
Cloud and mobile Web-based graphics and
visualization

Haim Levkowitz
Computer Science Department

University of Massachusetts Lowell
Lowell, MA, USA
haim@cs.uml.edu

Curran Kelleher
Computer Science Department

University of Massachusetts Lowell
Lowell, MA, USA

ckellehe@cs.uml.edu

Abstract—Cloud computing is rapidly becoming one of the
most prevailing computing platforms. At the same time, the
Web browser has become an application platform. Mobile+Cloud,
the combination of mobile devices and cloud-based computing
is changing how users produce, consume, and use computing
resources. With the introduction and penetration of HTML5,
and, in particular, its visual capabilities in the form of the Can-
vas element, the implementation of high-quality browser-based
graphics has become a reality. Indeed, WebGL offers capabilities
comparable to the traditional (desktop) OpenGL utilizing in-
browser computing resources. It is now feasible to have high-
performance graphics and visualization “in your palm,” utilizing
a mobile device’s browser as the graphics platform as well as the
front end interface and the display. In the near future, graphics’
“heavy lifting” on a cloud-based platform, coupled with a mobile
client will afford high-performance graphics for most users most
of the time. We argue that this will become the most common
platform for computer graphics and visualization in the not-
too-distant future. We further argue that such platforms will
democratize the use of advanced graphics and visualization and
will revolutionize analysis and display of the growing amount of
data we all face every day.

The goals of this survey are to make the reader familiar with
the underlying technologies that make this possible, including
(but not limited to) cloud-based computing, mobile computing,
their combination, HTML5 and the Canvas element, the WebGL
and other graphics libraries, and general Web-based graphics
and visualization.

Keywords-cloud computing; computer graphics; visual analyt-
ics; visual data mining; visualization; Web-based graphics; Web-
based visualization;

I. INTRODUCTION

We all know the history of computing: very large (but not
very capable) computers were located in special rooms to
which access was limited. Punched paper tapes gave way to
punched cards, then “dumb” terminals led the way to time-
sharing. The personal computer started a long “democratiza-
tion” process by providing almost anybody some compute
power on their desks, and then on their laps, or in their
briefcase. The Internet provided connectivity, and the World-
Wide Web, easy access to information any time any place, as
long as Internet connectivity is available. Recent penetration of
“smart” mobile devices have extended that reach to a person’s
pocket or purse.

“Visual computing” 1 has been following a somewhat par-
allel path. However, due to visual computing’s heavy perfor-
mance requirements, that reach has had its limitations. Even
though graphics hardware — like all other computing equip-
ment — have become more powerful, less costly, and more
portable, limitations have kept the need for special-purpose
hardware to handle more than trivially-sized applications. For
example, “big data” is now everywhere, but it has so far not
been easy to handle such large amounts of data on general
purpose, consumer-grade equipment using consumer-oriented
software.

With the advent of recent new technologies, such as HTML5
and its Canvas element, WebGL, and cloud-computing, a
compute environment has emerged, in which users can get
“closer” to their visual computing needs, and can utilize their
general purpose equipment, including their mobile devices, to
view and interact with large amounts of data in visual form.

We observe that traditional, paper-based publications are
rapidly giving way to electronic formats. We predict that
within a relatively short period of time, most paper-based
newspapers will disappear, to be replaced by electronic pub-
lications. Electronic books have been the strongest growth
segment in the book publishing industry. These new platforms
offer far reaching capabilities. For example, if you compare the
paper version and the tablet version of any modern magazine
offering both (e.g., Wired, Popular Mechanics, or your favorite
choice), you will find a much richer experience on the tablet
version. Unlike the static nature of paper, the electronic
medium allows for a dynamic interactive presentation. Imagine
a data-driven story: A very contentious topic in the USA
and Europe has been the economy. Some opine that austerity
is the only way out of a recession; other advocate more
government stimulus spending. Each side offers conjectures
and projections. The reader is asked to take their figures and
projected outcomes at face value. But the current electronic
media provide us with the capabilities to offer a reader an
interactive “what if?” scenario, in which she can manipulate
projected values (e.g., debt/GDP ratio, inflation rates, interest
rates) and observe expected outcomes for growth, debt, deficit,

1We use the general term “visual computing” to refer to the aggregate of
computer graphics, vision, imaging, and visualization.

mailto:haim@cs.uml.edu
mailto:ckellehe@cs.uml.edu

and unemployment figures, all from the comfort of her easy
chair, nursing a tablet.

Clearly, this requires access to true and current data, and the
computational abilities to process, analyze, and present them,
and to do so in response to the users interactive manipulation.

Does this sound futuristic, utopian? It is not! As we
demonstrate later, more and more of that necessary data is
becoming available for the general public’s consumption. And,
as we further show, hardware and software are rapidly moving
“towards us,” making these goals more realistic and attainable.
This paper surveys the technologies and tools that exist today
that make this scenario possible. The technologies we survey
here offer a substantial amount of in-browser processing and
interaction capabilities. Cloud-computing can offer additional
“horsepower” where the in-browser, client-side processing
capacity is not sufficient.

We survey the following technologies and their applications:
• HTML5, the cross-platform application stack of the fu-

ture;
• Canvas, the visual workhorse of HTML5;
• WebGL, the technology bringing 3D graphics to the Web;
• various 2D- and 3D-graphics libraries;
• the fundamentals of cloud computing;
• the fundamentals of mobile applications development;
• Mobile+Cloud computing in general, and their particular

applications to visual computing;
• the Semantic Web and its role in the democratization of

data;
• several examples of the penetration of Mobile+Cloud

applications in support of democratized data visualization
and analysis.

II. A BRIEF HISTORY OF COMPUTER GRAPHICS AND THE
WORLD-WIDE WEB

The reader is probably well-versed in the history and fun-
damentals of computer graphics, the Internet, and the World-
Wide Web. We provide this brief (and incomplete) history as
a refresher for context purposes. For more details, the reader
is referred to the references provided and, e.g., [1], [2], [3].

The early days of computing were limited to alpha-numeric
text (initially in upper-case only). In 1963, Ivan Sutherland
literally gave birth to the field of interactive computer graphics
with the publication of his MIT Ph.D. dissertation, Sketchpad,
an interactive system on a vector graphics display, utilizing a
light-pen as its input device [4]. Further development during
the 1960s included Bresenham’s raster algorithms for drawing
line segments, circles, ellipses, and other conic sections [5],
[6]; Coons’s and Bézier’s parametric surfaces and computer-
aided geometric design [1], [7], [8], [9], [10], [11], [12], [13];
Appel’s hidden surface removal [14] and Appel’s and Crow’s
shadow algorithms [15], [16]; Doug Engelbart’s invention of
the mouse at Xerox PARC (where several other revolutionary
inventions were made); and the founding of Evans & Suther-
land Corp., which built flight simulators on raster graphics.

During the 1970s Gouraud [17], [18] and Phong [19]
developed rendering and a reflection model. Xerox PARC

developed a paint program. Catmull developed parametric
patch rendering, the depth-buffer (better known as the z-
buffer) algorithm and texture mapping [20]. Whitted developed
recursive ray-tracing, which became a standard for photoreal-
ism [21]. Apple’s first computers launched commercially the
personal computing. Arcade games Pong and Pac Man became
popular. In 1974, the first SIGGRAPH conference on computer
graphics opened, becoming the main event for presenting inno-
vations in interactive computer graphics, computer animations,
as well as other early visual computing innovations.

In the early 1980s Fournier, Fussell, and Carpenter started
exploring fractals in computer graphics [22]. Adobe Systems
was founded, and introduced to the market the page-layout
language Postscript and the image editing software Photoshop.
Animators started aiming at character animation, and video
arcade games became very popular.

In 1980 Disney’s TRON was the first live-action movie that
included more than 20 minutes of computer animation. In 1981
IBM introduced the first IBM PC, (utilizing the 16 bit Intel
8088 CPU chip). Around the same time, the movie Raiders
of the Lost Ark won an Academy Award (“Oscar”) for visual
effects.

In 1982 The Genesis Effect, created by Industrial Light
and Magic (ILM) for the Startrek II movie was the first all-
computer-animated visual effects sequence shot for a film.

