
Real-time gesture recognition from depth data
through key poses learning and decision forests

Leandro Miranda Thales Vieira Dimas Martinez
Mathematics, UFAL

Thomas Lewiner
Mathematics, PUC-Rio

Antonio W. Vieira Mario F. M. Campos
Computer Science, UFMG

Fig. 1. Gesture representation through key poses: our method represents a body gesture as a sequence of a few extreme body poses, referred as key
poses. In the example above, a gesture simulating a page turn is represented by the key poses in red.

Abstract—Human gesture recognition is a challenging task
with many applications. The popularization of real time depth
sensors even diversifies potential applications to end-user natural
user interface (NUI). The quality of such NUI highly depends on
the robustness and execution speed of the gesture recognition.
This work introduces a method for real-time gesture recognition
from a noisy skeleton stream, such as the ones extracted from
Kinect depth sensors. Each pose is described using a tailored
angular representation of the skeleton joints. Those descriptors
serve to identify key poses through a multi-class classifier derived
from Support Vector learning machines. The gesture is labeled
on-the-fly from the key pose sequence through a decision forest,
that naturally performs the gesture time warping and avoids the
requirement for an initial or neutral pose. The proposed method
runs in real time and shows robustness in several experiments.

Keywords-Gesture recognition ; Pose identification ; Depth
sensors ; 3d motion ; Natural user interface ;

I. INTRODUCTION

Human gesture recognition has been a topic of active
research for many years and covers a wide range of
applications including, among others, monitoring, control and
analysis. Monitoring applications covers classical problems of
surveillance and automatic detection of suspicious gestures in
environments with large flows of people, as well as monitoring
in the home environment to detect accidents or monitoring
children and elders. In the area of control, applications are
usually interested in automatically recognizing human gestures
to be used as a control for entertainment devices such as
game consoles, virtual reality, motion capture to graphics
model animation or automatic control of domestic utilities.
The potential applications of gesture recognition in the area
of analysis may help in diagnosis of orthopedic patients, in
the study of athletes’ performances and sports.

The variety of potential applications and growing
availability of real time sensors has intensified efforts
of the scientific vision community for capturing and

automatic recognition of human gestures. The evolution and
popularization of depth sensors, which currently generates
depth maps in real time, as well as skeletons together with joint
identification, is paving the way for the development of high
quality natural user interface (NUI) for much more than usual
game consoles. Improving the quality of a NUI essentially
means increasing the robustness and execution speed of the
gesture identification, and this is the objective of the present
work.

The gesture recognition task can be stated as the process
of labeling gestures performed by a person based on sensory
observation captured by a device. This is a challenging task
particularly when users perform gestures with different speeds
or sequence of poses. In this work we propose a gesture
recognition method from captured skeletons in real time. In
particular, all our experiments are performed using the popular
Kinect platform, a real-time depth sensing system that parses
a depth-map stream at 30 frames per second, from which
positions of skeleton nodes for each frame can be estimated
in real time [1].

Contributions: A human gesture is essentially composed
of body poses that continuously evolve over time. Interestingly,
we verbally describe gestures by sequentially identifying a
few extreme poses, referred as key poses [2], as illustrated
in Fig. 1. Following this observation, we focus on improving
and tailoring the three main ingredients of key-pose gesture
recognition: the pose descriptor, the pose identification and the
labeling of pose sequences as gesture.

Our pose descriptor relies on spherical angular
representations of joints, similarly to the recent work of
Raptis et al.[3]. However, it is more robust for usual gestures,
and allows for real-time pose classification. In particular, it
improves the representation of secondary joints (arms, hands,
legs and feet) to suit for NUI applications.

The pose identification process combines several Support
Vector Machine (SVM) classifiers [4], one per reference key
pose, using the kernel distance in feature space as a confidence
measure. The small pose descriptor size allows for online
training in that context.

Finally, we propose a scheme for gesture recognition based
on decision forests. Each forest node is a key pose, eventually
including time constraints. This decision forest is learned
during a training phase. The roots of the trees are the possible
final key poses of gestures, where leaves represent the gestures.
Each path from a leaf parent to the root gives a sequence of
key poses for a gesture. This greatly simplifies the search for
key pose sequences, allowing for real time gesture recognition.
Moreover, the decision state machine provides a natural and
robust temporal alignment. The whole process is robust even
with noisy depth-based skeletons [1] as shown in the Results
section.

