
A Survey of GLSL Examples
Thiago Gomes, Luiz Estevão, Rodrigo de Toledo
Programa de Pós Graduação em Informática, IM

Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ, Brasil

{telias,lfestevao,rtoledo}@dcc.ufrj.br

Paulo Roma Cavalcanti
COPPE Sistemas and

Department of Computer Science
Universidade Federal do Rio de Janeiro

Rio de Janeiro, RJ, Brasil
promac@gmail.com

Fig. 1. Results from different shader examples. In the first line, there are some basic examples (from left to right): vertex positioning; Phong model; texture
application; and triangle extrusion using a geometry shader. In the second line, there are some improved examples (from left to right): vertex noise applied
on a shpere using a vertex shader; sphere ray casting from a box using a fragment shader; a “mohican” hair using a geometry shader; and continuous LOD
sphere using tessellator shaders.

Abstract—This survey provides GLSL information for begin-
ners, by means of a series of commented codes and technical
explanations, providing an effective way for learning GLSL,
one of the main multi-platform and multi-hardware shader
programming languages available. The examples increase in
complexity through the text. They may run in several shader
tools, including Shaderlabs, a shader development environment,
which was developed aiming at helping those willing to learn and
practice GLSL development.

Keywords- GLSL; ShaderLabs; Shaders; Graphics Pipeline

I. INTRODUCTION

State of the art graphic applications often use some of the
modern video cards’ programmable stages. As a consequence,
the comprehension of the most advanced techniques require
some knowledge about the graphics pipeline.

The focus of this survey is on GLSL programming. We
strongly suggest the use of an IDE for GPU programming (see

Section II-A) to try the examples described in the following
sections. For this reason, we do not show any OpenGL/C++
code or approach, but a series of GLSL examples. Each
time, the code is presented before its explanation, allowing
the reader to learn by example. In the case of a class or
group, we suggest the use of Coding Dojo [1], which provides
an effective learning environment. The following audience is
addressed:
• CG starters: by teaching in a practical, but simple way,

concepts like the Fixed-Function Graphics Pipeline, teh
Programmable Graphics Pipeline, and the GLSL syntax.

• Professionals: by presenting a set of the most popular
Shader techniques.

• Academics: by bringing a collection of the most recent
papers and techniques.

• Teachers: by showing a successful path applied to Shader
learning.

A. Survey overview

Section II lists some references about GLSL and also some
shader programming tools. After describing the graphics card
evolution in Section III, Section IV presents some simple
examples, aiming at the teaching of Shader languages, thus
helping the understanding of the Graphics Pipeline, and the
GLSL syntax. It is recommended the use of a tool for
abstracting the setup code, necessary in this level, and we
have developed ShaderLabs [2] for this purpose. Being a free,
open software, and currently the only tool that supports coding
and testing in all stages, it is the ideal tool for experimenting
all sort of shader techniques. Section V presents some useful
techniques, explaining more in depth each programmable
stage. Finally, Section VI concludes the survey.

II. RELATED WORK

The programmable pipeline is essential to produce real-time
visual effects and to accelerate graphics algorithms. However,
there are few valuable sources on how to program in GPU,
especially the most recent shaders. Rost [3] presents details
about vertex and fragment shaders and how to setup them in
an OpenGL application. Marroquim and Maximo tutorial [4]
has a good introduction to GLSL, including structured figures
about the pipeline and simple examples. However, there is
no information about the more recent tessellation shaders. In
NeHe site [5] there is a practical introduction to GLSL, and
the tutorials found in LightHouse3D site [6] contain significant
information, but all without the tessellation shaders. Specific
information about the tessellation shaders can be found in a
few sites [7] and in Valderato et al. tutorial [8] for DirectX.

A. GPU programming tools

The usual steps in a graphics application that uses GLSL
shaders are:

1) Code the application in a common language such as
C++;

2) Use a graphics API;
3) Load a 3D model, and send it to the graphics card;
4) Set the parameters necessary to a 3D scene: camera

position, illumination, object position and rotation.
5) Code the shaders and send them to the graphics card;

In this survey, we focus on how coding the shaders, which
is only a part of the item 5 above.

There are some IDE (Integrated Development Environment)
specific for GPU programming. With an IDE, a programmer
may only focus on writing shader codes. This is a very
helpful tool for those who are learning, testing or evaluating
GPU algorithms. Most tools use the GLSL shader language
and support the vertex and fragment programmable stages.
Some examples are: Shader Designer[9], Render Monkey[10],
Shader Maker[11] and ShaderLabs[2]. These tools are com-
pared in Table I

Shader Render Shader ShaderLabs
Maker Monkey Designer

Vertex/Fragment X X X X
Geometry X X
Tessellation X
Multiple textures X X X X
Multiple objects X X
Shader language GLSL GLSL/HLSL GLSL GLSL
Preset effects X

TABLE I
COMPARATIVE TABLE ABOUT THE GPU PROGRAMMING TOOLS. IT

SHOULD BE NOTED THAT ONLY SHADERLABS SUPPORTS TESSELLATION
SHADERS.

Fig. 2. ShaderLabs IDE.

III. GRAPHICS PIPELINE EVOLUTION

A. Graphics Pipeline

A pipeline is a hardware technique used to speed up
programs that repeatedly applies expensive operations, which
can be divided into several independent and sequential steps.
Shaders are the programmable stages of the graphic pipeline.

In 3D applications, many similar operations are performed
onto different vertices, and thus a graphic pipeline can be
used for optimization. The graphic pipeline can be executed
by a 3D video card, an exclusive hardware, which boosts
the performance, but lacks in flexibility. The fixed-function
graphics pipeline (not programmable) is described in the
sequel.

In order to transfer the geometry from the application to the
video card, vertices are sent through a transformation pipeline.
Each stage uses one type of coordinate system or changes
the coordinate system into another one. Fig. 3 presents the
pipeline [12], but distinct manufacturers can implement the
pipeline differently.

Usually, models have vertices defined in its own coordinate
system, centred at the origin. The first stage of the pipeline, as
shown in Fig. 3, sets global coordinates to the model’s vertices,

Modelling
Transformation

Illumination

Viewing
Transformation

Clipping

Projection

Scan Conversion

Visibility

Eye Space

Clipping Space

Screen Space

Model Space

Fig. 3. Transformation Pipeline and Coordinate Systems.

thus mapping them to world coordinates. Then, the world
coordinate system is transformed into a camera system, which
privileges the viewer. These steps, taking model coordinates to
world coordinates and then to camera coordinates, are usually
applied in sequence.

Nowadays, the model’s properties can be set in its vertices.
Therefore, each vertex can have data, such as colour, normal
and texture coordinates. In the Lightning Stage, each vertex
colour is adjusted based on the light, considering its own
position, its normal, the light source position, and other
aspects.

The perspective projection defines a view frustum, which
is a truncated pyramid (Fig. 4). The next stage maps the
pyramid into a parallelepiped, as a result of applying the
perspective transformation. On the other hand, the orthogonal
projection does not need that step. Finally, each coordinate is
then normalized to fit in the rande [−1, 1].

Camera

Viewing Frustum

Fig. 4. View Frustum for a Perspective Projection.

In the Clipping Stage, primitives completely outside the
view frustum are discarded. In some cases, the primitive can
be partially inside the frustum, like the one in Fig. 5a, and the
primitive must be divided (Fig. 5b).

In the Projection Stage, we use the screen space, which is
a discrete space with the same resolution of the framebuffer.
Therefore, the video card projects each vertex coordinate (x,y)
in the screen. After this stage, the primitives have integer
vertex coordinates (x,y) in the screen space and a z value
representing the vertex depth.

The next step is to fill the primitive. In order to do so, each
vertex attribute is interpolated, in each fragment corresponding

(a) (b)

Fig. 5. Primitive clipping, so it is completely inside the view frustum. (b)
Result of clipping the primitive in (a)

to a pixel in the framebuffer. The z-depth is also interpolated
and stored in the z-buffer. This process is called scan conver-
sion. In each interpolated fragment, a decision about drawing
it or not, in the corresponding pixel, is made according to
the value stored in the z-buffer. If the currently evaluated
fragment depth is smaller than the value already stored in the
z-buffer, then the z-buffer is updated. Otherwise, the fragment
is discarded.

After all primitives have been processed, the scene is
completely rendered in the framebuffer, which is now available
for screen presentation.

Further details about this process can be found in
OpenGL [13].

