOs ();
void destroyVBOs ();

47 void createShaders ();
void destroyShaders ();

49
QPointF pixelPosToViewPos(const QPointF &p);

51
unsigned int numVertices;

53 unsigned int numFaces;
QVector4D *vertices;

55 QVector3D *normals;
QVector2D *texCoords;

57 QVector4D *tangents;
unsigned int *indices;

59
QGLBuffer *vboVertices;

61 QGLBuffer *vboNormals;

QGLBuffer *vboTexCoords;
63 QGLBuffer *vboTangents;

QGLBuffer *vboIndices;
65

QGLShader *vertexShader;
67 QGLShader *fragmentShader;

QGLShaderProgram *shaderProgram;
69 unsigned int currentShader;

71 int texID [2];

73 QMatrix4x4 modelViewMatrix;
QMatrix4x4 projectionMatrix;

75
Camera camera;

77 Light light;
Material material;

79
TrackBall trackBall;

81
double zoom;

83
QTimer timer;

85 };

Listing 29. Class GLWidget.

APPENDIX B
CONSTRUCTOR AND DESTRUCTOR OF GLWIDGET

1 GLWidget :: GLWidget(QWidget *parent) :
QGLWidget(parent)

3 {
vertices = NULL;

5 normals = NULL;
texCoords = NULL;

7 tangents = NULL;
indices = NULL;

9
vboVertices = NULL;

11 vboNormals = NULL;
vboTexCoords = NULL;

13 vboTangents = NULL;
vboIndices = NULL;

15
shaderProgram = NULL;

17 vertexShader = NULL;
fragmentShader = NULL;

19 currentShader = 0;

21 zoom = 0.0;

23 fpsCounter = 0;
}

25
GLWidget ::~ GLWidget ()

27 {
destroyVBOs ();

29 destroyShaders ();
}

Listing 30. File glwidget.cpp: constructor and destructor of GLWidget.

APPENDIX C
GLSL SHADERS

attribute vec4 vPosition;
2 attribute vec3 vNormal;

4 uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

6 uniform mat3 normalMatrix;

8 uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;

10 uniform vec4 specularProduct;
uniform float shininess;

12 uniform vec4 lightPosition;

14 void main()
{

16 vec4 eyePosition = modelViewMatrix * vPosition;
vec3 N = normalMatrix * vNormal;

18 vec3 L = lightPosition.xyz - eyePosition.xyz;
vec3 E = -eyePosition.xyz;

20 vec3 R = reflect(-E, N);

22 N = normalize(N);
L = normalize(L);

24 E = normalize(E);

26 float NdotL = dot(N, L);
float Kd = max(NdotL , 0.0);

28 float Ks = (NdotL < 0.0) ? 0.0 : pow(max(dot(R, E), 0.0)
, shininess);

30 vec4 diffuse = Kd * diffuseProduct;
vec4 specular = Ks * specularProduct;

32 vec4 ambient = ambientProduct;

34 gl_Position = projectionMatrix * eyePosition;
gl_FrontColor = ambient + diffuse + specular;

36 gl_FrontColor.a = 1.0;
}

Listing 31. File vgouraud.glsl.

1 void main()
{

3 gl_FragColor = gl_Color;
}

Listing 32. File fgouraud.glsl.

attribute vec4 vPosition;
2 attribute vec3 vNormal;

4 uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

6 uniform mat3 normalMatrix;

8 uniform vec4 lightPosition;

10 varying vec3 fN;
varying vec3 fE;

12 varying vec3 fL;

14 void main()
{

16 vec4 eyePosition = modelViewMatrix * vPosition;

18 fN = normalMatrix * vNormal;
fL = lightPosition.xyz - eyePosition.xyz;

20 fE = -eyePosition.xyz;

22 gl_Position = projectionMatrix * eyePosition;
}

Listing 33. File vphong.glsl.

1 varying vec3 fN;
varying vec3 fE;

3 varying vec3 fL;

5 uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;

7 uniform vec4 specularProduct;
uniform float shininess;

9
void main()

11 {
vec3 N = normalize(fN);

13 vec3 E = normalize(fE);
vec3 L = normalize(fL);

15 vec3 R = normalize (2.0 * dot(L, N) * N - L);

17 float NdotL = dot(N, L);
float Kd = max(NdotL , 0.0);

19 float Ks = (NdotL < 0.0) ? 0.0 : pow(max(dot(R, E), 0.0)
, shininess);

21 vec4 diffuse = Kd * diffuseProduct;
vec4 specular = Ks * specularProduct;

23 vec4 ambient = ambientProduct;

25 gl_FragColor = ambient + diffuse + specular;
gl_FragColor.a = 1.0;

27 }

Listing 34. File fphong.glsl.