II. RELATED WORK

Human gesture recognition has been extensively studied
and a large body of literature has been produced with
applications in areas such as surveillance, home monitoring
and entertainment. The methods for gesture recognition can
be categorized according to the spatial representation used:
local, global or parametric.
The methods in the local category use point-wise descriptors
evaluated on each point of interest, and then use a bag of
features (Bof) strategy to represent actions. This approach has
attracted a lot of attention in the past few years [5], [6], [7],
[8] and an example of largely used local feature is the Space-
Time Interest Point (STIP) presented by Laptev and Lindeberg
[9]. A bag of 3D points was proposed by Li et al.[10] as local
features for action recognition from depth map sequences. A
drawback of local features approaches is that they lose spatial
context information between interest points.
The methods in the second category use global features such
as silhouettes [2], [11], [12] and template based approaches
[13], [14], where spatial context information are preserved.
Vieira et al.[15] proposed a global feature called Space-Time
Occupancy Patterns (STOP) for action recognition from depth
map sequences where space and time axes are used to define
a 4D grid. A drawback of global features approaches is the
lack of body joints identification.

Finally, parametric methods try to reconstruct a model of
the human body with identification of joints to obtain an
skeleton. One way to obtain skeletons is by using a marker
based strategy as in the Motion Capture (MoCap) models
[16], [17], where a set of markers is attached to the human
body at specific points that are tracked during motion. Using
this representation, spatial features are constructed using some
geometric measures and relations, e.g. angles, [18], [19] and
body joints [20], [21]. However, MoCap skeletons strongly
depend on the joint markers and the capture system.

Skeletons can also be estimated from 2d maps. In particular,
Shotton et al. [1] obtain skeletons without markers by
computing joint coordinates in real time from depth maps.

Such skeletons can be obtained from the popular XBOX Kinect
sensor. Compared to Mocap data, skeletons from Kinect are
easier to obtain, which have driven the popularity of this
sensor, but they are still noisy, turning gesture recognition from
depth data a challenge, that is the focus of the present work.

Beyond spatial representation, another issue to be addressed
for human gesture recognition is the temporal alignment
among different sequences that may vary significantly. To
address time alignment, Hidden Markov Models is highly used
as in the work from Davis and Tyagi [22] and from Zhang et
al.[23]. Li et al.[12] propose a graphical modeling of human
action where key poses define nodes on the graph and each
action describes a path in the Action Graph. In the works from
by Müller et al. [20], [21], Dynamic Time Warping (DTW)
is used to address time alignment in their Motion Templates
using MoCap data. In this work, we propose a simpler, yet
robust and efficient method to perform alignment inside a
decision forest scheme.

Gesture recognition using skeletons from Kinect is even
more recent. Reyes et al.[24] presented an action recognition
system using DTW for time alignment, where weights are
assigned to features based on inter-intra class action variability.
They obtain 3D coordinates of skeletal models using a
reference coordinate system to make description invariant to
view point and tolerant to subject corporal differences. Results
are reported for only five different categories. Raptis et al.[3]
presented a method for classifying dance gestures using Kinect
skeletons where a large number of gestures classes are used.
Their features are constructed using angular representation
on a coordinate system obtained by Principal Component
Analysis on a subset of the body points that define the torso.
Despite high recognition rate reported, their classification
method is limited to dance gestures and is conceived based
on the strong assumption that the input motion adheres to a
known music beat pattern.

III. TECHNICAL OVERVIEW

Our method relies on three main ingredients, as illustrated in
Figure 2: a pose descriptor that concisely represents a human
body pose, described in Section IV-A; a multi-class SVM
learning machine that robustly identifies key poses in real-
time, detailed in Section IV-B; and a decision forest built to
recognize human gestures, optionally considering time/speed
constraints (Section V).

Pose Descriptor: We convert the set of points
representing the nodes of the skeleton to a more
appropriate representation to robustly solve the gesture
recognition problem. Essentially, we developed a joint-
angles representation that provides invariance to sensor
orientation; reduces redundancy and space dimensionality;
while preserving relevant information to the classification of
key poses. Our representation is an improvement of the work
of Raptis et al.[3].