In 1984 Pixar was founded, originally as a developer and
manufacturer of special-purpose, high-performance graphics
hardware (often referred to as “the box”). Pixar abandoned
hardware in favor of software, introduced RenderMan, a soft-
ware package and an API for network-distributed rendering of
complex three dimensional views. RenderMan was designed to
utilize a “render farm” of many client computers. Those clients
do not require 3D graphics cards, but may take advantage
of available cards [23], [24]. Pixar would later become much
more well-known for its blockbuster, fully-computer-animated
movies.

In 1985 the movie The Last Starfighter was the first live-
action feature film that had realistic computer animation of
highly-detailed models.

In 1989 the movie The Abyss was the first movie that
included 3D character animation that could be described as
“convincing.”

At the end of the 1980s the World-Wide Web was invented
by Tim Berners-Lee, who developed the Hypertext Transfer
Protocol (HTTP), the Hypertext Markup Language (HTML),
the first Web server, and the first Web browser.

During the 1990s Shaded raster graphics began to be
featured in films. Computers started to include 24-bit raster
display and hardware support for more functions that were
previously only supported in software, such as Gouraud shad-
ing. The first graphical Web browser, Mosaic (later becoming
Netscape) launched the popular revolution of the World-Wide
Web. In 1995 Pixar released Toy Story, the first feature-length,
entirely computer-generated film.

During the 2000s graphic software became more capable
and much more accessible to a more general class of users.

PC display capabilities continued to advance, including the
support of real-time texture mapping. Graphics input and
output devices, such as scanners, printers, and cameras became
affordable and penetrated the consumer market. 3D modeling
advanced to be able to capture human faces and their expres-
sions, hair, water, and other aspects that had previously been
difficult to render.

During the last two decades, the World-Wide Web has pro-
gressively transformed from not-much-more than an electronic
bulletin board to a full-fledged application development and
deployment environment.

Around 1981-82 Silicon Graphics, Inc. (SGI) was founded
by Jim Clark and several former Stanford students of his.
SGI’s initial market was 3D graphics display terminals. Their
first systems were based on the Geometry Engine that Clark
and Marc Hannah had developed at Stanford University. The
Geometry Engine was the first hardware (VLSI) implemen-
tation of a graphics geometry pipeline, specialized hardware
that accelerated the geometric computations needed to display
images of three-dimensional scenes. Access to SGI’s high
performance 3D graphics subsystems was originally done
through a proprietary API, the IRIS Graphics Language (IRIS
GL). In 1992, SGI revamped its proprietary GL and created
the OpenGL API and licensed it to competitors at a low price.
Subsequently, SGI created the OpenGL Architecture Review
Board, an industry-wide consortium to maintain the OpenGL
standard. This led to the ability to write cross-platform graph-
ics programs. OpenGL has since been the primary real-time
3D graphics standard that is portable across several operating
systems and platforms. OpenGL-ES (“Embedded Systems”)
runs on many types of mobile devices and embedded systems.
WebGL, one of the primary technologies surveyed in this
paper, is a derivative of OpenGL-ES to a Web-based graphics
environment.

III. HTML5

“Developers of software for the World-Wide Web say the
new HTML5 standard is revolutionizing the way the Web
evolves, works, and is used. It is simplifying the work of
programmers, harmonizing access to diverse devices and appli-
cations, and giving users amazing new capabilities, they say.”
[25]

HTML5 is to Mobile+Cloud as Java is to desktop comput-
ing: a cross-platform application-building technology.

While HTML5 sounds like just a new version of the HTML
markup language itself, several standards are wrapped into it:
DOM, the Document Object Model for accessing and manip-
ulating HTML documents; CSS or Cascading Style Sheets,
to define the presentation and appearance of a document; and
JavaScript, which is rapidly becoming one of the most used
scripting languages. But even more so, the term HTML5 is
often used as an inclusive collection of specific APIs, which
enable the utilization of client-side resources, such as location-
based services, client-side graphics, client local storage, and
audiovisual capabilities, including sound-, camera-, photo- and
video handling and presentation.

The World-Wide Web Consortium (W3C) oversees the
development of HTML5, which is a central piece of its Open
Web Platform, the combination of the markup language itself
and the technologies that are associated with it, including its
graphics capabilities (which are the focus of this survey). The
W3C governs the HTML5 standards, but vendors implement
the standards independently. Vendors have the freedom to
innovate, and these innovations often become W3C standards.
For example, Apple unilaterally introduced the Canvas element
in 2004, way before it found its way into the latest HTML
standard definitions. Because of this dynamic “push and pull”
between vendors and standards, implementations of the stan-
dards are continually increasing in quality and the evolution
of the technology is not the responsibility of any single entity.
Building applications with HTML5 avoids vendor lock-in,
and affords compatibility across most desktop browsers and
mobile devices (when developers observe certain rules and
constraints). [26], [27], [28]

IV. WEB-BASED VISUAL COMPUTING

The primary W3C graphics technologies today are HTML5
Canvas, WebGL, and Scalable Vector Graphics (SVG). Graph-
ics and visualization libraries have been built upon these
standards, providing developers higher levels of abstraction
for working with interactive graphics.

HTML5 Canvas is an immediate-mode graphics API for the
Web [29]. The concepts behind Canvas are not fundamentally
new; rather, they represent the introduction of well-known 2D
graphics techniques into the world of HTML and JavaScript.
Many similar APIs have come before Canvas, such as Cairo,
Java2D, graphics libraries of the .NET platform, QT, and GTK.
Because these types of frameworks give developers full access
to the graphical display, they allow developers to build entire
applications from the ground up with custom designed looks-
and-feels and graphical behavior. Now this capability has come
to the Web, and to the mobile devices that are increasingly
being used to access it and view its contents. For this reason,
some have said that the Canvas is the single most powerful
HTML5 element [30].

WebGL is a JavaScript API for rendering 2D and 3D graph-
ics within supporting Web browsers without the need for any
external assistive technologies, such as plug-ins. It is based on
OpenGL ES 2.0, a simplified version of the standard graphics
library OpenGL that provides immediate-mode 3D graphics
capability. No concept of WebGL is fundamentally new, but
rather it represents the introduction of hardware-accelerated
3D graphics into the world of HTML and JavaScript. WebGL
brings known graphics capabilities to the Web, including
rendering 3D scenes, lighting, textures, and definition of
shaders. Scene graph libraries, such as Three.js [31], provide
implementations of retained-mode 3D graphics [32]. Physics
libraries like Box2D.js provide physics simulation [33].

Scalable Vector Graphics (SVG) is a DOM-based W3C
standard for retained-mode vector graphics [34]. When using
SVG, developers specify a 2D scene graph by manipulating
the DOM, and the SVG implementation is responsible for

rendering the scene to a bitmap for display whenever updates
occur. Data Driven Documents (D3.js, [35]) is a notable
library based on the use of SVG for developing interactive
visualizations.

V. HTML5 CANVAS

Fig. 1. Example code that draws colored rectangles using HTML5 Canvas
and the resulting graphic.

The HTML5 Canvas API allows developers to insert a
rectangular bitmap as an element in an HTML page and
access it through a JavaScript API. The Canvas bitmap is
essentially an array of colored pixels, and the API provides
functions for manipulating the bitmap using well-known 2D
graphics concepts and techniques. Figure 1 shows an example
code that draws colored rectangles using HTML5 Canvas and
the resulting graphic. The Canvas API was originally defined
and implemented by Apple in 2004, and was subsequently
proposed as a standard. Today Canvas is implemented in all
major browsers, and polyfills, such as ExplorerCanvas and
Google Chrome Frame, support backward compatibility with
older browsers. In this section we outline the capabilities of
Canvas in detail.