1 attribute vec4 vPosition;
attribute vec3 vNormal;

3 attribute vec2 vTexCoord;

5 uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

7 uniform mat3 normalMatrix;

9 uniform vec4 lightPosition;

11 varying vec3 fN;
varying vec3 fE;

13 varying vec3 fL;
varying vec2 fTexCoord;

15
void main()

17 {
vec4 eyePosition = modelViewMatrix * vPosition;

19
fN = normalMatrix * vNormal;

21 fL = lightPosition.xyz - eyePosition.xyz;
fE = -eyePosition.xyz;

23 fTexCoord = vTexCoord;

25 gl_Position = projectionMatrix * eyePosition;
}

Listing 35. File vtexture.glsl.

varying vec3 fN;
2 varying vec3 fE;

varying vec3 fL;
4 varying vec2 fTexCoord;

6 uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;

8 uniform vec4 specularProduct;
uniform float shininess;

10
uniform sampler2D texColorMap;

12
void main()

14 {
vec3 N = normalize(fN);

16 vec3 E = normalize(fE);
vec3 L = normalize(fL);

18 vec3 R = normalize (2.0 * dot(L, N) * N - L);

20 float NdotL = dot(N, L);
float Kd = max(NdotL , 0.0);

22 float Ks = (NdotL < 0.0) ? 0.0 : pow(max(dot(R, E), 0.0)
, shininess);

24 vec4 diffuse = Kd * diffuseProduct;
vec4 specular = Ks * specularProduct;

26 vec4 ambient = ambientProduct;

28 gl_FragColor = (ambient + diffuse + specular) *
texture2D(texColorMap , fTexCoord);

30 gl_FragColor.a = 1.0;
}

Listing 36. File ftexture.glsl.

1 attribute vec4 vPosition;
attribute vec3 vNormal;

3 attribute vec2 vTexCoord;
attribute vec4 vTangent;

5
uniform mat4 modelViewMatrix;

7 uniform mat4 projectionMatrix;
uniform mat3 normalMatrix;

9
uniform vec4 lightPosition;

11
varying vec3 fE;

13 varying vec3 fL;
varying vec2 fTexCoord;

15
void main()

17 {
vec3 bitangent = vTangent.w * cross(vNormal , vTangent.

xyz);
19 vec3 T = normalMatrix * vTangent.xyz;

vec3 B = normalMatrix * bitangent;
21 vec3 N = normalMatrix * vNormal;

23 mat3 TBN = mat3(T.x, B.x, N.x,
T.y, B.y, N.y,

25 T.z, B.z, N.z);

27 vec4 eyePosition = modelViewMatrix * vPosition;
fL = TBN * (lightPosition.xyz - eyePosition.xyz);

29 fE = TBN * (-eyePosition.xyz);

31 fTexCoord = vTexCoord;

33 gl_Position = projectionMatrix * eyePosition;
}

Listing 37. File vnormal.glsl.

1 varying vec3 fE;
varying vec3 fL;

3 varying vec2 fTexCoord;

5 uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;

7 uniform vec4 specularProduct;
uniform float shininess;

9
uniform sampler2D texColorMap;

11 uniform sampler2D texNormalMap;

13 void main()
{

15 vec3 N = normalize(texture2D(texNormalMap , fTexCoord).
rgb * 2.0 - 1.0);

vec3 E = normalize(fE);
17 vec3 L = normalize(fL);

vec3 R = normalize (2.0 * dot(L, N) * N - L);
19

float NdotL = dot(N, L);
21 float Kd = max(NdotL , 0.0);

float Ks = (NdotL < 0.0) ? 0.0 : pow(max(dot(R, E), 0.0)
, shininess);

23
vec4 diffuse = Kd * diffuseProduct;

25 vec4 specular = Ks * specularProduct;
vec4 ambient = ambientProduct;

27
gl_FragColor = (ambient + diffuse + specular) *

29 texture2D(texColorMap , fTexCoord);
gl_FragColor.a = 1.0;

31 }

Listing 38. File fnormal.glsl.

APPENDIX D
VIRTUAL TRACKBALL CLASS

Our implementation of the virtual trackball was based
on both the book by Angel and Shreiner [8] and on the
Boxes Demo available on Qt framework 4.8 [27]. We use
the class QQuaternion to represent rotations in 3D space using
quaternions.