Key Pose Learning: A multi-class SVM approach
recognizes key poses from skeletons in real time. More
precisely, the training set is used to build several SVM binary

pose descriptor extraction
learning machine

key pose

gesture learning machine

training
set

multi-class
SVM

key pose

(k1, t1) (k2, t2) ... (kn, tn)

training
setk1

k2 k6

k3 k4 k4

k5g1 g2

g3

k3

k6 k4 k5

k4 k3 k1

g4 g5 g2

gesture

kinect (x1, · · · , x15)

(θ1, ϕ1, · · · , θ9, ϕ9, η)

decision forest buffer

Fig. 2. Our method learns and recognizes in real time key poses and gestures from a compact joint-angles skeleton representation. There are four main use
cases: training the key pose learning machine (purple arrow); recognizing user key poses in real time (blue arrows); training the gesture learning machine
(red arrows); recognizing user gestures in real time (green arrows).

classifiers that robustly recognize key poses, in a one-versus-
all approach. The efficiency of this method permits real-time
training, allowing the user to improve the training set by
correcting occasional misclassified key poses.

Gesture Training and Recognition: After training the key
pose learning machine, the user is allowed to execute and label
examples of gestures, defined as finite sequences of key poses.
For each gesture performance, the classified key poses are
accumulated into a circular buffer.

During training, a decision forest is built such that all the
sequences of the same gesture correspond to connected paths
in the forest, and those paths are labeled with the gesture.
The decision forest is optimized to efficiently perform the
search for key pose sequences, as described in Section V.
It can optionally consider time/speed constraints. Even when
different users perform the same gesture with different
duration of key poses, the decision forest provides an effective
and robust solution to that temporal alignment problem.

IV. KEY POSE STATISTICAL LEARNING

Key-based gesture recognition methods are highly
dependent on the robustness of pose classification, and the
pose identification requires efficiency to perform in real time.
To solve this multi-class classification problem, we propose a
supervised learning approach, where the machine learns key
poses from user examples. We further aim to deliver robust
pose identifications even with small training sets, as the ones
provided by a single short training session. Finally, we would
like the user to be able to, at any moment, provide labeled
training data to correct and improve the classifier robustness,
while keeping it efficient.

We build such a classifier using a multi-class variation
of the Support Vector Machines (SVM) binary classifier,

whose formulation is well suited to meet our requirements.
SVM received a lot of attention in the machine learning
community since it is optimal in the sense of the VC statistical
learning theory [4]. We refer the reader to the book of Smola
and Schölkopf [25] for a complete introduction to SVM
techniques. This section briefly describes some basics of the
multi-class SVM approach we adopted, and our joint-angles
skeleton representation.

A. Joint-angles Representation

The skeleton representation must be invariant to sensor
orientation and global translation of the body, minimize issues
with skeleton variations from different individuals and still
concisely capture all the relevant body pose information.

For each frame, the skeleton stream is a sequence of graphs
with 15 nodes, where each node has its geometric position
represented as a 3d point in a global Cartesian coordinate
system (Fig. 3). The joints adjacent to the torso are usually
called first-degree joints, while joints adjacent to first-degree
joints are classified as second-degree joints. First-degree joints
include the elbows, the knees and the head, while second-
degree joints are the extremities: the hands and feet.

Different body poses are essentially obtained by rotating
first and second-degree joints. Note that each joint movement
has 2 degrees of freedom: a zenith angle θ and an azimuth
angle ϕ; while the distance between adjacent joints (i.e., the
radial distance) is always constant (Fig. 4).

In the work of Raptis et al.[3], a straightforward joint-angles
representation is developed by converting each joint position
xl ⊂ R3 to local spherical coordinates. First, a torso basis
is estimated by applying a PCA to a 7-3 torso matrix filled
with the torso node positions. Then, the spherical coordinates

Fig. 3. Skeleton’s graph: torso joints are
represented in red; first-degree joints in
green; and second-degree joints in blue.

Fig. 4. Joint-angles representation: each body pose is a product
of joints movements, which have 2 degrees of freedom in
local spherical coordinate systems: the zenith angles θ and the
azimuth angles ϕ.

of each first-degree joint are computed as a translation of this
torso basis to the joint.

However, this same torso basis is used as reference to
convert the second-degree joints, leading to a non-local
description of the angles. Also, as mentioned by the authors,
some combinations of joint positions can result in collapsed
projections and consequently inconsistent angles, as in the
open arms position [3].

We use the same torso basis for first-degree joints,
but improve the representation of second-degree joints by
considering rotations of the orthonormal torso basis {u, r, t}.