B. Vertex and Fragment Shaders

We have pointed that the fixed-function pipeline in hardware
boosted the processing, but removed some flexibility. Video
card manufacturers, on the other hand, have developed more
complex architectures, which give back some functionality
for programming these stages. Therefore, the Shaders were
born, as graphic pipelines programmable stages, allowing the
transfer of the model, scene data, and code, for replacing
some of the fixed-functions. The first stages created were the
Vertex and Fragment Shaders, and Fig. 6 presents some of the
previous stages being replaced for these shaders. The input
data can be manipulated in the Vertex Shader, and the final
image can be customized in the fragment Shader. Each stage,
including Geometry and Tessellation, will be further explained
in the sequel.

C. Geometry Shader

Unlike the Vertex Shader, which replaces a piece of the
graphics pipeline, or the Fragment Shader, the Geometry
Shader is a new stage included into the programmable pipeline.
It is like a Vertex Shader extension, capable of analysing a
whole primitive, instead of seeing only one vertex. This way,
it is possible to know some vertex neighbours, and produce
new primitives.

D. Tessellation Shaders

Tessellation is composed by three new stages, with two
new shader types: Tessellation Control Shader, Tesselator (non

Modelling
Transformation

Illumination

Viewing
Transformation

Clipping

Projection

Scan Conversion

Visibility

Eye Space

Clipping Space

Screen Space

Model Space

Vertex
Shader

Fragment
Shader

Fig. 6. Transformation Pipeline with Vertex and Fragment Stages.

programmable), and Tesselation Evaluation Shader. They are
applied after the vertex stage and before de geometry shader
stage: V (Tc T Te) G F

Instead of simply displacing vertices, now the pipeline can
also create or delete vertices before the Clipping Stage. Some
vertices can be grouped working as controllers, called a patch,
which can produce a new surface, for instance, a Bézier surface
patch.

IV. GLSL LANGUAGE

A. Replacing the fixed-function pipeline, first version (vertex
shader)

1 vo id main ()
2 {
3 vec4 ecPos = gl ModelViewMatr ix ∗ g l V e r t e x ;
4

5 vec4 amb = g l C o l o r ∗ 0 . 2 ;
6

7 g l F r o n t C o l o r = amb ;
8 g l F r o n t C o l o r . a = 1 . 0 ;
9

10 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ ecPos ;
11 }

Listing 1. VertexCode: Replacement of the fixed-function pipeline

Fig. 7. Application of 1 onto a sphere, by using ShaderLabs.

The Vertex Shader can be understood by looking at listing 1,
and observing the corresponding output in Fig. 7. The same
output can be easily achieved by copying the code into
ShaderLabs, which can guide and help a user to learn the
shader. The code does not employ any custom technique,

and its effect just mimics what has already been done in
the fixed-function pipeline. Nonetheless, it will be useful in
understanding several concepts.

In Fig. 6 it is depicted a scheme where the Vertex Shader
replaces the steps of modelling, lightning and viewing. In Ver-
texCode in Listing 1, the modelling corresponds to the first line
of function main

vec4 ecPos = gl_ModelViewMatrix * gl_Vertex;

where the new variable ecPos holds the position of the
eye vertex. This transformation is applied by multiplying
the matrix gl ModelViewMatrix and the vertex position in
gl Vertex. Since gl Vertex is a four-dimensional vector, and
gl ModelViewMatrix a 4 × 4 matrix, the result is a four-
dimensional vector, thus defining the type vec4 of variable
ecPos. GLSL allows the definition of variables of several pre-
defined types, such as vectors of dimension 2, 3 or 4, and
matrices (square or not) of at most four dimensions. To access
each vector position, we can use the notation in [], where the
first position corresponds to index 0 (zero). Alternatively, we
can also use .x, .y, .z, .w, for the first, second, third and fourth
positions. A vertex is represented as a four-dimensional vector
in homogeneous coordinates. The fourth coordinate allows the
representation of a translation as a 4× 4 matrix, for instance.
The later transformation is a transformation in the affine space.
The matrix type follows the notation matI, where I can be
replaced by either 2, 3 or 4, for square matrices, or matIxJ for
matrices J × I , that is, J lines and I columns. Furthermore,
the operator * defines a multiplication of a matrix by a vector,
or a matrix by a matrix.

The viewing step corresponds to the last line of function
main

gl_Position = gl_ProjectionMatrix * ecPos;

where a vertex, in eye coordinate, is multiplied by the matrix
gl ProjectionMatrix. This matrix maps a vertex in eye space
to a vertex in clipping space. These transformations can be
executed in a single step

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

or

gl_Position = ftransform();

which produces the same result. It should be noted that the
the Vertex Shader must hold the vertex position, in clipping
coordinates, in the output variable gl Position. The Vertex
Shader also holds, in the output variables gl FrontColor and
gl BackColor, the vertex colour, after illumination, taking into
account the front and back faces, respectively. In Vertex-
Code in Listing 1, only the ambient illumination component
is applied to the front face.

vec4 amb = gl_Color * 0.2;
gl_FrontColor = amb;
gl_FrontColor.a = 1.0;

The alpha channel of the final colour was set to 1.0, because
in this example, we did not want any transparency.

B. Replacing the fixed-function pipeline, second version (ver-
tex shader)

1 vo id P o i n t L i g h t (i n vec3 e c P o s i t i o n 3 ,
2 i n vec3 N,
3 i n f l o a t s h i n i n e s s ,
4 i n o u t vec4 d i f f u s e ,
5 i n o u t vec4 s p e c u l a r)
6 {
7

8 vec3 L ;
9 L = vec3 (g l L i g h t S o u r c e [0] . p o s i t i o n) − e c P o s i t i o n 3 ;

10 L = n o r m a l i z e (L) ;
11 N = n o r m a l i z e (N) ;
12

13 f l o a t d i f f A t t = max (0 . 0 , d o t (N, L)) ;
14

15 f l o a t s p e c A t t = 0 . 0 ;
16 i f (d i f f A t t > 0 . 0)
17 {
18 vec3 R = r e f l e c t (−L , N) ;
19 vec3 V = n o r m a l i z e (− e c P o s i t i o n 3) ;
20

21 s p e c A t t = max (0 . 0 , d o t (R , V)) ;
22 s p e c A t t = pow (s p e c A t t , s h i n i n e s s) ;
23 }
24

25 d i f f u s e = d i f f u s e ∗ d i f f A t t ;
26 s p e c u l a r = s p e c u l a r ∗ s p e c A t t ;
27 }
28

29 vo id main ()
30 {
31 vec4 ecPos = gl ModelViewMatr ix ∗ g l V e r t e x ;
32 vec3 ecPos3 = vec3 (ecPos) / ecPos .w;
33 vec3 n = g l Norma lMat r ix ∗ gl Normal ;
34

35 vec4 amb = g l C o l o r ∗ 0 . 2 ;
36 vec4 d i f = g l C o l o r ;
37 vec4 esp = vec4 (1 . 0) ;
38

39 P o i n t L i g h t (ecPos . xyz , n , 1 6 . 0 , d i f , e sp) ;
40

41 g l F r o n t C o l o r = amb + d i f + esp ;
42 g l F r o n t C o l o r . a = 1 . 0 ;
43 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ ecPos ;
44 }

Listing 2. VertexCode: Replacement of the fixed-function pipeline

Fig. 8. Application of VertexCode in Listing 2 onto a sphere, by using
ShaderLabs.

In VertexCode in Listing 1 there is no illumination.
Nonetheless, is is supposed that the vertex shader perform
the vertex illumination coherently. VertexCode in Listing 2
depicts a model of shading that can be applied in the vertex
shader. In the example, the final colour is obtained by means
of the ambient, diffuse and specular illumination components.
Each of theses three variables, plus variable gl FrontColor,
are of type vec4. Its components can be accessed as .r, .g, .b

and .a, as discussed before. GLSL considers an alpha channel
value as being between 0.0 and 1.0, and values outside this
range can be interpreted differently by a video card.

Most of the code calculate illumination components. This
computation is performed by the function PointLight, on line
1 of VertexCode in Listing 2, which returns no value (void).
However, the parameters can be in, out or inout. When
a parameter does not have a modifier, or is in, then the
variable is local, and brings information to the function, that
is, any new value attributed to the variable will be lost when
leaving the function. When a variable is inout, it also brings
information to the function, but new values persist after the
end of the function. Variables out do not bring information
to the function, but new values are kept after the end of the
function. Modifiers out and inout are useful when returning
more than one piece of information in the same function. The
function that computes the diffuse and specular illumination
components return them in the variables diffuse and specular,
respectively.

The computation of the components, in the equation below,
is a simplification of the Phong reflection model[14].