1 #ifndef TRACKBALL_H
#define TRACKBALL_H

3
#include <QVector3D >

5 #include <QQuaternion >
#include <QTime >

7
#include <cmath >

9
class TrackBall

11 {
public:

13 TrackBall ();
void mouseMove(const QPointF& p);

15 void mousePress(const QPointF& p);
void mouseRelease(const QPointF& p);

17 void resizeViewport(int width , int height);
QQuaternion getRotation ();

19
private:

21 QQuaternion rotation;
QVector3D axis;

23 double velocity;

25 QVector3D lastPos3D;
QTime lastTime;

27 bool trackingMouse;

29 double viewportWidth;
double viewportHeight;

31
const double rad2deg;

33
QVector3D mousePosTo3D(const QPointF& p);

35 };

37 #endif

Listing 39. File trackball.h.

1 #include "trackball.h"

3 TrackBall :: TrackBall () : rad2deg (180.0 / M_PI)

{
5 velocity = 0.0;

trackingMouse = false;
7 lastTime = QTime :: currentTime ();

}
9

void TrackBall :: mouseMove(const QPointF &p)
11 {

if (! trackingMouse)
13 return;

15 QTime currentTime = QTime :: currentTime ();
int msecs = lastTime.msecsTo(currentTime);

17 if (msecs) {
QVector3D vp = mousePosTo3D(p);

19 QVector3D currentPos3D = QVector3D(vp.x(), vp.y(),
0.0);

double lenSqr = currentPos3D.lengthSquared ();
21 (lenSqr >= 1.0) ? currentPos3D.normalize () :

currentPos3D.setZ(sqrt (1.0 -
lenSqr));

23
axis = QVector3D :: crossProduct(lastPos3D ,

currentPos3D);
25 double angle = rad2deg * axis.length ();

velocity = angle / msecs;
27 axis.normalize ();

rotation = QQuaternion :: fromAxisAndAngle(axis , angle
) * rotation;

29
lastPos3D = currentPos3D;

31 lastTime = currentTime;
}

33 }

35 void TrackBall :: mousePress(const QPointF &p)
{

37 rotation = getRotation ();
trackingMouse = true;

39 lastTime = QTime :: currentTime ();

41 lastPos3D = mousePosTo3D(p);
double lenSqr = lastPos3D.lengthSquared ();

43 (lenSqr >= 1.0) ? lastPos3D.normalize () :
lastPos3D.setZ(sqrt (1.0 - lenSqr));

45
velocity = 0.0;

47 }

49 void TrackBall :: mouseRelease(const QPointF &p)
{

51 mouseMove(p);
trackingMouse = false;

53 }

55 void TrackBall :: resizeViewport(int width , int height)
{

57 viewportWidth = static_cast <double >(width);
viewportHeight = static_cast <double >(height);

59 }

61 QQuaternion TrackBall :: getRotation ()
{

63 if (trackingMouse)
return rotation;

65
QTime currentTime = QTime :: currentTime ();

67 double angle = velocity * lastTime.msecsTo(currentTime);
return QQuaternion :: fromAxisAndAngle(axis , angle) *

rotation;
69 }

71 QVector3D TrackBall :: mousePosTo3D(const QPointF &p)
{

73 return QVector3D (2.0 * p.x() / viewportWidth - 1.0,
1.0 - 2.0 * p.y() / viewportHeight ,

75 0.0);
}

Listing 40. File trackball.cpp.

APPENDIX E
AUXILIARY CLASSES FOR PHONG LIGHTING MODEL

#ifndef CAMERA_H
2 #define CAMERA_H

4 #include <QVector3D >

6 class Camera
{

8 public:

Camera ();
10

QVector3D eye;
12 QVector3D at;

QVector3D up;
14 };

#endif // CAMERA_H

Listing 41. File camera.h.

1 #include "camera.h"

3 Camera :: Camera ()
{

5 eye = QVector3D (0.0, 0.0, 1.0);
at = QVector3D (0.0, 0.0, 0.0);

7 up = QVector3D (0.0, 1.0, 0.0);
}

Listing 42. File camera.cpp

#ifndef LIGHT_H
2 #define LIGHT_H

4 #include <QVector4D >

6 class Light
{

8 public:
Light();

10
QVector4D position;

12 QVector4D ambient;
QVector4D diffuse;

14 QVector4D specular;
};

16
#endif // LIGHT_H

Listing 43. File light.h.