Let v be the vector defined by the right arm and the right
elbow and w the vector between the right elbow and the right
hand. To define a local basis for the right hand, we rotate the
torso basis {u, r, t} by the angle β = arccos(v · r) around
the axis b = v × r. Note that if v · r = 1, no rotation is
applied. Also v · r 6= −1 since the right arm can never rotate
completely left due to body constraints. The rotated basis is
translated to the right elbow and the spherical coordinates of
the right hand are computed as
• θ - the angle between v and w
• ϕ - the angle between the rotated t and the projection of

w in the plane whose normal is v

If v and w are collinear, we just set φ = 0, as the
azimuth is not defined, and this will not be an issue to
our SVM pose classifier. The other second-degree joints are
similarly constructed using variants of the torso basis, such
that collapsing issues are avoided by other body constraints.

Finally, each joint position xl is represented using a pair of
spherical angles (θl, ϕl) that specifies it in a locally defined
spherical coordinate system. We also compute the angle η
between the directional vector z from the Kinect sensor and
the inverted vector −t from the torso basis, to detect torso
inclinations. Thus, a body pose joint-angles representation is
a pose descriptor vector v = (θ1, ϕ1, . . . , θ9, ϕ9, η) ∈ R19.

B. Multi-class SVM formulation

The classification step identifies key poses from a pre-
defined, verbally described set K =

{
c1, c2, . . . , c|K|

}
of

key pose classes used to build gesture representations later

on. During key pose training, the user creates a training
set by providing several examples of each key pose. In our
experiments, 30 examples per key pose were usually enough.
The multi-class SVM learning machine is supplied with the
training set T = {(v1, c1) , (v2, c2) , . . .}, where each pair
corresponds to an example of a key pose trained by the user.
Each vector vi ∈ R19 is the pose descriptor of the trained key
pose, while ci ∈ {1, . . . , |K|} is an integer identifying the key
pose class.

For each key pose p ∈ {1, . . . , |K|}, we build a classifying
function f̂p as the kernel distance to some of the trained pose:

f̂p (v) =
∑
j∈SV αj ψp(cj) φ (vj ,v) + b,

where
ψp(c) =

{
1 if c = p,
−1 otherwise.

The function φ : Rm × Rm → R maps a pair of pose
descriptors to their scalar product in a feature, possibly
infinite-dimensional space turning f̂p into a non-linear
classifier. In this work, we used a Gaussian kernel, i.e.

φ (v1,v2) = exp
(
−‖v2−v1‖2

2σ2

)
.

We chose σ = 5 since it lead to fine results in our
experiments. Given a queried pose represented by its descriptor
v, each classifying function f̂p essentially returns positive
values if v is likely to be of key pose class p, and
negative values otherwise. The higher the value, the higher the
confidence. Such use of the SVM-distance for classification
confidence has been successful in other contexts, as for
intelligent galleries design [26].

Finally, the key pose classification is decided through a
voting process, where the higher confidence through all key
pose classifiers identifies the key pose class of the queried
pose. The key pose class from descriptor v is then

f̂ (v) =

{
q = argmax

p
f̂p (v) if f̂q (v) > 0,

-1 otherwise.
(1)

Note that if all classifiers return non-positive values, then
the queried pose does not belong to any trained key pose class,
causing the key pose classifier to return −1.

k1

k2 k6

k3 k4 k4

k5g1 g2

g3

k3

k6 k4 k5

k4 k3 k1

g4 g5 g2

g1 k3 k2 k1

g2 k4 k6 k1

k1 k5 k3

g3 k5 k4 k2 k1

g4 k4 k6 k3

g5 k3 k4 k3

Fig. 5. Gesture learning machine example: a forest containing 6 key poses (left); and the 5 gestures represented by the forest (right).

V. GESTURE RECOGNITION THROUGH DECISION FOREST

We represent each gesture as finite sequences in the set
K ⊂ P of key poses. This representation is used to
build a gesture set during training sessions. Afterwards, the
training set is structured in a decision forest that efficiently
recognizes gestures, parsing the key poses sequence of the
user’s performance.

A. Defining a gesture

In our setting, a gesture is represented as a sequence
g = {k1, k2, · · · , kng} of ng key poses ki ∈ K. Usually,
a gesture can be identified through a small sequence of two to
five key poses. For example, a gesture simulating a page turn
may need as few as 4 key poses, as shown in Fig. 1.