Cp = Ka +Kd(N · L) +Ks(R · V)n

In the equation, all vectors (N , L, R and V) are normalized:
N is the vertex normal, L is the vector pointing from the
vertex to the light, R is the reflection of vector L about the
vertex normal, and V is the vector from the vertex to the eye.
Ka, Kd and Ks are the ambient, diffuse and specular colour
components, before attenuation. Factor n is called shininess,
and it is a constant defined by the material.

The light sources in GLSL are kept in the array
gl LightSource. Since this example possesses only a single
light source, only the array index 0 is accessed. Each array
entry is a structure of type gl LightSourceParameters, which
keeps, among other attributes, the light source position, in eye
space.

GLSL has several functions, including some for perform-
ing vector calculation, used during the illumination step, for
example: the function normalize returns a normalized vector.
Since operator * could be ambiguous, meaning either dot
or vector product, GLSL supplies two functions: dot, which
returns a float holding the dot product between two vectors,
and cross, which returns the vector product. Function reflect,
returns the reflection vector 1 of the first parameter vector
about the second parameter vector (supposed normalized).
Since illumination is performed in eye space, a vector from
the vertex to the eye would be o− v. Also, because o is null,
(0, 0, 0), then V is just −v.

A vertex shader code is executed in parallel for all vertices
of the model. Therefore, the input for a vertex shader are
vertices, and its attributes, such as colour, normal, texture
coordinates, etc. It should be noted that there is no edge in a
vertex shader code, that is, there is no adjacency information.

1Vector L is a vector emanating from the light source. Therefore, is has to
be inverted in VertexCode in Listing 2.

C. Replacing the fixed-function pipeline, third version (frag-
ment shader)

1 vo id main ()
2 {
3 g l F r a g C o l o r = g l C o l o r ;
4 }

Listing 3. FragmentCode: Replacement of the fixed-function pipeline

For rendering, it is necessary to interpolate the vertex
attributes. In VertexCode in Listing 2, the only information
interpolated is the vertex colour. As a consequence, because
the colour is computed on a vertex and interpolated during
the scan conversion, it is said this example uses the Gouraud
shading model[15]. The code in FragmentCode in Listing 3
produces the same result depicted in Fig. 8, which means no
change is performed. This is due to the fact that the fragment
shader does not replace the graphic pipeline, but only improves
it. This code shows that gl FragColor is the main output
of the fragment shader, where the fragment colour is set.
A fragment is equivalent to a pixel, however, the fragment
refers to a primitive that can be discarded for another primitive
closer to the viewer, or merged with another fragment, when
the alfa blending is activated. The input variable gl Color
receives the interpolated value from variables gl FrontColor or
gl BackColor, set in the vertex shader, depending on whether
the rendered primitive is facing front or back. Both variables
shown in the example are of type vec4.

D. Phong and Texture

1 v a r y i n g vec3 N;
2 v a r y i n g vec3 L ;
3 v a r y i n g vec3 V;
4

5 vo id main ()
6 {
7 vec4 ecPos = gl ModelViewMatr ix ∗ g l V e r t e x ;
8 vec3 ecPos3 = vec3 (ecPos) / ecPos .w;
9

10 L = vec3 (g l L i g h t S o u r c e [0] . p o s i t i o n) − ecPos3 ;
11 N = gl Norma lMat r ix ∗ gl Normal ;
12 V = −ecPos3 ;
13

14 g l F r o n t C o l o r = g l C o l o r ;
15 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ ecPos ;
16 }

Listing 4. VertexCode: Phong Shading

1 v a r y i n g vec3 N;
2 v a r y i n g vec3 L ;
3 v a r y i n g vec3 V;
4

5 vo id main ()
6 {
7 vec3 n = n o r m a l i z e (N) ;
8 vec3 l = n o r m a l i z e (L) ;
9 vec3 v = n o r m a l i z e (V) ;

10

11 vec4 c o l o r = g l C o l o r ;
12

13 f l o a t d i f f A t t = max (0 . 0 , d o t (n , l)) ;
14 f l o a t s p e c A t t = 0 . 0 ;
15 i f (d i f f A t t > 0 . 0)
16 {
17 vec3 r = r e f l e c t (− l , n) ;
18

19 s p e c A t t = max (0 . 0 , d o t (r , v)) ;
20 s p e c A t t = pow (s p e c A t t , 1 6 . 0) ;
21 }

22 vec3 amb = vec3 (c o l o r) ∗0 . 2 ;
23 vec3 d i f = vec3 (c o l o r)∗ d i f f A t t ;
24 vec3 spe = vec3 (1 . 0) ∗ s p e c A t t ;
25

26 g l F r a g C o l o r = vec4 (amb+ d i f +spe , 1 . 0) ;
27 }

Listing 5. FragmentCode: Phong Shading

Fig. 9. Application of VertexCode in Listing 4 and FragmentCode in Listing 5
onto a sphere, by using ShaderLabs.

The application of VertexCode in Listing 4 and Fragment-
Code in Listing 5 can be seen in Fig. 9. Although very
similar to Fig. 8, the Phong Shading produces a better quality
rendering, which can be seen in Fig. 10.

Fig. 10. Gouraud Shading on the left versus Phong Shading on the right.

In the example shown on FragmentCode in Listing 5, the
illumination computation is postponed to the scan conversion
phase, by interpolating in each fragment the vectors needed to
compute the illumination, instead of interpolating the colours
already shaded. For passing vertex interpolated data to the
fragment, it is enough that both shaders have variables with
the same name and type, globally declared as varying.
varying vec3 N;
varying vec3 L;
varying vec3 V;

Because interpolation changes vector magnitudes, it is com-
mon to normalize the vectors in the fragment shader only.
vec3 n = normalize(N);
vec3 l = normalize(L);
vec3 v = normalize(V);

Similarly to the vertex shader, the fragment shader code is
also executed in parallel in all fragments, without checking
any other fragment, and not changing its position.

Texturing is also performed in the fragment shader, by
passing the interpolated texture coordinates, from the vertex
shader to the fragment shader, using a variable set as varying.
Therefore, texture can be applied by using a global variable
in both codes,
varying vec2 texCoord;

and including somewhere, in function main of the vertex
shader, the following line:
texCoord = gl_MultiTexCoord0.xy;

For texturing, each vertex of the model must have a n-
dimensional texture coordinate, but generally, texture is two-
dimensional. In the 2D case, the first two coordinates of vari-
able gl MultiTexCoord0 hold the vertex texture coordinates,
and each texture coordinate should be normalized in the range
[0,1]. The mapping is shown in Fig. 11, where coordinate
(0, 0) is the texture lower left corner, and coordinate (1, 1)
the upper right corner.

Fig. 11. Texture mapping.

In the fragment shader, it is necessary to use a global
variable:
uniform sampler2D sampler2d0;

This variable is set to uniform, which means its value
does not change during the processing. Variables of type
sampler2D, representing a 2D texture, are always uniform.

The goal of this work is not show how to unwrap a
texture and send it to the shaders. However, it is possible to
accomplish that in a simple way, by using ShaderLabs. For
this purpose, a texture is chosen with a single mouse click,
and it will be available in a variable, whose name is visible
beside the imported texture miniature. In general, the software
sets names of the form sampler2dX to all textures, where X
is a number depending on the order in which the texture was
inserted, as shown in the example.

To finish the texture, one should replace in Fragment-
Code in Listing 5, the line:
vec4 color = gl_Color;

for
vec4 color = texture2D(sampler2d0, texCoord);

Therefore, instead of getting the base colour from the colour
coming from the vertex shader, it will get the base texture

colour using the function texture2D. This function returns the
texture colour, whose identifier is passed as the first parameter,
in the coordinate passed as the second parameter.

E. Geometry pass-through and Spike

1 # v e r s i o n 120
2 # e x t e n s i o n GL ARB geometry shader4 : e n a b l e
3

4 vo id main ()
5 {
6 f o r (i n t i = 0 ; i < g l V e r t i c e s I n ; ++ i)
7 {
8 g l F r o n t C o l o r = g l F r o n t C o l o r I n [i] ;
9 g l P o s i t i o n = g l P o s i t i o n I n [i] ;

10 Emi tVer t ex () ;
11 }
12 E n d P r i m i t i v e () ;
13 }

Listing 6. VertexCode: Keeping original pipeline

Including GeometryCode in Listing 6 and Vertex-
Code in Listing 2, produces the result shown in Fig. 8. The
reason is that the code just passes forward, vertices already
processed in the vertex shader, without any modification.
#version 120
#extension GL_ARB_geometry_shader4 : enable

The code above is responsible for configuring which GSL
version will be used.