1 #include "light.h"

3 Light::Light()
{

5 position = QVector4D (3.0, 3.0, 3.0, 0.0);
ambient = QVector4D (0.1, 0.1, 0.1, 1.0);

7 diffuse = QVector4D (0.9, 0.9, 0.9, 1.0);
specular = QVector4D (0.9, 0.9, 0.9, 1.0);

9 }

Listing 44. File light.cpp.

1 #ifndef MATERIAL_H
#define MATERIAL_H

3
#include <QVector4D >

5
class Material

7 {
public:

9 Material ();

11 QVector4D ambient;
QVector4D diffuse;

13 QVector4D specular;
double shininess;

15 };

17 #endif // MATERIAL_H

Listing 45. File material.h.

1 #include "material.h"

3 Material :: Material ()
{

5 ambient = QVector4D (1.0, 1.0, 1.0, 1.0);
diffuse = QVector4D (0.6, 0.6, 0.6, 1.0);

7 specular = QVector4D (0.4, 0.4, 0.4, 1.0);
shininess = 200.0;

9 }

Listing 46. File material.cpp.

APPENDIX F
TAKING A SCREENSHOT OF THE OPENGL SCENE

Listing 47 presents the slot method that takes a screenshot of
the OpenGL Scene. The method QGLWidget::grabFrameBuffer()

returns the contents of the frame buffer as a QImage object,
which is saved to disk using the method QImage::save().

1 void GLWidget :: takeScreenshot ()
{

3 QImage screenshot = grabFrameBuffer ();

5 QString fileName;
fileName = QFileDialog :: getSaveFileName(this ,

7 "Save File As", QDir:: homePath (),
QString("PNG Files (*. png)"));

9 if (fileName.length ()) {
if (! fileName.contains(".png"))

11 fileName += ".png";
if (screenshot.save(fileName , "PNG")) {

13 QMessageBox :: information(this , "Screenshot",
"Screenshot taken!",

15 QMessageBox ::Ok);
}

17 }
}

Listing 47. Slot responsible to take a screenshot of the OpenGL scene.

REFERENCES

[1] “OpenGL – The Industry Standard for High Performance Graphics,”
2012. [Online]. Available: http://www.opengl.org/

[2] “GLUT – The OpenGL Utility Toolkit,” 2012. [Online]. Available:
http://www.opengl.org/resources/libraries/glut/

[3] Qt, “Qt–Cross-Platform application and UI framework,” 2012. [Online].
Available: http://qt.nokia.com/

[4] J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4,
2nd ed. Prentice Hall, 2008.

[5] M. Summerfield, Advanced Qt Programming: Creating Great Software
with C++ and Qt 4. Prentice Hall, 2010.

[6] Qt, “Qt in use,” 2012. [Online]. Available: http://qt.nokia.com/qt-in-use
[7] ——, “QtOpenGL Module,” 2012. [Online]. Available: http://qt-project.

org/doc/qt-4.8/qtopengl.html
[8] E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down

Approach with Shader-Based OpenGL, 6th ed. Addison Wesley, 2011.
[9] M. P. B. Donald D Hearn and W. Carithers, Computer Graphics with

OpenGL, 4th ed. Prentice Hall, 2010.
[10] D. Wolff, OpenGL 4.0 Shading Language Cookbook. Pactk Publishing,

2011.
[11] R. Marroquim and A. Maximo, “Introduction to GPU Programming

with GLSL,” in Computer Graphics and Image Processing (SIBGRAPI
TUTORIALS), 2009 Tutorials of the XXII Brazilian Symposium on, oct.
2009, pp. 3 –16.

[12] Qt, “Developing Qt,” 2012. [Online]. Available: http://qt-project.org/
wiki/Category:Developing_Qt

[13] ——, “Qmake Variable Reference,” 2012. [Online]. Available:
http://qt-project.org/doc/qt-4.8/qmake-variable-reference.html

[14] ——, “QGLWidget Class Reference,” 2012. [Online]. Available:
http://qt-project.org/doc/qt-4.8/QGLWidget.html

[15] ——, “Layout Management,” 2012. [Online]. Available: http://
qt-project.org/doc/qt-4.8/layout.html

[16] ——, “Signals & Slots,” 2012. [Online]. Available: http://qt-project.
org/doc/qt-4.8/signalsandslots.html

[17] “OFF File Format,” 2012. [Online]. Available: http://www.geomview.
org/docs/html/OFF.html

[18] E. Lengyel, Mathematics for 3D Game Programming and Computer
Graphics, 3rd ed. Course Technology PTR, 2011.