A straightforward solution to train a gesture example
is to manually insert into the training set a sequence
{k1, k2, · · · , kng

} of key poses composing the gesture g.
Although effective, this approach can miss important key poses
or ignore an alternative way of performing the same gesture.

In our approach, the user executes and labels examples
of gestures during a gesture training session. The key pose
classifiers searches in real time for key poses, which are then
stored in the training set as a sequence of key pose identifiers
representing the gesture. Often, slightly different executions of
the same gesture class can lead to different sequences of key
poses. These sequences are recorded separately as different
representations of the same gesture class.

B. Recognizing gestures

Our decision forest scheme efficiently identifies gestures in
real time. Given a gesture training set composed of key pose
sequences, we build a forest whose nodes represent key poses.
Each path in a tree of the forest, from a leaf parent to the root,
represents a recognizable gesture. Thus, each tree represents
all the gestures whose final key pose is given by its root key
pose, while each leaf stores a gesture identifier. Note that there
are at most as many trees as key poses.

During the recognition phase, the key pose classifiers try to
recognize key poses performed by the user, and accumulate
them into a circular buffer B of the last identified key poses.
Note that the buffer must be bigger enough to accumulate a
key pose sequence representing any trained gesture. We avoid

doubly inserting a key pose in B by checking if the last added
key pose is identical to a newly detected key pose.

Each time a key pose k is recognized, it is inserted in B.
Then, starts the search at the root of the tree representing
gestures ending in k. We search down the tree by reversely
iterating the buffer starting at k. If the preceding element in B
(i.e., the previously detected key pose) is a child of the current
node, the search continues. Otherwise, the search fails, as there
is no trained key pose sequence which is a suffix of the last
performed key pose sequence. If we manage to reach a leaf,
the gesture stored in that leaf is recognized and reported.

The choice of storing the gestures back-to-front in the
forest trees simplifies the recognition work. In this way, the
successful search for the performed gesture begins only when
its last key pose is detected, while in previously queries (i.e.,
when a previous key pose is recognized), the search will
rapidly fail. Also, as we never know which key pose of B is
the first key pose of the next gesture the user can be executing,
we would need to perform searches for gestures initializing in
every detected key pose.

We emphasize that two different key pose sequences can be
safely tagged as the same gesture. Fig. 5 shows an example
of a simple forest with six key poses and five recognizable
gestures. Note how two different sequences of key poses
are assigned to the same gesture g2. This is convenient, for
example, in applications where a gesture done with the right
hand is considered to be the same as the one made with the
left hand. Also, it is possible that, to perform the same gesture,
one pass through slightly different sequences of key poses.

Finally, our formulation does not allow sub-gestures of
gestures to be in the same training set, avoiding ambiguity
issues. However, if this behavior is required, one can easily
adapt our method by making possible to represent a sub-
gesture in an interior node of the tree, along the path of its
complete gesture.

C. Time constraints

For some applications, the execution speed of the gesture
matters. In our gesture representation, we optionally include
the duration between consecutive key poses as a time
vector [t1, t2, · · · , tn−1]. Thus, the same key pose sequence
performed at different speeds can be considered as executions

of gestures belonging to different classes, or even not
considered a gesture at all.

We store in each leaf of the forest one or more time
vectors of the gestures sharing the same corresponding key
pose sequence. These time vectors are captured during the
training phase, representing the intervals between each pair of
consecutive key poses.

When searching for gestures in the decision forest, more
than a time vector can be found in a leaf. To choose or discard
a gesture based on the time vectors, we use two criteria. Let
ti be a time vector stored on a leaf representing the gesture
gi and t the current user time vector. If ‖ti− t‖∞ > T , where
T is a small threshold, then gi is discarded. Among all non-
discarded gestures on the leaf, the gesture gi that minimizes
‖ti − t‖1 is chosen as the recognized gesture.

VI. RESULTS

We present in this section the experiments we have
performed to validate the robustness and evaluate the
performance of the proposed method. We also compare our
method to two state of the art methods, and discuss limitations.

A. Experiment setup

To evaluate the robustness of our key pose learning machine,
we designed a key pose set K composed of 18 key poses to be
used in all tests. One example of each key pose class is shown
in Fig. 6. Note that we focused mainly on superior limbs poses,
which are more suitable for natural user interfaces. To create
the key pose training set T , a single trainer performed around
30 examples of each key pose, resulting in approximately 600
examples of key poses.