Like many other 2D graphics frameworks, Canvas uses
a stateful context for determining properties of graphical
elements drawn. The Canvas 2D context includes the following
variables [30]:

• canvas — a reference to the containing Canvas element;
• fillStyle — the color, gradient, or repeated image

pattern used for filling shapes;
• strokeStyle — the color, gradient, or repeated image

pattern used for stroking (tracing the outline of) shapes;
• font — the font used by fillText and
strokeText;

• globalAlpha — a global alpha value between 0 (trans-
parent) and 1 (opaque) applied to all drawing operations;

• globalCompositeOperation — the operation used
when compositing graphical layers;

• lineCap — the form used for line endings. Valid values
are:

– butt — draws the ending as square and exactly
matched to the end point;

– round — draws a rounded ending, as a circle
centered on the end point;

– square — draws the ending as a square whose
center is the end point;

• lineWidth — the width (in pixels) of lines drawn;
• lineJoin — the way line joins are drawn. Valid values

are:
– bevel — a flat connecting face is drawn;
– round — the join is rounded;
– miter — the lines extend to meet at a point;

• miterLimit — the maximum extent that lines will
extend to meet one another when lineJoin is set to
miter;

• shadowBlur — the amount shadows are blurred;
• shadowColor — the color of shadows;
• shadowOffsetX, shadowOffsetY — the vector (in

pixels) by which shadows are shifted;
• textAlign — the horizontal alignment of text. Valid

values are “start,” “end,” “left,” “right,” or “center”;
• textBaseline — the vertical alignment of text.

Valid values are “top,” “hanging,” “middle,” “alphabetic,”
“ideographic,” or “bottom” [36].

Once the context variables are set, paths that use their values
can be drawn to the canvas. Functions are provided for pushing
these context variables onto a stack (context.save) and
popping them off the stack (context.restore). The Can-
vas element provides functions for drawing lines, polygons,
arcs, and text. Paths can be filled with solid colors, gradients
(both linear and radial), or repeated image patterns. Bézier
curves are also supported. Styles can be set for line caps and
joins. A comprehensive text drawing API is provided.

The Canvas API exposes the pixels of the bitmap directly,
allowing the construction of filters, such as blur, invert, and
emboss. This functionality also enables implementation of
computer vision algorithms. Image data can be exported
and potentially uploaded to a server. A compositing API
that supports composition of multiple bitmaps using various
techniques is also provided. Shadows are supported, but carry
a severe performance penalty when used. External image data
and frames from an HTML5 Video element can be loaded and
drawn on the Canvas.

The Canvas API alone is not enough to build interactive
graphics applications. Mouse and keyboard events (and multi-
touch events from mobile devices) must be accessed through
JavaScript and used to drive graphical manipulations. A spe-
cial function, called requestAnimationFrame, has been
introduced for implementing smooth animations. This is a
better alternative to using setInterval for an animation
loop because it provides timing of animation frames that are
synchronized with the refresh rate of the graphics hardware,
and implementations can provide additional optimizations
(e.g., not executing animations when the page is not visible).
As JavaScript is single threaded, intensive computations that
would slow the animation loop (such as physics or image
processing) can be offloaded to other threads using Web

Workers [37], [38]. Using WebSockets [39], a W3C standard
for bidirectional communication between servers and clients,
real-time multi-user scenarios can be brought into Canvas-
based applications. When used in conjunction with these
features, Canvas provides a basis for constructing full-featured
interactive graphics applications.

HTML5 is rapidly being deployed now but is not a finished
standard. Adoption levels vary. For example, there is currently
no single HTML5 standard for video compression (codec),
streaming protocols, or digital rights management (DRM).
Until recently it was almost taken for granted that Adobe’s
Flash would define de-facto video standards. However, Apple’s
rejection of Flash for iOS has completely changed the map.
Apple has vigorously implemented and promoted the use of
HTML5 as an in-browser video standard. This has fractured
Flash’s status, especially after Adobe announced it would not
deliver a mobile-capable version. In addition, at this time both
Microsoft and Google have taken slightly different approaches
toward video delivery. More generally, browsers coverage and
support of HTML5 varies. (Users can test their browser’s
HTML5 support at [40].) “But the individual specifications
are at different maturity levels and will become standards at
different times.” [25]

VI. 2D GRAPHICS

Two-dimensional graphics on a Web browser can be sup-
ported by a number of libraries and tools.

A. 2D Graphics Libraries

Processing.js is a library for immediate-mode graphics that
uses HTML5 Canvas [41], based on the original Java-based
Processing project [42]. The Processing language parser and
the Processing graphics API implementation are the two major
components of Processing.js. The Processing language parser
transforms source code written in the Java-like Processing
language into JavaScript. This enables developers to execute
Processing programs in an HTML5 environment with little or
no code modification. Processing.js implements the original
Processing graphics API using HTML5 Canvas for 2D features
and WebGL for 3D features. In practice, many developers
prefer to use the Processing API from JavaScript rather than
write their software in the Processing language. This is because
the introduction of another language into a project introduces
complexity, and because Processing programs are difficult to
debug.

Paper.js is a scene graph library for 2D graphics that uses
HTML5 Canvas [43]. Paper.js provides a vector graphics scene
graph similar to that of Adobe Illustrator. The Paper.js API
is inspired by, and mostly compatible with Adobe Scriptog-
rapher, a JavaScript scripting plugin for Adobe Illustrator,
created by the developers of Paper.js. Paper.js provides support
for common graphics primitives, groups, layers, paths (Bézier
curves) with outline drawing, mouse and keyboard interaction,
working with raster images, and vector geometry operations.
The main contribution of Paper.js is that it brings the vec-
tor graphics model of Adobe Illustrator to the Web, giving

developers a straightforward cross-browser retained-mode 2D
graphics API.

Data Driven Documents (D3) is a JavaScript library written
by Mike Bostock for 2D Web-based interactive data visual-
ization [35]. D3 solves the problem of performing Document
Object Model (DOM) manipulation based on data. D3 uses
a declarative approach leveraging functional programming
techniques, so developers can write concise statements to
manipulate the DOM based on data rather than writing verbose
and convoluted data transformation code using the raw DOM
API. D3 does not introduce its own graphics API or scene
graph model, but rather provides developers a powerful tool
for leveraging Web standards such as SVG and CSS. D3 is
the successor to ProtoVis [44], a visualization library that
did introduce its own graphics vocabulary. Figure 2 shows an
example applications of the Data Driven Documents (D3.js)
library demonstrating the capabilities of SVG (Scalable Vector
Graphics).

VII. 3D GRAPHICS

Three-dimensional graphics on a Web browser can be
supported by a number of libraries and tools.

A. WebGL

As mentioned above, WebGL (Web Graphics Library), is
a JavaScript API for rendering 2D and 3D graphics within
supporting Web browsers without the need for any external
assistive technologies, such as plug-ins. It is based on OpenGL
ES 2.0, a simplified version of the standard graphics library
OpenGL that provides immediate-mode 3D graphics capabil-
ity.

OpenGL was devised for desktop graphics. OpenGL ES
2.0 is an OpenGL subset, designed for embedded systems,
including mobile devices. WebGL is based on, but not identical
to OpenGL ES 2.0. The differences between WebGL and
OpenGL ES 2.0 have been documented in [45].

WebGL brings known graphics capabilities to the Web. We-
bGL has been integrated into Web browser standard elements,
providing graphics processing unit (GPU) acceleration of all
typical graphics functionality, but carried out via the Web-
page’s Canvas.

WebGL elements are introduced into a Web page just like
any other HTML elements and can be mixed with them.

To write a WebGL program, a developer needs to write
JavaScript control code as well as rendering (also referred to
as shader) code to be executed on the GPU.

The WebGL Working Group was initiated in 2009 by
Khronos Group, a non-profit technology consortium. Apple,
Google, Mozilla, Opera, and others were among the first to
participate [46], [47], [48], [49].

Several libraries have been introduced for WebGL devel-
opment. Among them are WebGLU (the first WebGL library
made publicly available), GLGE, C3DL, CopperLicht, GLOW,
SpiderGL, PhiloGL, gwt-g3d, SceneJS, X3DOM, Oak3D,
Processing.js, Three.js, KickJS, OSGJS, XB PointStream,
CubicVR.js, A3 (Aerotwist), Jax, ANGLE, XTK — The X

Fig. 2. Example applications of the Data Driven Documents (D3.js) library [35] demonstrating the capabilities of SVG (Scalable Vector Graphics).