In the geometry shader, the processing is performed for
each primitive. The primitive type (triangles, lines, points, etc)
should be set in setup application.

The geometry shader outputs the same information as the
vertex shader, that is, the result is the vertex colour and posi-
tion in clipping coordinates. Since nothing has been changed
in the example, each vertex is set with what has already been
set before.
gl_FrontColor = gl_FrontColorIn[i];
gl_Position = gl_PositionIn[i];

Variables ending with In are input variables, which represent
data configured as output in the vertex shader. They are arrays,
because a primitive may have more than one vertex.

Every time a vertex is set, it needs to be passed along,
by using the function EmitVertex. When all vertices of a
primitive have already been set, it is necessary to signal that
the primitive is finished, by using the function EndPrimitive.
In the given example, either the input primitive or the output
primitive are triangles. However, this is not always this way.

1 # v e r s i o n 120
2 # e x t e n s i o n GL ARB geometry shader4 : e n a b l e
3 v a r y i n g i n vec3 NIn [] ;
4 v a r y i n g o u t vec3 N;
5 vo id main ()
6 {
7 vec4 p [3] ;
8 p [0] = g l P o s i t i o n I n [0] ;
9 p [1] = g l P o s i t i o n I n [1] ;

10 p [2] = g l P o s i t i o n I n [2] ;
11

12 vec3 n = c r o s s (vec3 (p[2]−p [1]) , vec3 (p[0]−p [1])) ∗5;
13 vec4 c = (p [0] + p [1] + p [2]) / 3 . 0 ;
14 vec4 p i v = vec4 (c . xyz + n , 1 . 0) ;
15 f o r (i n t i = 0 ; i < 3 ; ++ i)
16 {
17 N = c r o s s (vec3 (p [i]−p i v) , vec3 (p [(i +1)%3]−p i v)) ;
18 g l F r o n t C o l o r = g l F r o n t C o l o r I n [i] ;

19 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ p i v ;
20 Emi tVer t ex () ;
21 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ g l P o s i t i o n I n [

i] ;
22 g l F r o n t C o l o r = g l F r o n t C o l o r I n [i] ;
23 Emi tVer t ex () ;
24 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x∗ g l P o s i t i o n I n [(i

+1) %3];
25 g l F r o n t C o l o r = g l F r o n t C o l o r I n [(i +1) %3];
26 Emi tVer t ex () ;
27

28 E n d P r i m i t i v e () ;
29 }
30 }

Listing 7. GeometryCode: Spike

In the GeometryCode in Listing 7 example, the geometry
shader is discarding the initial triangle, given as input, and
creating three new triangles based on the original triangle. The
rationale is creating a new vertex on the triangle centroid, and
raising it in the direction of its normal, thus creating a ridge
(see Fig. 12). For this purpose, it was configured, in the vertex
shader, a variable gl Position with the vertex position in eye
coordinates, and left to the geometry shader the mapping of
the vertex to clipping coordinates.

Fig. 12. Application of GeometryCode in Listing 7 onto a sphere.

F. Simple height-map (tessellation shaders)

The main purpose of the tessellator is to subdivide a
primitive. The next example subdivides four triangles to create
a terrain. A terrain needs a reasonable geometry resolu-
tion (Fig. 13), and TessCtrlCode in Listing 8 and TessEval-
Code in Listing 9 will increase the resolution, by subdividing
the triangles.

1 # v e r s i o n 400
2 l a y o u t (v e r t i c e s = 3) o u t ;
3

4 / / t e s s e l l a t i o n v a l u e i n d i c a t e s how many s u b d i v i s i o n s
5 c o n s t f l o a t t e s s l e v e l = 4 ;
6

7 vo id main () {
8 # d e f i n e i d g l I n v o c a t i o n I D
9 / / s imp ly t r a n s f e r i n g g l P o s i t i o n from i n p u t t o

o u t p u t
10 g l o u t [i d] . g l P o s i t i o n = g l i n [i d] . g l P o s i t i o n ;
11

12 i f (i d == 0) {
13 g l T e s s L e v e l O u t e r [0] = t e s s l e v e l ;
14 g l T e s s L e v e l O u t e r [1] = t e s s l e v e l ;
15 g l T e s s L e v e l O u t e r [2] = t e s s l e v e l ;
16

17 g l T e s s L e v e l I n n e r [0] = t e s s l e v e l ;
18 }
19 }

Listing 8. TessCtrlCode: Triangle Subdivision.

1 # v e r s i o n 400 c o m p a t i b i l i t y
2 / / i n p u t : t r i a n g l e s , made by ccw t r i a n g l e s
3 / / (e q u a l s p a c i n g) means t h a t
4 / / t h e s q u a r e s a r e a l l e q u a l s i z e d
5 l a y o u t (t r i a n g l e s , e q u a l s p a c i n g , ccw) i n ;
6

7 vo id main () {
8 / / each v e r t e x i n t h e s u b d i v i d e d t r i a n g l e
9 / / i s a s s i g n e d a b a r y c e n t r i c (u , v ,w) c o o r d i n a t e based

on i t s l o c a t i o n
10

11 f l o a t u = g l Tes sCoord . x ;
12 f l o a t v = g l Tes sCoord . y ;
13 f l o a t w = g l TessCoord . z ;
14

15 vec3 p0 = g l i n [0] . g l P o s i t i o n . xyz ;
16 vec3 p1 = g l i n [1] . g l P o s i t i o n . xyz ;
17 vec3 p2 = g l i n [2] . g l P o s i t i o n . xyz ;
18

19 / / model p o s i t i o n r e l a t i v e t o t h e t h r e e v e r t i c e s o f t h e
o u t e r t r i a n g l e

20 vec3 m o d e l p o s i t i o n = p0∗u + p1∗v + p2∗w;
21

22 / / p r o j e c t s t o s c r e e n c o o r d i n a t e s
23 g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗ vec4 (

m o d e l p o s i t i o n , 1 . 0) ;
24 }

Listing 9. TessEvalCode: Triangle Subdivision.

The TessCtrlCode in Listing 8 and TessEvalCode in List-
ing 9 perform the triangle subdivision, as can be seen in
Fig. 14;

Fig. 14. The original primitive on left and the result, by executing a
tessellation stage

Tessellation control shaders transform an input patch spec-
ified by the application, computing per-vertex and per-patch
attributes for a new output patch. A fixed-function tessellation
primitive generator subdivides the patch, and tessellation eval-
uation shaders are used to compute the position and attributes
of each vertex produced by the tessellator.

The tessellation primitive generator then decomposes a
patch into a new set of primitives using the tessellation levels
to determine how finely tessellated the output should be. The
primitive generator begins with either a triangle or a quad, and
splits each outer edge of the primitive into a number of seg-
ments approximately equal to the corresponding element of the
outer tessellation level array (gl_TessLevelOuter) . The
interior of the primitive is tessellated according to elements of
the inner tessellation level array (gl_TessLevelInner).

Fig. 13. A sequence of increasing resolutions. From left to right: original primitives, and subdivisions with factor 2, 4, 8, and 16

For each vertex produced by the tessellation primitive
generator, the tessellation evaluation shader is run to compute
its position and other attributes of the vertex, using its (u,v)
or (u,v,w) coordinates.

Finally, by setting the z coordinate of the vertices of
the model, defines a terrain onto the square (Fig. 14). For
visualizing the terrain, any previously loaded texture can be
used as a height map. Therefore, adding the following piece of
code in TessEvalCode in Listing 9 produces a simple terrain
visualizer Fig. 13:

1

2 un i fo rm sampler2D sample r2d0 ;
3

4 / / compute t h e f i n a l t e x t u r e c o o r d i n a t e
5 vec2 t c = texCoord [0]∗ u + texCoord [1]∗ v + texCoord [2]∗

w;
6

7 / / g e t t h e h e i g h t f a c t o r from t e x t u r e
8 f l o a t h e i g h t = t e x t u r e 2 D (sampler2d0 , t c) . r ;
9

10 / / and change t h e z v a l u e
11 m o d e l p o s i t i o n . z = h e i g h t ;

Listing 10. TessEvalCode: Terrain Visualization.

V. SHADER APPLICATIONS

In this section we introduce some complete examples using
GLSL shaders. Each example focus on different programmable
stages.
• Vertex Noise
• Fragment Ray-casting
• Geometry Hair
• Tessellation LOD

A. Vertex Noise

This application is an example of an intense vertex shader
use. The input is a sphere on which the shader is applied.
Based on Perlin’s Noise [16], for each vertex of a sphere, a
noise is included before computing its final location (Fig. 10).
The core computation is done in the vertex shader.