Then, we designed a set G of 10 gestures, as shown in
Table I. We asked the single trainer to perform 10 times each
gesture from this set, and captured the sequences of key poses.
We also considered time constraints in gesture g7 to validate
our formulation. Here, the last pose k11 must be kept for 1
second to characterize that gesture.

Note that K restricts the set of recognizable gestures G to
all finite combinations of key poses from K. Thus, the design
of K must take into account the desired recognizable gesture
set G, exactly as compiling a step-by-step tutorial.

B. Key pose recognition

Robustness: We asked the trainer and 10 inexperienced
individuals to perform all trained key poses to evaluate the
recognition rate of our classifiers. Each individual performed
each key pose 10 times. Table II shows the results. The
key pose learning machine was able to recognize the users
key poses in most cases, achieving an average recognition
rate of 94.84%. Even in similar poses, like k13 and k17,
the machine succeeded in classifying the right pose in most
examples. We noted that most failures were in challenging
poses to the skeleton tracker, such as the pose k18. Also, one
female individual with long frizzy hair was troublesome for the
skeleton tracker, and consequently to our method. However,
when she tied her hair, better results were achieved.

gesture id key pose seq. rec. rate
Open-Clap g1 k1, k4, k7 99%
Open Arms g2 k1, k7, k4 96%

Turn Next Page g3
k1, k2, k5, k1 83%
k1, k6, k3, k1

Turn Previous Page g4
k1, k5, k2, k1 91%
k1, k3, k6, k1

Raise Right Arm Laterally g5 k1, k2, k8 80%
Lower Right Arm Laterally g6 k8, k2, k1 78%
Good Bye (k11 time constraint:1sec.) g7 k1, k11 92%
Japanese Greeting g8 k1, k14, k1 100%

Put Hands Up Front g9

k1, k5, k18

96%k1, k5, k8
k1, k5, k11, k8
k1, k8

Put Hands Up Laterally g10 k1, k4, k10 100%
TABLE I

TRAINED GESTURES AND AVERAGE RECOGNITION RATE FROM
EXPERIMENTS WITH 10 INDIVIDUALS. KEY POSES ARE DESCRIBED IN
TABLE II. NOTE THAT SOME GESTURES HAVE MULTIPLE DEFINITIONS.

Stability: To verify the stability of the key pose
learning machine, we performed out-of-sample tests. In this
experiment, we removed at random 20% of the data from our
training set, computed the SVM classifiers and tried to classify
the removed poses. After executing this experiment 10 times,
the average number of false classifications was only 4.16%,
while 3.45% could not be classified.

C. Gesture recognition

To check the robustness of the gesture learning machine,
we described the trained gestures to 10 individuals. Then,
we measured the recognition rate of the machine when the
individuals executed each trained gestures 10 times. Excellent
results were obtained in the majority of the gestures, while
more tricky gestures achieved satisfactory results, as shown
in Table I. Also, very good results were obtained in the time
constrained gesture g7. Further validation of time constrained
gestures can be the object of a future research.

D. Performance

During the preprocessing phase, the only small bottleneck
is computing the SVM binary classifiers functions. For a
large training set with around 2.000 key pose examples of
18 classes, the 18 functions were computed in 3.9 secs, with
an average of 105 support vectors per binary classifier. Note
that these functions only need to be computed once, as long
as the training set remains unchanged.

During training and recognition phases of our experiments,
performance was negligible. The key pose learning machine,
composed of several SVM binary classifiers, was easily
capable of recognizing key poses at 30fps (the maximum
Kinect sensor frame rate) in an average desktop computer.

Also, most gestures are composed of just a few key poses,
generating decision trees with very low depths. In the other
side, the trees breadths depends on the number of trained
gestures, which is also a low number in most cases. Thus,
the decision forest search complexity is irrelevant in the total
complexity of our gesture recognition approach.