Toolkit (WebGL for Scientific Visualization), EZvideo-Web,
and Zlatnaspirala.

We refrain from describing all these various libraries. In-
stead, we discuss just a few, and refer the reader to the
literature for details on the other ones.

B. 3D Graphics Libraries

We have described Processing.js in Section VI-A.
Three.js is a JavaScript library for 3D graphics that abstracts

the rendering layer, allowing developers to write the same
code for rendering 3D graphics using either WebGL, HTML5
Canvas, or SVG [31]. Three.js introduces standard 3D graphics
abstractions, such as a scene graph, cameras, meshes, mate-
rials, textures, lighting models, common objects (e.g., cubes
and spheres), support for loading 3D models in the Collada
file format, and more. A wealth of examples using Three.js are
published on the Web. A physics engine has been created for
Three.js called Physijs [50], built on Ammo.js (a direct port of
the Bullet physics engine to JavaScript) [51]. Figure 3 shows
an example applications of the Three.js library demonstrating
the capabilities of WebGL.

VIII. MOBILE APP DEVELOPMENT AND DEPLOYMENT

An integral part of the Mobile+Cloud vision, includes
mobile applications (“mobile apps” in the current lingo).
While mobile apps provide general functionality on mobile
devices, such as smart phones and tablets, they stand to play
an increasing role in what is the focus of this survey: visual
computing that is executed on Web browsers, in collaboration
with cloud-based data repositories and servers. For this reason,
we find it important to understand the basics of mobile apps
development and deployment.

A. Developing apps

HTML5 is increasingly serving as a common “write once,
run anywhere” platform for developing mobile applications.

Rather than write an Android native application using Java,
then port the application to iOS using Objective-C, then port
it again to Windows Mobile using Microsoft’s tools, one
can now write applications once using HTML5 (utilizing
some mobile-specific compatibility tricks) and deploy them
as native applications to all of these platforms using tools
such as PhoneGap [52] or Appcellerator-Titanium [53] . While
not without its own shortcomings and problems, this cross-
platform capability is a powerful force driving HTML5 toward
being the most widely used application development approach.

1) Native apps: Native apps have capabilities not available
to Web pages due to some limitations, such as browser
sandboxing. These capabilities include:

• Access to the device’s file system;
• native operating system features (e.g., launching sub-

applications with Android intents);
• hardware accelerated graphics;
• accelerometer;
• camera;
• compass;
• geolocation;
• notifications with alerts, sound, or vibration;
• access to the user’s contacts;
• access to the revenue-generating app marketplaces, such

as the Apple Store or Google Play (formerly the Android
Market).

There is a high cost associated with developing applications
with native tools for multiple mobile platforms. Imagine a
company chooses to develop an Android application using the
Java programming language and Android tooling. The app
becomes a huge success and makes the company millions.
Now the company wants to release a version that will run
on iPhones and iPads (iOS devices). In order to get their
application to work on iOS devices, the company must invest
many hours of development time to re-implement the appli-

Fig. 3. Example applications of the Three.js library [31] demonstrating the capabilities of WebGL.

cation using Objective-C and Apple developer tooling. For
every other mobile platform the company wants to support,
they will need to invest huge amounts of developer time for
learning proprietary app development tools and porting the
code to different programming languages.

2) HTML5 apps: In recent years, HTML5 has emerged
as a viable cross-platform solution. When an application is
developed in HTML5, it can be deployed as a

• Web page for desktop browsers;
• Web page for mobile browsers;
• native application for a multitude of mobile platforms.

This means that if a developer originally developed their
application using HTML5, they could reach a much larger
audience (and thus make a much larger profit) with a lower
cost of application development and deployment.

Applications developed with HTML5 can “look-and-feel”
like native apps. Though this is possible, it does not come
automatically. Developers must use a number of tricks in order
to achieve the look and feel of a native mobile app [54]. These
include:

• Detect the display resolution and render an appropriately-
scaled version of the application. Applications often
require several different layouts for different display
resolutions, or if possible, the user interface elements are
simply scaled to match the display.

• Detect when device orientation changes (i.e., it is turned
sideways) and render the application accordingly. The
elements of the user interface often must have a different

layout for different orientations. Care must be taken to
ensure both work well.

• Hide browser-specific visual components. Measures can
be taken to hide the mobile browser’s navigation bar and
other distracting visual elements. If these are hidden, the
user only sees the application, in full screen.

• Use a matching icon. When a Web page is saved as
a shortcut to the desktop of a mobile device, it is
represented as an icon that can be specified by the page.
If an icon of the correct resolution is properly configured,
the icon that appears on the mobile desktop will look no
different than an icon for a native application.

• Use local storage. If the HTML5 local storage API is
used, the application can continue functioning normally
(read and write its state) even when Internet connectivity
is interrupted. Even with cloud-driven applications, local
storage can be a temporary holding place for changes to
be synchronized with a cloud service when a connection
is re-established. This can make the difference between
an app that is usable at all times and one that has limited
usability.

By taking these measures, developers can deploy HTML apps
as Web pages and have them look and feel like native apps.
However, the app is still a Web page, so it cannot be offered
or sold in an app marketplace. In the next section, we discuss
how HTML5 apps can be deployed as native apps.

B. Cross platform development tools and environments

Most mobile development platforms have a user interface
component available that can display a Web page within a
native app. This means that it is possible to build native apps
that simply load a full screen view of a Web page, which can
itself be a full-featured HTML5 app. In this way, HTML5 apps
can be deployed as native apps.

In addition to the ability to build a native mobile app that
displays a Web page, it is also possible to modify the runtime
of that Web page such that arbitrary functions in the native app
are available to JavaScript code on the loaded Web page. This
means that arbitrary functionality available to native apps can
be exposed via a JavaScript API to Web pages. In this way,
HTML5 apps can gain all the functionality available to native
apps.

Thus the pattern for deploying HTML5 apps as native apps
is as follows:

• Build a native app that displays a Web page;
• Expose native functionality to the Web page via a

JavaScript API;
• Build the HTML5 app as a Web page embedded within

a native app, taking advantage of native functionality via
the JavaScript API.

1) PhoneGap: Because the pattern for transforming
HTML5 apps into native mobile apps is straightforward, it can
be automated. Because mobile device capabilities are similar
across platforms, the JavaScript API to native functionality can
be standardized. The PhoneGap project automates the transfor-
mation of HTML5 apps into native mobile apps, and specifies
a single JavaScript API for accessing native capabilities across
many mobile platforms [52]. Using PhoneGap, developers can
author HTML5 apps once, then derive native apps for the
following platforms in a single automated step:

• Android;
• iOS;
• Windows Mobile;
• WebOS;
• Symbian;
• Bada.
Once a native app is created, the author can go through the

typical steps for deploying the app to revenue-generating app
marketplaces, such as Apple’s App Store and Google Play.

2) Appcellerator Titanium: Appcellerator Titanium [53] is
a comprehensive mobile app development platform based on
JavaScript APIs and HTML5. Appcellerator includes:

• A software SDK for developing mobile apps;
• An Eclipse-based IDE equipped with platform-specific

tooling;
• A suite of cloud-based services to speed app develop-

ment;
• An app analytics service.
The Titanium Mobile SDK provides developers the means

to write an app once in JavaScript and automatically deploy
the app to numerous mobile platforms (as native apps as
well as mobile Web apps) using a process similar to that

of PhoneGap. The Appcellerator development environment,
Titanium Studio, is an Eclipse-based IDE that offers platform-
specific functionality for developing, testing, and deploying
mobile apps. Appcellerator Cloud Services provide scalable
back end features that are common to many apps and would
normally need to be implemented by app developers. These
features include user management, logins, photo uploads, push
notifications, and status updates. The Appcellerator Analytics
service aids app developers in collecting and analyzing data
about users, sessions, and actions taken within apps.

C. Deploying apps

So far we have covered how to build an HTML5-based
application and package it as a native app for various plat-
forms. In this section we will survey the means by which
authors can get their app “out there” and generate revenue.
As of June 2012, 51.8% of smart phone owners had a device
running Android, and 34.3% had a device running iOS [55].
Therefore the corresponding app marketplaces, Google Play
(“Android Market”) and the iOS App Store, are the two native
app marketplaces that reach the most users.