1 # d e f i n e B 32 / / t a b l e s i z e
2 # d e f i n e B2 66 / / B∗2 + 2
3 # d e f i n e BR 0.03125 / / 1 / B
4

5 f l o a t s c u r v e (f l o a t t)
6 { r e t u r n t∗ t ∗(3.0−2.0∗ t) ;}
7

8 / / 3D v e r s i o n
9 f l o a t n o i s e (vec3 v , vec4 pg []) { . . . }

Fig. 15. Perlin noise applied on the vertices of a sphere.

10 / / 2D v e r s i o n
11 f l o a t n o i s e (vec2 v , vec4 pg []) { . . . }
12 / / 1D v e r s i o n
13 f l o a t n o i s e (f l o a t v , vec4 pg [])
14 {
15 v = v + 1 0 0 0 0 . 0 ;
16

17 f l o a t i = f r a c t (v ∗ BR) ∗ f l o a t (B) ; / / i n d e x [0 ,
B−1]

18 f l o a t f = f r a c t (v) ; / / f r a c t i o n a l
p o s i t i o n

19

20 / / compute d o t p r o d u c t s between g r a d i e n t s and
v e c t o r s

21 vec2 r ;
22 r [0] = pg [i n t (i)] . x ∗ f ;
23 r [1] = pg [i n t (i) + 1] . x ∗ (f − 1 . 0) ;
24

25 / / i n t e r p o l a t e
26 f = s c u r v e (f) ;
27 r e t u r n mix (r [0] , r [1] , f) ;
28 }
29

30 c o n s t f l o a t D i s p l a c e m e n t = 2 . 0 ;
31 un i fo rm vec4 pg [B2] ; / / p e r m u t a t i o n / g r a d i e n t

t a b l e
32

33 vo id main ()
34 {
35 vec4 n o i s e P o s = g l T e x t u r e M a t r i x [0] ∗ g l V e r t e x ;
36 f l o a t i = (n o i s e (n o i s e P o s . xyz , pg) + 1 . 0) ∗ 0 . 5 ;
37 g l F r o n t C o l o r = vec4 (i , i , i , 1 . 0) ;
38 / / d i s p l a c e m e n t a l o n g normal
39 vec4 p o s i t i o n = g l V e r t e x +
40 (vec4 (gl Normal , 1 . 0) ∗ i ∗ D i s p l a c e m e n t) ;
41 p o s i t i o n .w = 1 . 0 ;
42 g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗

p o s i t i o n ;
43 }

Listing 11. VertexCode: Perlin Noise (from NVidia Code Sample [17])

The code in VertexCode in Listing 11 is based on Perlin’s
original code [17], where:
• Displacement is a variable that sets the maximum

displacement of a vertex from its original position in the
normal direction (the original radius is 1).

• mix performs a linear interpolation between two values.
• fract returns the fractional part of the argument.
• pg is a 32*4 floating-point table that contains the noise

permutation gradient table, which is set by the application
and passed to the shaders through a uniform variable.

B. Fragment-shader, Sphere ray-casting

1 v a r y i n g vec3 vv ;
2 vo id main ()
3 {
4 vec4 eye = g l M o d e l V i e w M a t r i x I n v e r s e ∗
5 vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
6 vv = vec3 (g l V e r t e x − eye) ;
7 g l F r o n t C o l o r = g l C o l o r ;
8 g l P o s i t i o n = f t r a n s f o r m () ;
9 }

Listing 12. VertexCode: Ray Casting

1 v a r y i n g vec3 vv ;
2 c o n s t f l o a t r a d i u s = 1 . 0 ;
3

4 vec3 s h a d i n g (vec3 N, vec3 L , vec3 R ,
5 vec3 V, f l o a t n , vec3 b a s e C o l o r)
6 {
7 f l o a t d i f f = max (0 . 0 , d o t (N, L)) ;
8 f l o a t spec = 0 . 0 ;
9 i f (d i f f > 0 . 0)

10 spec = pow (max (0 . 0 , d o t (R ,V)) , n) ;
11 r e t u r n (b a s e C o l o r ∗ 0 . 2) + b a s e C o l o r ∗ d i f f + spec ;
12 }
13 vo id main ()
14 {
15 vec3 eye = vec3 (g l M o d e l V i e w M a t r i x I n v e r s e ∗
16 vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0)) ;
17 f l o a t a = d o t (vv , vv) ;
18 f l o a t b = d o t (vv , eye) ;
19 f l o a t c = d o t (eye , eye) − r a d i u s∗ r a d i u s ;
20

21 f l o a t d e l t a = b∗b − a∗c ;
22 i f (d e l t a < 0 . 0)
23 d i s c a r d ;
24 d e l t a = s q r t (d e l t a) ;
25 f l o a t t = (−b − d e l t a) / a ;
26

27 vec4 p = vec4 (eye + t∗vv , 1 . 0) ;
28 vec3 n = n o r m a l i z e (p . xyz) ;
29 vec4 l p = g l M o d e l V i e w M a t r i x I n v e r s e ∗
30 g l L i g h t S o u r c e [0] . p o s i t i o n ;
31 vec3 l = n o r m a l i z e (vec3 (l p − p)) ;
32

33 g l F r a g C o l o r . rgb = s h a d i n g (n , l , r e f l e c t (− l , n) ,
34 n o r m a l i z e (−vv . xyz) , 1 6 . 0 , g l C o l o r .

rgb) ;
35 g l F r a g C o l o r . a = 1 . 0 ;
36

37 p = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗ p ;
38 g l F r a g D e p t h = ((g l DepthRange . f a r − gl DepthRange .

n e a r) ∗
39 p . z / p .w +
40 gl DepthRange . n e a r + gl DepthRange . f a r)

/ 2 . 0 ;
41 }

Listing 13. FragmentCode: Ray Casting

In 2004, Toledo and Levy[18] introduced a new way of
extending the graphics pipeline. They proposed a technique
to render implicit primitives in GPU, by using a ray casting

Fig. 16. Left: application of VertexCode in Listing 12 and Fragment-
Code in Listing 13 onto a cube, by using ShaderLabs. Right: Correct fragment
depth on the left versus a depth obtained using the face of the cube, on the
right.

algorithm in the fragment shader. The example in Vertex-
Code in Listing 12 and FragmentCode in Listing 13 renders a
sphere inside a box. The primitive sent from CPU to GPU was
a cube, and it can be performed by choosing a cube primitive
on ShaderLabs.

In this example, a ray is cast from the camera origin to each
vertex in model coordinates:

1 vec4 eye = g l M o d e l V i e w M a t r i x I n v e r s e ∗vec4 (0 . 0 , 0 . 0 ,
0 . 0 , 1 . 0) ;

2 vv = vec3 (g l V e r t e x − eye) ;

Listing 14. FragmentCode: Model to eye transformation.

and stored in the vv variable. The gl ModelViewMatrixInverse
inverts the gl ModelViewMatrix, which provides a transforma-
tion from eye coordinates to model coordinates. Since the eye
position in eye coordinates is (0, 0, 0), the first line computes
the eye position in model coordinates, while the second line
computes the ray direction. An intersection equation must be
solved, for each fragment, in order to get the intersection point
between a parametrized ray and an implicit sphere.

Given a parametrized ray r(t) = P0 + t~d, where P0 is the
initial point, ~d is a base vector that gives the ray direction; and
the sphere implicit equation, x2+y2+z2 = r2; the intersection
equation is:

t2(~d · ~d) + 2t(~d · P0) + (P0 · P0)− r2 = 0

If delta < 0, then the fragment is discarded with the
fragment command discard.

The last line in FragmentCode in Listing 13 computes
the correct depth value of the fragment. This is important
since the original fragment depth is the one of the face of
the cube. This depth equation can be found in The OpenGL
Specification [19]. A comparison between sphere depth and
cube depth is shown in Fig. 16.

The first line, of the following code, computes p in clipping
coordinates (pc = (xw, yw, zw,w)). However, the depth
equation expects the z value in screen coordinates (pd =
(x, y, z, 1)). Therefore, p.z is divided by p.w.

1 p = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗ p ;
2 g l F r a g D e p t h = ((g l DepthRange . f a r −

3 gl DepthRange . n e a r) ∗ p . z / p .w +
4 gl DepthRange . n e a r + gl DepthRange . f a r)

/ 2 . 0 ;

Listing 15. FragmentCode: Fragment depth value.