Fig. 6. Example of key poses from the training set.

key pose id recognized key poses per user total
u1 u2 u3 u4 u5 u6 u7 u8 u9 u1

10 u2
10 (%)

Neutral k1 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand Right k2 10 10 10 10 10 10 10 10 10 10 8 98.18
Left Hand Left k3 10 10 10 9 10 10 9 10 10 10 10 98.18
Arms Open k4 10 10 10 7 10 10 10 9 10 7 10 93.63
Right Hand Front k5 10 10 10 10 10 10 10 10 10 8 7 95.45
Left Hand Front k6 10 10 9 10 10 10 10 10 10 10 10 99.09
Both Hands Front k7 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand Up k8 10 10 10 10 10 10 10 10 10 10 10 100.00
Left Hand Up k9 10 10 10 10 10 9 10 10 10 9 10 98.18
Both Hands Up k10 10 10 10 10 10 10 10 10 10 10 10 100.00
Right Hand 90◦ k11 10 8 9 10 10 10 10 10 8 10 10 95.45
Left Hand 90◦ k12 10 10 10 10 10 6 10 10 10 5 10 91.81
Both Hands 90◦ k13 10 10 10 10 10 10 10 10 10 10 10 100.00
Inclined Front k14 8 10 10 10 10 8 10 10 10 5 7 89.09
Hands-on-Hip Crossed k15 7 8 6 8 8 10 10 10 8 10 8 84.54
Hand-On-Hip k16 10 10 10 10 10 10 10 9 10 10 10 99.09
Hands on Head k17 9 10 10 8 10 10 9 7 10 10 6 90.00
Right Hand 90◦ Back k18 8 10 9 6 7 7 7 10 10 3 8 77.27
total (%) 95.5 97.7 96.1 93.3 97.2 94.4 97.2 97.2 97.7 87.2 91.11

TABLE II
RESULTS OF THE EXPERIMENTS WITH 10 INDIVIDUALS, PERFORMING VARIATIONS OF EACH KEY POSE 10 TIMES. u1 IS THE TRAINER USER, u110 IS THE

FEMALE WITH LONG FRIZZY HAIR, SHOWING THE WORST RESULTS, AND u210 IS THE SAME FEMALE WITH TIED HAIR, ACHIEVING BETTER RESULTS. ALL
KEY POSES WERE VERY WELL RECOGNIZED BY THE CLASSIFIERS, EXCEPT FOR THE LAST ONE, DUE TO SKELETON TRACKING ISSUES.

E. Comparison

We compared our approach to two state of the art methods.
In the work of Li et al.[10], three subsets of 8 gestures each are
selected from a dataset of 20 gestures, as shown in Table III.
For each subset, three different training sets were considered:
training one third of the samples, two third of the samples, and
samples from half of the subjects (cross-subject test). Then, the
proposed method tried to recognize the non-trained samples.

The same dataset and subsets are used to compare with
[10], [15] and our method, although we extract skeletons from

the original depth maps. We analyzed the gestures of each of
the three subsets to design sets of distinctive key poses for
learning. For each subset AS1, AS2 and AS3, we trained key
poses and gestures using the skeletons of half of the subjects
from the dataset. We manually labeled key poses for each
performance, feeding the gestures learning machine from the
resulting pose sequence. Then, we performed cross subject
tests, trying to recognize non-trained gesture samples using
the corresponding training set.

The obtained results are shown in Table IV. Note
that excellent results were obtained in AS1 and AS3,
outperforming [10] and [15], while AS2 performed badly. The
low performance of AS2 recognition was mainly due to 3
gestures composed of not very distinctive key poses: draw x,
draw circle and draw tick. While these gestures required very
accurate movements, many subjects executed them through
slightly different poses.

AS1 AS2 AS3
Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick
Forward punch Draw x Side kick

High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Pickup & throw Side boxing Pickup & throw

TABLE III
GESTURE DATASET OF LI et al.[10]

Gesture subset Li [10] Vieira [15] our method
AS1 72.9% 84.7% 93.5%
AS2 71.9% 81.3% 52.0%
AS3 79.2% 88.4% 95.4%
Average 74.7% 84.8% 80.3%

TABLE IV
COMPARISON OF RECOGNITION RATE THROUGH A CROSS-SUBJECT TEST.

F. Limitations

Most robustness issues were mainly due to two reasons:
skeleton tracking and accurate gestures, like drawing an x.
Using a single Kinect, the user must be in front of the sensor,
since side positions can occlude joints, degrading the skeleton.
In the other side, the skeleton tracker can generate different
skeletons for different individuals performing the same
pose. These differences can degrade the invariance of pose
descriptors, requiring some kind of skeleton normalization
in extreme cases. Also, our method is limited to gestures
composed of distinctive key poses. Gestures that requires
very accurate movements can be troublesome for our learning
machines. Finally, relying on key pose design and training may
not be the friendliest solution for a casual user.