1) Android Market and Google Play: The Android Market
is Google’s app marketplace for Android. App developers can
publish their apps in the Android Market, and the process
of payment and deployment to client devices is managed by
the platform. Android Market has evolved into a new service
called Google Play, which features a new interface, new app
discoverability features (such as a recommendation system),
and sells not only apps but also music, books, and movies.
Publishing apps to Google Play is an automated process that
is free for developers. This mean that after having developed
an Android app, authors can follow a straightforward app
preparation and Web-based publishing process [56], and their
app will appear in the marketplace within minutes.

2) iOS App Store: The iOS App Store is Apple’s app mar-
ketplace for iOS devices, including the iPhone, iPod Touch,
and iPad. The App Store follows a similar approach to that of
the Android Market, but in contrast is very strictly moderated,
and costs developers $99 per year to develop, submit, and keep
apps available at the Store. The App store has been notorious
for rejecting apps for nebulous reasons [57].

3) Chrome Web Store: The Chrome Web Store is an app
marketplace from Google, aimed at Chrome users [58]. The
concept of a “Chrome App” is that of a Web app with
additional metadata stored by Chrome, with an icon to launch
the app from the Chrome home page. Many of these apps
are free, but collecting payment is possible when the Chrome
Web Store Payments system is used. The cost for becoming
an app author on the Chrome Web Store is $5, and there are
no recurring fees for authoring each app.

Several other app stores have emerged, including Amazon’s
App Store, Zeewe, a marketplace for Mobile Web Apps,
TapJS, a game hosting service, and Playtomic. Based on the
market share statistics presented above, developers can reach
the largest majority of their potential audience by focusing on

Apple’s App Store (the only marketplace for iOS apps) and
Google Play for Android apps.

IX. CLOUD COMPUTING

Cloud Computing has become so prevalent in the computing
scenery that it requires little, if any discussion. Cloud Com-
puting is an umbrella term for various levels of storage and
processing services deployed on outsourced servers (on “the
cloud”), providing computing and storage infrastructure on an
“as a service” basis. The three types of Cloud Computing are:

• SaaS: Software as a Service — application software
running on a service-provider’s network of servers instead
of software packages installed and running on a user’s
local computer (e.g., Web-based email, Google Docs);

• PaaS: Platform as a Service — a computing platform,
including an operating system, execution environments
for various programming languages, databases, and Web
servers (e.g., AWS—Amazon Web Services, including
Amazon’s EC2—Elastic Compute Cloud and S3—Simple
Storage Service; Heroku; Google App Engine; Windows
Azure);

• IaaS: Infrastructure as a Service — service providers offer
computers, most often as virtual machines, raw storage,
load balancing, and network support. Users have the
responsibility to install operating systems and application
software (e.g., Amazon CloudFormation, Rackspace, and
Google Compute Engine).

One of the major tenets of the as-a-service model, in either
of these types, is the elasticity concept: users rent (and pay
for) only as much capacity as they need. They can increase or
decrease their resource utilization as demand grows or wanes.
This is a very attractive scalable model, in which a budding
enterprise can obtain minimal amounts of resources, but can
scale up seamlessly as demand and need grow. The business
model behind Cloud Computing is similar to a utility: just like
your electric, gas, or phone company bills you for metered
usage, so does a cloud provider.

X. CLOUD COMPUTING AND MOBILE HTML5 APPS

With the proliferation of cloud computing and ever more
capable mobile devices a new compute model is rapidly
gaining foot: Mobile+Cloud Computing. We anticipate it to
become the prevailing compute model for most applications.
It is compelling because, while the increase in mobile de-
vices’ capabilities make them more and more “computers in
our pockets” (or in our palms), they still exhibit processing
limitations, even compared to desktop or laptop computers.
However, linked to a cloud-based infrastructure, they can
be the front end to a hybrid computation model, in which
some computing gets executed on the mobile device, but the
cloud is being used for more demanding compute tasks, larger
storage requirements, as well as the ability to provide a fully
synchronized experience among a user’s increasing number of
devices, including a smart phone, a tablet, laptop and desktop
computers, and more.

Due to the recent growth in cloud computing discussed
above, it has become possible to develop and deploy mobile
apps using only a Web browser. For example, a budding
app developer can get started at no cost with the following
steps: create a repository in GitHub, deploy it as a Web site
using GitHub Pages, use Cloud9 IDE to develop an interactive
Canvas-based mobile Web app, then deploy it to the GitHub
Pages site. When server-side resources are needed (such as a
database or real-time communication service), the developer
can then use Cloud9 IDE to build server-side software using
Node.js and deploy it to the Heroku cloud in a scalable
manner. At this stage, a service called PhoneGap Build can
automatically build native apps from your source code in
the cloud, giving you apps ready for deployment in app
marketplaces. In this way, modern services such as GitHub,
Cloud9 IDE, Node.js, Heroku, and PhoneGap Build can form
a complete browser-based app development and deployment
toolchain.

XI. INTERACTIVE VISUALIZATION ON MOBILE+CLOUD

Visual computing in general, and interactive visualization in
particular, stand to gain from the Mobile+Cloud model. This is
because, on the one hand, they require substantial computing
resources, and on the other hand, they need visual, interactive
displays.

We briefly survey early demonstrations of these capabilities
now.

A. Case studies

Fig. 4. Layers of Zygote Body (formerly Google Body Browser) [59], an
exemplary application of WebGL.

1) Google Body Browser: Google Body Browser, now
known as Zygote Body [59], is a virtual human body. Fash-
ioned after the National Library of Medicine’s Visible Human
Project, it was originally launched in the end of 2010 to
demonstrate the Chorme Web browser’s capabilities, utilizing
HTML5, its Canvas element, and WebGL.

Users can peel away layers, such as skin, muscles, bones,
the vascular system, and the nervous system. Users can zoom

and rotate the 3D model. Users can click on each individual
body part to highlight it and get its name. A search box
allows for finding body parts by name. This is an exemplary
example application of WebGL. Body Browser has been ported
to a native Android app [60], taking advantage of native app
features such as data bundling and accelerated graphics. Other
similar projects have appeared, such as BioDigital Human [61]
and the OpenWorm Browser. Figure 4 shows layers of Zygote
Body.

2) Google Maps: Google Maps, a Web-based mapping
service with a rich feature set, is a perfect example of a
visual computing application in which the graphics “heavy
lifting” of rendering the map images takes place on the server
side. Google Maps provides services for navigating maps with
several views (satellite imagery, street maps, bicycle maps,
terrain, weather, photos, traffic, and more), find directions
from place to place, share map configurations and more.
Google Maps exists as a Web app for desktop browsers, a
Web app for mobile devices, and an optimized native app
for many mobile platforms. The native apps take advantage
of the device’s geolocation, and provide additional features,
such as “show me where I am now” and live driving and
walking directions. Google also provides an API that allows
developers to effortlessly embed maps within their apps [62].
See Figures 5 and 6 for examples of some Google Maps’
capabilities.

Fig. 5. An animated visualization of Wal Mart stores popping up across the
US created using the Google Maps API (Google Maps blog post).

3) TileMill: TileMill is an open source project managed
by the company MapBox for rendering map tiles on the
server side, styled using their own CSS-like map styling
language called CartoCSS [63]. TileMill is based on open
source projects, including Mapnik and Node.js. TileMill is a
powerful tool for developing interactive map applications that
can, for example, overlay a data visualization on a map, or
re-style existing map data, such as OpenStreetMap [64]. See
Figures 7–10 for examples.

4) Tableau Public: Tableau Public is an adaptation of the
Tableau visualization software to the social Web. The Web-
based version of Tableau enables interactive visual analysis

Fig. 6. A demonstration of Heat Map capabilities in the Google Maps API.
The Heat Map is rendered on the client side as a layer on top of map tiles
rendered on the server side (Google Maps blog post).