[19] ——, “Computing Tangent Space Basis Vectors for an Arbitrary Mesh.
Terathon Software 3D Graphics Library,” 2001. [Online]. Available:
http://www.terathon.com/code/tangent.html

[20] Qt, “The Qt Resource System,” 2012. [Online]. Available: http:
//qt-project.org/doc/qt-4.8/resources.html

[21] ——, “QFile Class Reference,” 2012. [Online]. Available: http:
//doc-snapshot.qt-project.org/4.8/qfile.html

http://www.opengl.org/
http://www.opengl.org/resources/libraries/glut/
http://qt.nokia.com/
http://qt.nokia.com/qt-in-use
http://qt-project.org/doc/qt-4.8/qtopengl.html
http://qt-project.org/doc/qt-4.8/qtopengl.html
http://qt-project.org/wiki/Category:Developing_Qt
http://qt-project.org/wiki/Category:Developing_Qt
http://qt-project.org/doc/qt-4.8/qmake-variable-reference.html
http://qt-project.org/doc/qt-4.8/QGLWidget.html
http://qt-project.org/doc/qt-4.8/layout.html
http://qt-project.org/doc/qt-4.8/layout.html
http://qt-project.org/doc/qt-4.8/signalsandslots.html
http://qt-project.org/doc/qt-4.8/signalsandslots.html
http://www.geomview.org/docs/html/OFF.html
http://www.geomview.org/docs/html/OFF.html
http://www.terathon.com/code/tangent.html
http://qt-project.org/doc/qt-4.8/resources.html
http://qt-project.org/doc/qt-4.8/resources.html
http://doc-snapshot.qt-project.org/4.8/qfile.html
http://doc-snapshot.qt-project.org/4.8/qfile.html

[22] M. J. Kilgard, “Modern OpenGL usage: using vertex buffer objects
well,” in ACM SIGGRAPH ASIA 2008 courses, ser. SIGGRAPH Asia
’08. New York, NY, USA: ACM, 2008, pp. 49:1–49:19. [Online].
Available: http://doi.acm.org/10.1145/1508044.1508093

[23] Qt, “QGLBuffer Class Reference,” 2012. [Online]. Available: http:
//qt-project.org/doc/qt-4.8/qglbuffer.html

[24] ——, “The Event System,” 2012. [Online]. Available: http://qt-project.
org/doc/qt-4.8/eventsandfilters.html

[25] ——, “QMatrix4x4 Class Reference,” 2012. [Online]. Available:
http://qt-project.org/doc/qt-4.8/qmatrix4x4.html

[26] ——, “QGLFormat Class Reference,” 2012. [Online]. Available:
http://qt-project.org/doc/qt-4.8/QGLFormat.html

[27] ——, “Boxes | Documentation | Qt Developer Network,” 2012.
[Online]. Available: http://qt-project.org/doc/qt-4.8/demos-boxes.html

[28] ——, “Qt3D Module,” 2012. [Online]. Available: http://doc-snapshot.
qt-project.org/5.0/qt3d-reference.html

http://doi.acm.org/10.1145/1508044.1508093
http://qt-project.org/doc/qt-4.8/qglbuffer.html
http://qt-project.org/doc/qt-4.8/qglbuffer.html
http://qt-project.org/doc/qt-4.8/eventsandfilters.html
http://qt-project.org/doc/qt-4.8/eventsandfilters.html
http://qt-project.org/doc/qt-4.8/qmatrix4x4.html
http://qt-project.org/doc/qt-4.8/QGLFormat.html
http://qt-project.org/doc/qt-4.8/demos-boxes.html
http://doc-snapshot.qt-project.org/5.0/qt3d-reference.html
http://doc-snapshot.qt-project.org/5.0/qt3d-reference.html

	Introduction
	Creating an OpenGL/GLSL Application with Qt
	Starting up a Qt project
	Edit mode: extending the class QGLWidget to our OpenGL application
	Design mode: promoting a QWidget to GLWidget
	Introducing Signals and Slots
	Loading a Geometric Model
	Encapsulating Resources
	OpenGL Shaders and Qt
	Buffer Objects
	Mouse and Keyboard Events
	Matrix and Vector classes
	Signals/Slots – Part 2
	Texture Mapping
	The method paintGL()
	Formatting the OpenGL context

	Improving the User Interface
	Final Considerations
	Directions for Further Graphics-based Qt Applications
	Appendix A: GLWidget Class Declaration
	Appendix B: Constructor and Destructor of GLWidget
	Appendix C: GLSL Shaders
	Appendix D: Virtual Trackball Class
	Appendix E: Auxiliary classes for Phong Lighting Model
	Appendix F: Taking a Screenshot of the OpenGL scene
	References