C. Geometry Hair

Fig. 17. Application of VertexCode in Listing 16 and GeometryCode in List-
ing 17 onto a sphere, by using ShaderLabs.

1 v a r y i n g vec3 NIn ;
2 vo id main ()
3 {
4 NIn = gl Normal ;
5 g l P o s i t i o n = g l V e r t e x ;
6 }

Listing 16. VertexCode: Mohican Hair

1 # v e r s i o n 120
2 # e x t e n s i o n GL EXT geometry shader4 : e n a b l e
3 v a r y i n g i n vec3 NIn [] ;
4 c o n s t vec4 b l a c k = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
5 c o n s t f l o a t uDroop = 1 . 0 ;
6 c o n s t i n t uLength = 8 ;
7 c o n s t f l o a t uS tep = 0 . 3 ;
8 c o n s t i n t numLayers = 2 ;
9 vec3 N0 , N01 , N02 ;

10 vec4 V0 , V01 , V02 ;
11 vec4 vs [3] ;
12 vec3 ns [3] ;
13 vo id p r o d u c e V e r t i c e s (f l o a t s , f l o a t t)
14 {
15 vec4 v = V0 + s∗V01 + t∗V02 ;
16 vec3 n = n o r m a l i z e (N0 + s∗ N01 + t∗N02) ∗0 . 2 ;
17 f o r (i n t i = 0 ; i <= uLength ; ++ i)
18 {
19 g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗ v ;
20 g l F r o n t C o l o r = b l a c k ;
21 Emi tVer t ex () ;
22 v . xyz += uStep ∗ n ;
23 f l o a t dec = i ∗0 . 0 2 ;
24 v . y −= uDroop ∗ f l o a t (dec∗dec) ;
25 }
26 E n d P r i m i t i v e () ;
27 }
28

29 vo id s e t u p ()
30 {
31 f o r (i n t i = 0 ; i < 3 ; ++ i)
32 {
33 vs [i] = gl ModelViewMatr ix ∗ g l P o s i t i o n I n [i] ;
34 ns [i] = g l Norma lMat r ix ∗ NIn [i] ;
35 }
36 V0 = vs [0] ;
37 V01 = vs [1] − vs [0] ;
38 V02 = vs [2] − vs [0] ;
39 i f (d o t (ns [0] , ns [1]) < 0 . 0)
40 ns [1] = −ns [1] ;
41 i f (d o t (ns [0] , ns [2]) < 0 . 0)

42 ns [2] = −ns [2] ;
43 N0 = n o r m a l i z e (ns [0]) ;
44 N01 = n o r m a l i z e (ns [1] − ns [0]) ;
45 N02 = n o r m a l i z e (ns [2] − ns [0]) ;
46 }
47 vo id main ()
48 {
49 i f (g l P o s i t i o n I n [0] . x > 0 . 1 &&
50 g l P o s i t i o n I n [1] . x > 0 . 1 &&
51 g l P o s i t i o n I n [2] . x > 0 . 1 &&
52 g l P o s i t i o n I n [0] . z > 0 . 5 &&
53 g l P o s i t i o n I n [1] . z > 0 . 5 &&
54 g l P o s i t i o n I n [2] . z > 0 . 5)
55 {
56 s e t u p () ;
57 f l o a t d t = 1 . 0 / numLayers ;
58 f l o a t t = 1 . 0 ;
59 f o r (i n t i t = 0 ; i t <= numLayers ; ++ i t)
60 {
61 f l o a t smax = 1 . 0 − t ;
62 i n t nums = i t + 1 ;
63 f l o a t ds = smax / f l o a t (nums−1) ;
64 f l o a t s = 0 . 0 ;
65 f o r (i n t i s = 0 ; i s < nums ; ++ i s)
66 {
67 p r o d u c e V e r t i c e s (s , t) ;
68 s += ds ;
69 }
70 t −= d t ;
71 }
72 }
73 }

Listing 17. GeometryCode: Mohican Hair

The mohican hair effect shown in Fig. 17 is a good geometry
shader example. The result was obtained by executing the Ver-
texCode in Listing 16 and GeometryCode in Listing 17 onto
a sphere, by ShaderLabs. In this example, the input primitive
is a triangle and the output primitive is a line-strip.

The VertexCode in Listing 16 is a simple code to pass
the vertex position and normal, in model coordinates, to
the geometry shader. The first line of the hair Geome-
tryCode in Listing 17 main function is responsible for selecting
the appropriate piece of the sphere, and discarding the other
part. In order to select the appropriate part, the vertex must
be in model coordinates. Before explaining the code, it is
important to understand the triangle parametrization used in
this shader.

Given three non-collinear vertices, v0, v1 e v2, it is possible
to generate a vertex into the triangle, by using an affine
combination:

v(s, t) = v0 + s(v1 − v0) + t ∗ (v2 − v0) (1)

Therefore, it is simpler to understand the produceVertices
function. It receives two parameters (s and t) and applies
the affine combination to compute a vertex and normal in-
side the triangle, where V 01 = V 1 − V 0 and V 02 =
V 2 − V 0. Then, it produces uLength adjacent lines fol-
lowing the normal direction, with a small quadratic decay
(v.y -= uDroop * float(dec*dec)), to simulate the
gravity’s effect on a hair strand.

The setup function performs the setup of some variables on
eye coordinate. The main function computes the parameters
of Eq. 1, in order to maximize the number of hair strands per
face.

Because lines do not have a uniquely defined normal, illumi-
nation is not computed. However, it can be done using Mallo’s

approach[20]. This example was borrowed and adapted from
Bailey [21].

D. Tessellation LOD (Level of Detail)

Terrain visualization is a common and relevant application,
and for a realistic visualization, the corresponding surface
mesh may have a large number of vertices.

As a consequence, for an efficient rendering, optimizations,
such as a progressive level of detail, can be applied based on
the distance to the viewer and the clipping plane position.

1

2 / / f u n c t i o n f o r r e t u r n i n g t h e p r o j e c t e d p o s i t i o n
3 / / o f a g i v e n p o i n t
4 vec4 p r o j e c t (vec4 v e r t e x){
5 vec4 r e s u l t = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗

v e r t e x ;
6 r e s u l t /= r e s u l t .w;
7 r e t u r n r e s u l t ;
8 }
9

10 / / f u n c t i o n f o r c o n v e r t i n g a normal v e c t o r
11 / / i n d e v i c e s p a c e t o s c r e e n s p a c e
12 vec2 s c r e e n s p a c e (vec4 v e r t e x){
13 r e t u r n (clamp (v e r t e x . xy , −1.3 , 1 . 3) +1) ∗ (ws ize

∗0 . 5) ;
14 }
15

16 f l o a t l e v e l (vec2 v0 , vec2 v1){
17 r e t u r n clamp (d i s t a n c e (v0 , v1) / l o d f a c t o r , 1 , 64) ;
18 }
19

20 boo l o f f s c r e e n (vec4 v e r t e x){
21 / / t e s t s i f i t ’ s be h i nd t h e camera
22 i f (v e r t e x . z < −0.5){
23 r e t u r n t r u e ;
24 }
25 / / ch e ck s t h e XY b o r d e r s
26 r e t u r n any (
27 l e s s T h a n (v e r t e x . xy , vec2 (−1.7)) | |
28 g r e a t e r T h a n (v e r t e x . xy , vec2 (1 . 7))
29) ;
30 }

Listing 18. TessCtrlCode: Auxiliary code to listing 20.

For finding the best level of detail, in tess amount, listing
18 divides the distance by a given constant factor. The values
are clamped in the range [1,64], which defines the subdivision
level. Float values are valid, because the tesselation spacing
can be fractional.

In listing 19, it is presented a clipping algorithm that returns
whether the vertex is outside the screen. A True value means
the vertex is outside, and therefore can be discarded.