Fig. 7. A HeatMap visualization of solar energy potential across the US
(data from the National Renewable Energy Laboratory). The visualization is
rendered on the server side using TileMill (Energy.gov).

by relaying user interactions to server-side instances of the
Tableau software, rendering the visualization on the server,
then sending the rendered image to the client. Tableau Public
has a gallery feature, where users can post their visualizations,
comment on them, share them across the Web, and embed
them into their own pages [65].

B. Web Based Development Showcases

1) OpenProcessing: “OpenProcessing is an online commu-
nity platform devoted to sharing and discussing Processing
sketches in a collaborative, open-source environment.” [42],
[66]

2) Google Chrome Experiments: Google Chrome Ex-
periments is an initiative to collect example applications
of HTML5 technology [67]. This initiative has showcased
projects including:

Fig. 8. 3D Buildings, server-side rendered: An example of server-side 3D
building rendering using TileMill, showing a close up of Manhattan (building
data from Sanborn)

Fig. 9. Binning aggregation to show density: Examples of hexagonal binning
to show density data on maps using TileMill.

• The Wilderness Downtown — an interactive music video
that has you enter your address when it starts, then builds
dynamic scenes based on images from that address taken
from Google Maps and Google Street view.

• 3D Water Waves — a demonstration of fluid simulation
and advanced 3D graphics techniques using WebGL.

• Progressive Julia Fractal — a lightning fast implementa-
tion of Julia set rendering using shader-based image dis-
tortion by Felix Woitzel. This demonstrates the potential
for general purpose GPU computing using WebGL [68],
see Figure 11.

• WebGL Experiments — demonstrations of several other
WebGL-based implementation [69].

XII. DATA ON THE WEB

As we have argued above, we are convinced that this
new Mobile+Cloud platform we have been surveying will

Fig. 10. Police Stop and Frisk Data: An example of using contour plots for
non-topographic visualization.

Fig. 11. An image-based progressive Julia Set fractal, computed on the GPU
using shaders defined with WebGL.

democratize data analysis, we discuss now some technologies
and initiatives that have already been launched, which already
demonstrate this evolution.

A. Semantic Web and the democratization of data

Fig. 12. The growth of the Linked Open Data Cloud [70], from 12 datasets
in 2007 to 295 in 2011.

The Semantic Web has been termed the “Web of Data,”
the “Giant Global Graph,” the “Data Web,” the “Linked Data
Web,” and the “Enterprise Information Web.” These are all
terms for the same thing. The key vision of the Semantic Web

is to link explicit data published on the Web in a machine-
readable fashion in order to enable applications, including
targeted search, data browsing, and intelligent agents [71].

Resource Description Framework (RDF) [72] is the foun-
dational data representation framework for the Semantic Web.
RDF represents data as triples of (subject, predicate, object).
With this model, RDF is capable of representing any data
stored in relational databases. Higher levels of the Semantic
Web framework include the Web Ontology Language (OWL)
for representing domain ontologies and inference rules [73].
Vocabularies provide data publishers common means of ex-
pressing domain concepts. More general vocabularies, such as
the RDF Data Cube Vocabulary [74] aim to enable integration
of statistical data from many data providers.

Public data sets are increasingly being published within
the Semantic Web. Visual data analysis tools, when built to
consume data of this form, will be able to access data as it
becomes available. The combination of the Semantic Web and
Web-based Visual Computing may lead to a world in which a
digital mirror world is readily available for access by anyone,
and rich Web-based visualization and analysis tools that can
be applied to such information are commonplace. Figure 12
shows the growth of the Linked Open Data Cloud [70], from
12 datasets in 2007 to 295 in 2011.

B. Public data initiatives

We survey now a few initiatives providing public data.
1) UN, World Bank, US Federal Data, more: The United

Nations has published a huge amount of publicly-available
data, consisting of 34 databases and 60 million records in total
[75]. The data sets consist primarily of indicators over years
at the level of countries. Topics covered include economics,
energy, human development, crime, health, tourism, telecom-
munications and more.
Data.gov provides access to many data sets.
The Fedstats site at fedstats.gov publishes links to

numerous public data sets hosted by various US government
organizations.

2) Example visualizations of public data: The following are
a few examples demonstrating how public data and Web-based
visualization can be employed to help understand different
problems, issues, and the world in general.

• GapMinder World is a Web-based visualization of impor-
tant trends around the World, including “Wealth & Health
of Nations (how long people live and how much money
they make),” “CO2 emissions since 1820,” “Africa is not a
country! (there are huge differences among the countries
in Africa),” “Is child mortality falling?” and “Where
is HIV decreasing? (changes in the number of people
living with HIV).” In each one of these, an interactive
visualization allows a visitor to move through time (from
1800 through today), and to interact with the various pa-
rameters to see how trends have changed over time, geo-
graphic location, and various other categories. Parameters
include income per person, children per woman, child
mortality, life expectancy, economy, society, education,

energy, environment, health, infrastructure, population,
and work. Each one of these offers additional choice
granularity. Advanced users can select from additional
advanced features to further enrich their interaction with,
and exploration of the data [76]. See Figure 13 for an
example.

Fig. 13. Gapminder World: A screenshot from Gapminder World, a Flash-
based application for visualizing global socioeconomic indicators over time.
This tool has been used extensively by Professor Hans Rosling in explaining
the closing gap between rich and poor countries.

• Italy budget Viz using D3 is a Web-based visualiza-
tion that provides access to public data about Italy’s
administrative expenses during the years 2002-2008. A
map-based visualization shows the various regions of
the country, providing a color-coded visualization of the
levels of spending (between “min” and “max”) of the
various regions, during each year. Linked visualizations
provide bar charts of the levels of 30 spending categories
(such as water, agriculture, justice, energy, and more)
per each region. Interaction is accomplished by hovering
over a year to select it, clicking an industry sector to
select it, or hovering over a region to select it. As the
visitor makes her/his selections, a separate tooltip display,
centered between Italy’s map on the left and the bar chart
on the right, shows the name of the region and the actual
spending value for that region, as well as a comparison
to the national average, using a red line.
Thus, a visitor can effortlessly and effectively navigate
across three dimensions of a data cube just by hover-
ing over visual representations of various members (by
“member” we mean a record along a dimension in the
OLAP terminology).
The page has been implemented using D3, and recom-
mends access via either Firefox, Safari, or Opera, but not
Internet Explorer [77].

• CNN Economy Tracker — US Bureau of Labor Statistics
(BLS) employment visualization. This is an interactive
Choropleth map, colored in proportion to the economic
variable being explored. Under the “stimulus funds”

tab, color coded variables are “funds awarded,” “funds
received,” and “jobs created/saved” for each US state.
Additional tabs provide similar visualizations for “fore-
closures,” “unemployment,” and “jobs by industry.” One
can probe the various states and obtain detailed values
of the variables for the probed state, which is colored
relative to these variables. The data spans across US
states, industry, and time [78].

See Figure 14–17 for additional examples.

Fig. 14. Tableau Public Hurricane Visualization: A visualization of histor-
ical hurricane trajectories from Tableau Public. The user interface supports
switching between years. The rendering is performed on the server side.

Fig. 15. OpenStreetMap: A screenshot from the OpenStreetMap project
showing the detail of its crowdsourced street-level data for Washington DC.

Fig. 16. D3 Sankey Diagram Example: A Sankey Diagram made using D3

showing the flow of energy from sources to uses. The visualization shows one
possible scenario for the UK in 2050, and was created as part of an emissions
reduction initiative.

Fig. 17. Tableau Public Oil Visualization: A visualization of net crude oil
production (green) and consumption (red) by country from Tableau Public.

XIII. CONCLUSION

We have posited that computing is going through a paradigm
shift: the combined proliferation of cloud-based compute envi-
ronments and services, and ever more capable mobile devices,
such as smart phones and tablets, has led the way towards
a new computing environment, in which mobile devices and
cloud-based services cooperate to provide the best computing
resources. We have predicted that a large majority of all
computing will eventually migrate to this model, and we have
observed that this migration is already taking place.

In anticipation of this paradigm shift, we have focused on
visual computing (defined as the combination of computer
graphics, image processing, vision, and visualization) as a

perfect beneficiary of the Mobile+Cloud computing paradigm.
As such, we have surveyed fundamental technologies, such as
HTML5, HTML5 Canvas, and WebGL, as well as additional
technologies, such as 2D and 3D graphics libraries, all of
which are catalyzers for this transition. We have provided
the main characteristics, features, and capabilities, and have
identified strengths, but also potential weaknesses of these
technologies.