VII. FUTURE WORK

As the skeleton extraction and tracking algorithms still
cope with large amount of noise from the sensor, robustness
is a main issue for future work. A common problem for
these algorithms is the lack of 3d information in some joint
positions, requiring the user to face the camera. Working
with two or more kinect sensors could be of help in robustly
capturing and processing the skeleton stream.

The algorithm introduced here may be improved in three
different directions. First, the use of time in recognizing
gestures may be improved to distinguish complex gestures,
using complementary SVM machines, maybe incorporating

velocity of the joints. Second, automatic key pose generation
may greatly ease the usability of the interface. In this setting,
the computer should be able to decide the best set of key poses
to train, in order to get good results in gesture recognition.
Finally, SVM classification can be improved by taking into
account the periodicity of the descriptor.

Acknowledgment: The authors would like to thank CNPq,
FAPEAL, FAPERJ and FAPEMIG for partially financing this
research.

REFERENCES

[1] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose recognition
in parts from single depth images,” in CVPR, 2011, pp. 1297–1304.

[2] F. Lv and R. Nevatia, “Single view human action recognition using key
pose matching and viterbi path searching,” in CVPR, 2007, pp. 1–8.

[3] M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classification of dance
gestures from skeleton animation,” in SCA, 2011, pp. 147–156.

[4] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 2000.
[5] J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li, “Hierarchical

spatio-temporal context modeling for action recognition,” in CVPR,
2009.

[6] L. Cao, Z. Liu, and T. Huang, “Cross-dataset action detection,” in CVPR,
2010.

[7] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative
space-time neighborhood features for human action recognition,” in
CVPR, 2010.

[8] J. C. Niebles, C. W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in ECCV,
2010.

[9] I. Laptev and T. Lindeberg, “Space-time interest points,” in ICCV, 2003.
[10] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of

3d points,” in CVPR Workshop for Human Communicative Behavior
Analysis, 2010.

[11] D. Weinland and E. Boyer, “Action recognition using exemplar-based
embedding,” in CVPR, 2005.

[12] W. Li, Z. Zhang, and Z. Liu, “Expandable data-driven graphical
modeling of human actions based on salient postures,” Circuits and
Systems for Video Technology, vol. 18, no. 11, 2008.

[13] D.-Y. Chen, H.-Y. M. Liao, and S.-W. Shih, “Human action recognition
using 2-D spatio-temporal templates,” in Multimedia and Expo, 2007.

[14] A. Bobick and J. Davis, “The recognition of human movement using
temporal templates,” TPAMI, vol. 23, 2001.

[15] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. M.
Campos, “Stop: Space-time occupancy patterns for 3d action recognition
from depth map sequences,” in CIARP, 2012.

[16] “Carnegie mellon university motion capture database,”
http://mocap.cs.cmu.edu.

[17] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber,
“Documentation mocap database hdm05,” Universität Bonn, Tech. Rep.
CG-2007-2, 2007.

[18] L. Kovar, “Automated extraction and parameterization of motions in
large data sets,” ToG’s, vol. 23, pp. 559–568, 2004.

[19] K. Forbes and E. Fiu, “An efficient search algorithm for motion data
using weighted pca,” in SCA, 2005, pp. 67–76.

[20] M. Müller and T. Röder, “Motion templates for automatic classification
and retrieval of motion capture data,” in SCA, 2006, pp. 137–146.

[21] M. Müller, A. Baak, and H.-P. Seidel, “Efficient and robust annotation
of motion capture data,” in SCA, 2009, pp. 17–26.

[22] J. W. Davis and A. Tyagi, “Minimal-latency human action recognition
using reliable-inference,” Image and Vision Computing, vol. 24, 2006.

[23] J. Zhang and S. Gong, “Action categorization with modified hidden
conditional random field,” Pattern Recognition, vol. 43, no. 1, pp. 197–
203, 2010.

[24] M. Reyes, G. Domı́nguez, and S. Escalera, “Feature weighting in
dynamic time warping for gesture recognition in depth data,” in ICCV
Workshop on Consomer Depth Cameras for Computer Vision, 2011.

[25] B. Schölkopf and A. J. Smola, Learning with Kernels. MIT, 2002.
[26] T. Vieira, A. L. Bordignon, A. Peixoto, G. Tavares, H. Lopes, L. Velho,

and T. Lewiner, “Learning good views through intelligent galleries,”
Computer Graphics Forum, vol. 28, no. 2, pp. 717–726, 2009.