1 l a y o u t (v e r t i c e s = 3) o u t ;
2

3 un i fo rm vec2 ws ize ;
4 c o n s t f l o a t l o d f a c t o r = 1 0 . 0 ;
5

6 vo id main () {
7 # d e f i n e i d g l I n v o c a t i o n I D
8 / / s imp ly t r a n s f e r r i n g g l P o s i t i o n from i n p u t t o

o u t p u t
9 g l o u t [i d] . g l P o s i t i o n = g l i n [i d] . g l P o s i t i o n ;

10 t exCoord [i d] = t e x C o o r d I n [i d] ;
11

12 / / t h e f o l l o w i n g code (i n s i d e t h e i f b l o c k)
13 / / w i l l be e x e c u t e d on ly once p e r p a t c h
14 / / HLSL has a s i m i l a r concep t , u s i n g

C o n s t a n t H u l l S h a d e r
15 i f (i d == 0) {
16 / / p r o j e c t e d t h e 4 c o r n e r c o n t r o l p o i n t s
17 vec4 v0 = p r o j e c t (g l i n [0] . g l P o s i t i o n) ;
18 vec4 v1 = p r o j e c t (g l i n [1] . g l P o s i t i o n) ;

19 vec4 v2 = p r o j e c t (g l i n [2] . g l P o s i t i o n) ;
20

21 i f (a l l (bvec3 (
22 o f f s c r e e n (v0) ,
23 o f f s c r e e n (v1) ,
24 o f f s c r e e n (v2)
25))){
26 / / i f a l l o f them a r e o u t s i d e t h e f rus tum ,
27 / / t h e t e s s l e v e l i s d ropped t o 0 ,
28 / / t h e n no v e r t e x w i l l be produced by t h i s p a t c h
29 g l T e s s L e v e l I n n e r [0] = 0 ;
30 g l T e s s L e v e l O u t e r [0] = 0 ;
31 g l T e s s L e v e l O u t e r [1] = 0 ;
32 g l T e s s L e v e l O u t e r [2] = 0 ;
33 }
34 e l s e {
35 / / d e f i n i n g t h e t e s s e l l a t i o n f a c t o r f o r each

edge
36 vec2 s s 0 = s c r e e n s p a c e (v0) ;
37 vec2 s s 1 = s c r e e n s p a c e (v1) ;
38 vec2 s s 2 = s c r e e n s p a c e (v2) ;
39

40 f l o a t e0 = l e v e l (ss1 , s s 2) ;
41 f l o a t e1 = l e v e l (ss0 , s s 1) ;
42 f l o a t e2 = l e v e l (ss2 , s s 0) ;
43

44 / / f i n a l l y , a s s i g n s t h e chosen f a c t o r s
45 / / i n t e r n a l t e s s e l l a t i o n l e v e l i s mixed ha l fway
46 / / o f t h e r e l a t e d o p p o s i t e edges
47 g l T e s s L e v e l I n n e r [0] = mix (e1 , e2 , 0 . 5) ;
48 g l T e s s L e v e l O u t e r [0] = e0 ;
49 g l T e s s L e v e l O u t e r [1] = e1 ;
50 g l T e s s L e v e l O u t e r [2] = e2 ;
51 }
52 }
53 }

Listing 19. TessCtrlCode: Terrain with LOD

The screen size is defined in the application, and the level
of detail (LOD) factor means the desired quality of the scene,
which is also configured by the application.

1 # v e r s i o n 400 c o m p a t i b i l i t y
2 l a y o u t (t r i a n g l e s , f r a c t i o n a l o d d s p a c i n g , ccw) i n ;
3

4 / / t e x t u r e c o o r d i n a t e s , t o be used i n t h e p i x e l s h a d e r
5 i n vec2 texCoord [] ;
6

7 / / d e p t h va lue , t o be used i n t h e p i x e l s h a d e r
8 o u t f l o a t d e p t h ;
9

10 / / t e x t u r e wi th t h e h e i g h t v a l u e s
11 un i fo rm sampler2D sample r2d0 ;
12

13 vo id main () {
14 f l o a t u = g l TessCoord . x ;
15 f l o a t v = g l TessCoord . y ;
16 f l o a t w = g l TessCoord . z ;
17

18 vec4 p0 = g l i n [0] . g l P o s i t i o n ;
19 vec4 p1 = g l i n [1] . g l P o s i t i o n ;
20 vec4 p2 = g l i n [2] . g l P o s i t i o n ;
21

22 vec4 p o i n t = p0∗u + p1∗v + p2∗w;
23 vec2 texC = texCoord [0]∗ u + texCoord [1]∗ v + texCoord

[2]∗w;
24

25 f l o a t h e i g h t = t e x t u r e 2 D (sampler2d0 , texC) . r ;
26 p o i n t . z = h e i g h t ∗0 . 4 ;
27

28 / / p r o j e c t s t o s c r e e n c o o r d i n a t e s
29 g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗ vec4 (

p o i n t) ;
30

31 / / s im p ly c o p i e s a s d e p t h v a l u e
32 d e p t h = g l P o s i t i o n . z ;
33 }

Listing 20. TessEvalCode: Terrain with LOD

Fig. 18. Terrain visualization using Height Map in wireframe mode.

E. Sphere silhouette LOD

This last example also implements a LOD but to render
a sphere, considering the silhouette as the target for a finner
LOD. The input is an icosahedron geometry which was passed
as patches from the OpenGL (see Listing 21) .

1 g l P a t c h P a r a m e t e r i (GL PATCH VERTICES , 3) ;
2 g l B e g i n (GL PATCHES) ;
3 g l V e r t e x 3 i (0 , 0 , 0) ;
4 . . .
5 glEnd () ;

Listing 21. Patches from the OpenGL

The output is a sphere that has a finner subdivision mesh in
its border than in its interior (Fig. 19).

1 vo id main (vo id)
2 {
3 g l P o s i t i o n = g l V e r t e x ;
4 }

Listing 22. VertexCode: Icosahedron

1 # v e r s i o n 400 c o m p a t i b i l i t y
2 l a y o u t (v e r t i c e s = 3) o u t ;
3

4 vo id main ()
5 {
6 # d e f i n e i d g l I n v o c a t i o n I D
7

8 g l o u t [i d] . g l P o s i t i o n = g l i n [i d] . g l P o s i t i o n ;
9

10 i f (i d == 0)
11 {
12 vec3 N [4] ;
13 N[0] = (g l i n [1] . g l P o s i t i o n . xyz + g l i n [2] .

g l P o s i t i o n . xyz) / 2 . 0 ;
14 N[1] = (g l i n [0] . g l P o s i t i o n . xyz + g l i n [2] .

g l P o s i t i o n . xyz) / 2 . 0 ;
15 N[2] = (g l i n [0] . g l P o s i t i o n . xyz + g l i n [1] .

g l P o s i t i o n . xyz) / 2 . 0 ;
16 N[3] = (g l i n [0] . g l P o s i t i o n . xyz + g l i n [1] .

g l P o s i t i o n . xyz + g l i n [2] . g l P o s i t i o n . xyz)
/ 3 . 0 ;

17

18 f o r (i n t i = 0 ; i < 4 ; ++ i)
19 {
20 N[i] = n o r m a l i z e (g l Norma lMat r ix ∗ N[i]) ;
21

22 f l o a t z = 1 . 0 − N[i] . z ∗ N[i] . z ;
23

24 i f (i < 3)
25 g l T e s s L e v e l O u t e r [i] = 1 0 . 0 ∗ z ;
26 e l s e
27 g l T e s s L e v e l I n n e r [0] = 1 0 . 0 ∗ z ;
28 }
29 }
30 }

Listing 23. TessCtrlCode: Icosahedron

1 # v e r s i o n 400 c o m p a t i b i l i t y
2 l a y o u t (t r i a n g l e s , e q u a l s p a c i n g) i n ;
3

4 vo id main ()
5 {
6 vec4 p0 = g l i n [0] . g l P o s i t i o n ;
7 vec4 p1 = g l i n [1] . g l P o s i t i o n ;
8 vec4 p2 = g l i n [2] . g l P o s i t i o n ;
9

10 f l o a t u = g l TessCoord . x ;
11 f l o a t v = g l TessCoord . y ;
12 f l o a t w = g l TessCoord . z ;
13

14 vec3 p o i n t = (p0∗u + p1∗v + p2∗w) . xyz ;
15 p o i n t = n o r m a l i z e (p o i n t . xyz) ;
16 g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗ vec4 (

p o i n t , 1 . 0) ;
17 }

Listing 24. TessEvalCode: Icosahedron

Fig. 19. Tessellated sphere from an icosahedron

Note that the for block between lines 18 and 28, in
TessCtrlCode in Listing 23, sets the LOD resolution, according
to the normal direction (line 23). Finally, the vertex final
position must be projected to the sphere surface. In this
example, this is computed in lines 14, 15 and 16 in (Tes-
sEvalCode in Listing 24), considering a zero-centered sphere
of radius one.

VI. CONCLUSION

In this survey, we have selected a series of shader-based
examples in a simple-to-complex order. For each one, the
reader is invited to take a glance at the code before fully
understanding it. This learning by example way is compatible
with Coding Dojo, which is a recent group learning technique
[1], [22]. Both are pull-systems for education (differently
from traditional education, where the lessons are pushed to
the audience, sometimes without respecting their time to
assimilate the knowledge). This way, if the reader is willing
to use this material in a class, we recommend that it should
be based on Coding Dojo.