It is important to remember that this model, these tech-
nologies, are all very young, and will continue to evolve
and change over the coming months and years. Some will
disappear while other will become cornerstones of the future
of computing in general and visual computing in particular.
Readers will have unique opportunities to shape these trends.

REFERENCES

[1] J. D. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics:
Principles and Practice, 2nd ed. Reading, MA: Addison Wesley, 1990.

[2] W. Shoaff, “A short history of computer graphics,”
http://cs.fit.edu/∼wds/classes/graphics/History/history/history.html#
SECTION00020000000000000000, 30 August 2000.

[3] cfxweb.net, “The evolution of computer graphics,” http://www.cfxweb.
net/evolution.

[4] I. Sutherland, “Sketchpad: A man-machine graphical communication
system,” Ph.D. dissertation, Massachusetts Institute of Technology, 1963.

[5] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
j-IBM-SYS-J, vol. 4, no. 1, pp. 25–30, 1965.

[6] J. Bresenham, “A linear algorithm for incremental digital display of
circular arcs,” Commun. ACM, vol. 20, no. 2, pp. 100–106, Feb. 1977.
[Online]. Available: http://doi.acm.org/10.1145/359423.359432

[7] S. A. Coons, “Computer graphics and innovative engineering design—
super-sculptor,” DATAMATION, vol. 12, no. 5, p. 3234, 1966.

[8] ——, “Uses of computers in technology,” SCIENTIFIC AMERICAN,
vol. 215, no. 3, p. 177, 1966.

[9] D. Ahuja and S. A. Coons, “Geometry for construction and display,”
IBM SYSTEMS JOURNAL, no. 3-4, p. 188, 1968.

[10] S. A. Coons, “Modification of shape of piecewise curves,” COMPUTER-
AIDED DESIGN, vol. 9, no. 3, pp. 178–180, 1977.

[11] ——, “Constrained least-squares,” COMPUTERS & GRAPHICS, vol. 3,
no. 1, pp. 43–47, 1978.

[12] T. Sederberg, “BYU Bézier curves,” http://www.tsplines.com/resources/
class notes/Bezier curves.pdf.

[13] P. Bourke, “Bézier surfaces (in 3D),” http://local.wasp.uwa.edu.au/
∼pbourke/geometry/bezier/index.html, 1996.

[14] A. Appel, “The notion of quantitative invisibility and the machine
rendering of solids,” in Proceedings of the 1967 22nd national
conference, ser. ACM ’67. New York, NY, USA: ACM, 1967, pp. 387–
393. [Online]. Available: http://doi.acm.org/10.1145/800196.806007

[15] ——, “Some techniques for shading machine renderings of solids,”
in Proceedings of the April 30–May 2, 1968, spring joint computer
conference, ser. AFIPS ’68 (Spring). New York, NY, USA: ACM,
1968, pp. 37–45. [Online]. Available: http://doi.acm.org/10.1145/
1468075.1468082

[16] F. C. Crow, “Shadow algorithms for computer graphics,” in
Proceedings of the 4th annual conference on Computer graphics
and interactive techniques, ser. SIGGRAPH ’77. New York,
NY, USA: ACM, 1977, pp. 242–248. [Online]. Available: http:
//doi.acm.org/10.1145/563858.563901

[17] H. Gouraud, “Computer display of curved surfaces,” Ph.D. dissertation,
1971.

[18] ——, “Continuous shading of curved surfaces,” IEEE Transactions on
Computers, vol. C-20, no. 6, pp. 623–629, Jun. 1971.

[19] B.-T. Phong, “Illumination for Computer Generated Pictures,” j-CACM,
vol. 18, no. 6, pp. 311–317, 1975.

[20] E. E. Catmull, “A subdivision algorithm for computer display of curved
surfaces.” Ph.D. dissertation, 1974.

[21] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, no. 6, pp. 343–349, Jun. 1980. [Online].
Available: http://doi.acm.org/10.1145/358876.358882

[22] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of
stochastic models,” Commun. ACM, vol. 25, no. 6, pp. 371–384, Jun.
1982. [Online]. Available: http://doi.acm.org/10.1145/358523.358553

[23] Pixar, “The RenderMan interface specification,” http://renderman.pixar.
com/products/rispec/index.htm, November 2005, version 3.2.1.

[24] T. L. Lancaster, “Renderman books & other publications,” http://www.
renderman.org/RMR/Publications/index.html, July 2008.

[25] G. Anthes, “HTML5 leads a Web revolution,” Communications of the
ACM, 2012.

[26] B. Lawson and R. Sharp, Introducing HTML5, 2nd ed. Berkeley, CA:
New Riders Press, 2011.

[27] World-Wide Web Consortium, “HTML5—a vocabulary and associated
APIs for HTML and XHTML,” http://dev.w3.org/html5/spec/Overview.
html, May 8 2012, Editor’s Draft.

[28] W3Schools, “HTML5 Tutorial,” http://www.w3schools.com/html5/
default.asp.

[29] Wikipedia, “Immediate mode,” http://en.wikipedia.org/wiki/Immediate
mode, July 2011.

[30] D. Geary, Core HTML5 Canvas: Graphics, Animation, and Game
Development. Prentice Hall, 2012.

[31] R. Miguel and collaborators, “Three.js,” http://mrdoob.github.com/three.
js/, 2012.

[32] Wikipedia, “Retained mode,” http://en.wikipedia.org/wiki/Retained
mode, April 2012.

[33] A. Zakai, “box2d.js: Box2d on the Web is getting faster,” http://mozakai.
blogspot.com/2012/02/box2djs-box2d-on-web-is-getting-faster.html.

[34] W3Schools, “SVG Tutorial,” http://www.w3schools.com/svg/default.
asp.

[35] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
pp. 2301–2309, 2011.

[36] World-Wide Web Consortium, “HTML5 specification,”
http://www.whatwg.org/specs/web-apps/current-work/multipage/
the-canvas-element.html, 2012.

[37] “Web worker,” http://en.wikipedia.org/wiki/Web worker, June.
[38] E. Bidelman, “The basics of Web workers,” http://www.html5rocks.com/

en/tutorials/workers/basics/, May 2011.
[39] I. Hickson, “The WebSocket API,” http://dev.w3.org/html5/websockets/,

2012.
[40] “The HTML5 test — how well does your browser support HTML5?”

http://html5test.com/.
[41] J. Resig and collaborators, “Processing.js,” http://processingjs.org/, 2012.
[42] C. Reas and B. Fry, Processing: a programming handbook for visual

designers and artists. The MIT Press, 2007.
[43] J. Lehni and J. Puckey, “Paper.js,” http://paperjs.org/, 2012.
[44] M. Bostock and J. Heer, “Protovis: A graphical toolkit for visualization,”

pp. 1121–1128, 2009.
[45] “WebGL and OpenGL differences,” http://www.khronos.org/webgl/wiki/

WebGL and OpenGL Differences, May 2012.
[46] G. Tavares, “WebGL fundamentals,” http://www.html5rocks.com/en/

tutorials/webgl/webgl fundamentals/, February.
[47] “WebGL specification,” http://www.khronos.org/registry/webgl/specs/

latest/, July 2012.
[48] “WebGL — OpenGL ES 2.0 for the Web,” http://www.khronos.org/

webgl/, 2012.
[49] Wikipedia, “WebGL,” http://en.wikipedia.org/wiki/WebGL, July 2012.
[50] “Physijs: Physics library for three.js,” http://chandlerprall.github.com/

Physijs/.
[51] “Ammo.js, a port of the Bullet physics engine from C++ to JavaScript,”

http://syntensity.com/static/ammo.html.
[52] Adobe Systems Inc. and contributers, “PhoneGap,” http://phonegap.

com/, 2012.
[53] Appcellerator Inc., “Appcellerator Titanium,” http://www.appcellerator.

com/, 2012.
[54] J. Seidelin, HTML5 Games: Creating Fun with HTML5, CSS3, and

WebGL. Wiley, 2012.
[55] The Nielsen Company, “Two thirds of new mobile buyers now opting

for smartphones,” http://blog.nielsen.com/nielsenwire/?p=32494, 2012.
[56] The Android Open Source Project, “Android — the publish-

ing process,” http://developer.android.com/tools/publishing/publishing
overview.html, 2012.

[57] R. JR., “Rejected! 10 iPhone Apps That Didn’t Make Ap-
ple’s App Store,” http://www.pcworld.com/article/159887/rejected 10
iphone apps that didnt make apples app store.html, 2012.

http://cs.fit.edu/~wds/classes/graphics/History/history/history.html#SECTION00020000000000000000
http://cs.fit.edu/~wds/classes/graphics/History/history/history.html#SECTION00020000000000000000
http://www.cfxweb.net/evolution
http://www.cfxweb.net/evolution
http://doi.acm.org/10.1145/359423.359432
http://www.tsplines.com/resources/class_notes/Bezier_curves.pdf
http://www.tsplines.com/resources/class_notes/Bezier_curves.pdf
http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index.html
http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index.html
http://doi.acm.org/10.1145/800196.806007
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/563858.563901
http://doi.acm.org/10.1145/563858.563901
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358523.358553
http://renderman.pixar.com/products/rispec/index.htm
http://renderman.pixar.com/products/rispec/index.htm
http://www.renderman.org/RMR/Publications/index.html
http://www.renderman.org/RMR/Publications/index.html
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://www.w3schools.com/html5/default.asp
http://www.w3schools.com/html5/default.asp
http://en.wikipedia.org/wiki/Immediate_mode
http://en.wikipedia.org/wiki/Immediate_mode
http://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/
http://en.wikipedia.org/wiki/Retained_mode
http://en.wikipedia.org/wiki/Retained_mode
http://mozakai.blogspot.com/2012/02/box2djs-box2d-on-web-is-getting-faster.html
http://mozakai.blogspot.com/2012/02/box2djs-box2d-on-web-is-getting-faster.html
http://www.w3schools.com/svg/default.asp
http://www.w3schools.com/svg/default.asp
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://en.wikipedia.org/wiki/Web_worker
http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.html5rocks.com/en/tutorials/workers/basics/
http://dev.w3.org/html5/websockets/
http://html5test.com/
http://processingjs.org/
http://paperjs.org/
http://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences
http://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://en.wikipedia.org/wiki/WebGL
http://chandlerprall.github.com/Physijs/
http://chandlerprall.github.com/Physijs/
http://syntensity.com/static/ammo.html
http://phonegap.com/
http://phonegap.com/
http://www.appcellerator.com/
http://www.appcellerator.com/
http://blog.nielsen.com/nielsenwire/?p=32494
http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/tools/publishing/publishing_overview.html
http://www.pcworld.com/article/159887/rejected_10_iphone_apps_that_didnt_make_apples_app_store.html
http://www.pcworld.com/article/159887/rejected_10_iphone_apps_that_didnt_make_apples_app_store.html

[58] Google Inc., “Chrome Web store — overview,” https://developers.
google.com/chrome/web-store/docs/, 2012.

[59] Zygote Media Group Inc., “Zygote Body,” http://www.zygotebody.com/,
2012.

[60] N. Weber, “OpenGL ES 2.0 graphics on Android: Lessons from
Google Body,” http://code.google.com/p/gdc2011-android-opengl/wiki/
TalkTranscript, 2011.

[61] “BioDigital Human,” biodigitalhuman.com.
[62] Google Inc., “Build maps for mobile apps,” https://developers.google.

com/maps/mobile-apps, 2012.
[63] MapBox, “TileMill,” http://mapbox.com/tilemill/, 2012.
[64] R. Sharmes, “Designing an OSM Map Style,” http://code.flickr.com/

blog/2012/07/11/designing-an-osm-map-style/, 2012.
[65] “Tableau Public,” http://www.tableausoftware.com/public/, 2012.
[66] “OpenProcessing,” http://www.openprocessing.org/.
[67] “Chrome Experiments,” http://www.chromeexperiments.com/.
[68] F. Woitzel, “Progressive Julia Fractal,” http://www.chromeexperiments.

com/detail/progressive-julia-fractal/?f=, August 2011.
[69] “WebGL Experiments,” http://www.chromeexperiments.com/webgl/.
[70] R. Cyganiak and A. Jentzsch, “The linking open data cloud diagram,”

http://richard.cyganiak.de/2007/10/lod/, 2012.
[71] L. Feigenbaum, “The Semantic Web Landscape: A Practical

Introduction,” http://www.cambridgesemantics.com/semantic-university/
the-semantic-web-landscape-a-practical-introduction, 2012.

[72] O. Lassila, R. Swick et al., “Resource description framework (RDF)
model and syntax specification,” 1998.

[73] W3C, “OWL 2 Web Ontology Language — W3C Recommendation,”
2009.

[74] R. Cyganiak and D. Reynolds, “RDF Data Cube Vocabulary specifica-
tion,” 2012.

[75] United Nations, “UN Data — A World of Information,” http://data.un.
org/, 2012.

[76] “GapMinder World,” http://www.gapminder.org/.
[77] “Le spese amministrative in Italia dal 2002 al 2008 (administrative ex-

penses in Italy from 2002 to 2008),” http://www.visup.it/misc/workshop/
index.htm.

[78] CNN, “CNN Economy Tracker,” http://www.cnn.com/SPECIALS/map.
economy/index.html?mapIndex=3&hpt=C2.

https://developers.google.com/chrome/web-store/docs/
https://developers.google.com/chrome/web-store/docs/
http://www.zygotebody.com/
http://code.google.com/p/gdc2011-android-opengl/wiki/TalkTranscript
http://code.google.com/p/gdc2011-android-opengl/wiki/TalkTranscript
biodigitalhuman.com
https://developers.google.com/maps/mobile-apps
https://developers.google.com/maps/mobile-apps
http://mapbox.com/tilemill/
http://code.flickr.com/blog/2012/07/11/designing-an-osm-map-style/
http://code.flickr.com/blog/2012/07/11/designing-an-osm-map-style/
http://www.tableausoftware.com/public/
http://www.openprocessing.org/
http://www.chromeexperiments.com/
http://www.chromeexperiments.com/detail/progressive-julia-fractal/?f=
http://www.chromeexperiments.com/detail/progressive-julia-fractal/?f=
http://www.chromeexperiments.com/webgl/
http://richard.cyganiak.de/2007/10/lod/
http://www.cambridgesemantics.com/semantic-university/the-semantic-web-landscape-a-practical-introduction
http://www.cambridgesemantics.com/semantic-university/the-semantic-web-landscape-a-practical-introduction
http://data.un.org/
http://data.un.org/
http://www.gapminder.org/
http://www.visup.it/misc/workshop/index.htm
http://www.visup.it/misc/workshop/index.htm
http://www.cnn.com/SPECIALS/map.economy/index.html?mapIndex=3&hpt=C2
http://www.cnn.com/SPECIALS/map.economy/index.html?mapIndex=3&hpt=C2

	Introduction
	A brief history of Computer Graphics and the World-Wide Web
	HTML5
	Web-based Visual Computing
	HTML5 Canvas
	2D Graphics
	2D Graphics Libraries

	3D Graphics
	WebGL
	3D Graphics Libraries

	Mobile app development and deployment
	Developing apps
	Native apps
	HTML5 apps

	Cross platform development tools and environments
	PhoneGap
	Appcellerator Titanium

	Deploying apps
	Android Market and Google Play
	iOS App Store
	Chrome Web Store

	Cloud Computing
	Cloud Computing and Mobile HTML5 Apps
	Interactive Visualization on Mobile+Cloud
	Case studies
	Google Body Browser
	Google Maps
	TileMill
	Tableau Public

	Web Based Development Showcases
	OpenProcessing
	Google Chrome Experiments

	Data on the Web
	Semantic Web and the democratization of data
	Public data initiatives
	UN, World Bank, US Federal Data, more
	Example visualizations of public data

	Conclusion
	References