Another idea advocated in this survey is the use of a
shader development environment to learn and practice GLSL
language (or any shader language). This way, the practitioner
avoids several issues, such as: environment configuration,
CPU compilation or 3D model reading. Besides that, these
environments provide almost instant result of their coding,
accelerating the feedback time of code correctness. The recent
development of Shaderlabs fills the gap of tools with all

programmable stages. Shaderlabs is a concise tool and it was
developed following Agile development practices [23]. More
than that, we believe that it is possible to teach and learn
visualization algorithms through shader programming, and
there is no need to show them in the fixed-function pipeline.

A common complaining of those that program on shaders
is the difficult in debugging their code. This is an issue, since
the beginning of the programmable GPU, about ten years ago.
Although some effort that has been done on this subject, we
hope that in the near future there will be a practical solution
for this problem, and it will probably be implemented as a
feature in one of those shader tools.

Finally, this GLSL survey does not intend to be complete
about the language itself, but it is a guide through examples.
For further information about GLSL language, please check
our list of references [3], [4], [5], [6], [8], [19], [21].

All examples shown in this paper can be found on [2].

REFERENCES

[1] C. Delgado, R. de Toledo, and V. Braganholo, “Uso de dojos no
ensino superior de computação,” in XX Workshop sobre Educação em
Computação (WEI), Anais do XXXII Congresso da Sociedade Brasileira
de Computação (CSBC 2012), 2012.

[2] “Shaderlabs.” [Online]. Available: http://www.dcc.ufrj.br/∼shaderlabs/
Shaderlabs

[3] R. J. Rost, OpenGL(R) Shading Language. Addison-Wesley
Professional, Jan. 2006. [Online]. Available: http://www.amazon.
com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321334892

[4] R. Marroquim and A. Maximo, “Introduction to gpu programming
with glsl,” in Computer Graphics and Image Processing (SIBGRAPI
TUTORIALS), 2009 Tutorials of the XXII Brazilian Symposium on, oct.
2009, pp. 3 –16.

[5] “Glsl: An introduction.” [Online]. Available: http://nehe.gamedev.net/
article/glsl an introduction/25007/

[6] “Glsl tutorial von lighthouse3d.” [Online]. Available: http://zach.in.
tu-clausthal.de/teaching/cg literatur/glsl tutorial/

[7] “Opengl 4 tessellation.” [Online]. Available: http://codeflow.org/entries/
2010/nov/07/opengl-4-tessellation/

[8] G. Nunes, A. Valdetaro, A. Raposo, and B. Feijo, “Understanding shader
model 5.0 with directx 11,” in Tutorial of the IX Brazilian Symposium
on Computer Games and Digital Entertainment, ser. SBGAMES ’10,
2010.

[9] “Shader desinger.” [Online]. Available: http://www.opengl.org/sdk/tools/
ShaderDesigner/

[10] “Rendermonkey.” [Online]. Available: http://developer.amd.com/archive/
gpu/rendermonkey/pages/default.aspx

[11] “Shader maker.” [Online]. Available: http://cg.in.tu-clausthal.de/
teaching/shader maker/index.shtml

[12] F. Durand and B. Cutler, “6.837 computer graphics,”
vol. 13, pp. 18–28, 2003. [Online]. Available: http:
//ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-837-computer-graphics-fall-2003/

[13] O. A. R. Board, D. Shreiner, M. Woo, J. Neider, and T. Davis,
OpenGL(R) Programming Guide: The Official Guide to Learning
OpenGL(R), Version 2.1, 6th ed. Addison-Wesley Professional, 2007.

[14] B. T. Phong, “Illumination for computer generated pictures,” Commun.
ACM, vol. 18, no. 6, pp. 311–317, Jun. 1975. [Online]. Available:
http://doi.acm.org/10.1145/360825.360839

[15] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Trans.
Comput., vol. 20, no. 6, pp. 623–629, Jun. 1971. [Online]. Available:
http://dx.doi.org/10.1109/T-C.1971.223313

[16] K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph.,
vol. 19, no. 3, pp. 287–296, Jul. 1985. [Online]. Available:
http://doi.acm.org/10.1145/325165.325247

[17] “Vertex noise, nvidia sdk 9.52 code samples.” [Online]. Avail-
able: http://developer.download.nvidia.com/SDK/9.5/Samples/samples.
html#glsl vnoise

[18] R. Toledo and B. Levy, “Extending the graphic pipeline with new
gpu-accelerated primitives,” in International gOcad Meeting, Nancy,
France, 2004, also presented in Visgraf Seminar 2004, IMPA, Rio
de Janeiro, Brazil. [Online]. Available: http://www.tecgraf.puc-rio.br/
∼rtoledo/publications

[19] M. Segal and K. Akeley, “The opengl(r) graphics system: A specifica-
tion,” 2010.

[20] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo, “Illuminated lines revisited,”
in IEEE Visualization’05, 2005, pp. –1–1.

[21] M. Bailey, “Glsl geometry shaders.” [Online]. Available: http://web.
engr.oregonstate.edu/∼mjb/cs519/Handouts/geometry shaders.6pp.pdf

[22] D. T. Sato, H. Corbucci, and M. V. Bravo, “Coding dojo: An
environment for learning and sharing agile practices,” in Proceedings
of the Agile 2008, ser. AGILE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 459–464. [Online]. Available:
http://dx.doi.org/10.1109/Agile.2008.11

[23] T. Gomes and F. Vianna, “Shaderlabs: Desenvolvimento ágil de
uma ide para opengl shaders,” 2011. [Online]. Available: http:
//www.dcc.ufrj.br/∼shaderlabs/files/monografia.pdf

http://www.dcc.ufrj.br/~shaderlabs/Shaderlabs
http://www.dcc.ufrj.br/~shaderlabs/Shaderlabs
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321334892
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321334892
http://nehe.gamedev.net/article/glsl_an_introduction/25007/
http://nehe.gamedev.net/article/glsl_an_introduction/25007/
http://zach.in.tu-clausthal.de/teaching/cg_literatur/glsl_tutorial/
http://zach.in.tu-clausthal.de/teaching/cg_literatur/glsl_tutorial/
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/
http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/
http://www.opengl.org/sdk/tools/ShaderDesigner/
http://www.opengl.org/sdk/tools/ShaderDesigner/
http://developer.amd.com/archive/gpu/rendermonkey/pages/default.aspx
http://developer.amd.com/archive/gpu/rendermonkey/pages/default.aspx
http://cg.in.tu-clausthal.de/teaching/shader_maker/index.shtml
http://cg.in.tu-clausthal.de/teaching/shader_maker/index.shtml
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2003/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2003/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2003/
http://doi.acm.org/10.1145/360825.360839
http://dx.doi.org/10.1109/T-C.1971.223313
http://doi.acm.org/10.1145/325165.325247
http://developer.download.nvidia.com/SDK/9.5/Samples/samples.html#glsl_vnoise
http://developer.download.nvidia.com/SDK/9.5/Samples/samples.html#glsl_vnoise
http://www.tecgraf.puc-rio.br/~rtoledo/publications
http://www.tecgraf.puc-rio.br/~rtoledo/publications
http://web.engr.oregonstate.edu/~mjb/cs519/Handouts/geometry_shaders.6pp.pdf
http://web.engr.oregonstate.edu/~mjb/cs519/Handouts/geometry_shaders.6pp.pdf
http://dx.doi.org/10.1109/Agile.2008.11
http://www.dcc.ufrj.br/~shaderlabs/files/monografia.pdf
http://www.dcc.ufrj.br/~shaderlabs/files/monografia.pdf

	Introduction
	Survey overview

	Related Work
	GPU programming tools

	Graphics Pipeline Evolution
	Graphics Pipeline
	Vertex and Fragment Shaders
	Geometry Shader
	Tessellation Shaders

	GLSL language
	Replacing the fixed-function pipeline, first version (vertex shader)
	Replacing the fixed-function pipeline, second version (vertex shader)
	Replacing the fixed-function pipeline, third version (fragment shader)
	Phong and Texture
	Geometry pass-through and Spike
	Simple height-map (tessellation shaders)

	Shader applications
	Vertex Noise
	Fragment-shader, Sphere ray-casting
	Geometry Hair
	Tessellation LOD (Level of Detail)
	Sphere silhouette LOD

	Conclusion
	References

