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Abstract—We propose a new approach to represent and ma- should be preserved during manipulation. These two con-
nipulate a mesh-based character animation preserving its time- straints guide the design of our new hybrid representation
varying details. Our method first decomposes the input mesh ¢, magh-hased character animation. Our method decomposes
animation into coarse and fine deformation components. A model . - o . -
for the coarse deformations is constructed by an underlying the input mesh animation into coarse and fine _defo_rmatlon
kinematic skeleton structure and blending skinning weights. components. A model for the coarse deformation is con-
Thereafter, a non-linear probabilistic model is used to encode the structed automatically using the conventional skeletasedl
fine time-varying details of the input animation. The user can paradigm (i.e. kinematic skeleton, joint parameters aedd!
manipulate the corresponding skeleton-based component of the ing skinning weights). Thereafter, a model to encode the-im

input, which can be done by any standard animation package, - o . . . .
and the final result is generated including its important time- varying details is built by learning the fine deformationsitu

varying details. By converting an input sample animation into our ~ iNput over time using a pair of linked Gaussian process taten
new hybrid representation, we are able to maintain the flexibility variable models (GPLVM [11]). Our probabilistic non-lirea
of mesh-based methods during animation creation while allowing formulation allow us to represent the time-varying details
for pr_actical manipulations using the standard skeleton-based as a function of the underlying skeletal motion as well as
paradlg_m. We demc_)nstrate the performance _of our method by t lize to diff t fi i h that
converting and editing several mesh animations generated by 0 generalize 1o di eren' con lgur.a lons suc at we are
different performance capture approaches. able to reconstruct details for edited poses that were not
used during training. By combining both models, we simplify
the editing process: animators can work directly using the
underlying skeleton and the corresponding time-varyirtgitie

are reconstructed in the final edited animation.

We demonstrate the performance of our approach by per-

Recently, a variety of mesh-based approaches have bésming a variety of edits to mesh animations generated from
developed that enable the generation of computer aninstiatifferent performance capture methods. As seen in[Fig. 1 and
without relying on the classical skeleton-based paradigifn [in the results (Sect. VI), our approach is able to convert a
The advantage of a deformable model representation is alaesh-based character animation into a new hybrid represen-
demonstrated by the new performance capture approachest®jon that is more flexible for editing purposes and it can be
[3], where both motion and surface deformations can Rmsily integrated in the conventional animation pipeline.
captured from input video-streams for arbitrary subjettss The main contributions of our paper are:
shows the great flexibility of a mesh-based representatien o, 3 robust method to learn time-varying details using a non-
the classical one during animation creation. linear probabilistic technique;

Although bypassing many drawbacks of the conventional, a simple approach to represent and edit a mesh-based
animation pipeline, a mesh-based representation for cteara character animation preserving its time-varying details.
animation is still complex to be edited or manipulated. Few The paper is structured as follows: Séct. I reviews the most
solutions are presented in the literature [4], [5], [6],,[]. relevant related work and Sect. Il briefly describes ourralve
but in general it is still hard to integrate these methods ingpnroach. Thereafter, Sect. IV details the method to comver
the conventional pipeline. Other approaches ry to Convert mesh-hased character animation into the skeleton-basato
represent mesh animations using a skeleton-based ref@eseghg sect. V describes how the time-varying details are éhrn
tion to simplify the rendering [9] or editing tasks [10], [2] ysing a non-linear probabilistic technique. Experiments a

However, these editing methods are not able to preserve fjgeits are shown in Sect. VI and the paper concludes in
time-varying details during the manipulation process, @s fSectJW\.

instance the waving of the clothes for a performing subject.

For editing mesh-based character animations, an undgrlyin Il. RELATED WORK
representation (i.e. skeleton) is desired since it singglithe Creating animations for human subjects is still a time-
overall process. At the same time, the time-varying detait®nsuming and expensive task. In the traditional framework
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Fig. 1. Our approach represents an input mesh-based chaaaiteation (top row - particular frames) into a new hybrid esmntation that simplifies the
editing process and preserves important time-varying deted. dynamics of the skirt (bottom row - edited frames).

the character animation is represented by a surface mesh hade been developed for face animation [23], [24] as well. In
an underlying skeleton. The surface geometry can be hamay framework, surface time-varying details are encodedl an
crafted or scanned from a real subject and the underlyipgeserved by a non-linear probabilistic technique. In @sttto
skeleton is manually created, inferred from marker trajectrelated approaches dealing with human skin deformatidsjs [2
ries [12] or inferred from the input geometry [13], [14]. The26], [27], our method is even able to model deformations of
skeleton model is animated by assigning motion parametésese apparel.

to the joints and the geometry and skeleton are connected vi&€onsidering that the underlying subspace of deformations
skinning (see [15] for an overview). is inherently non-linear, we believe that a non-linear dime

Given the complexity of this process, many related methogi9nality technique is appropriate to compactly represieese
have been developed to simplify this pipeline, bypassingymadeformations. Among the non-linear dimensionality reduc-
drawbacks of the conventional framework [1]. In particulation approaches, Gaussian Process Latent Variable Models
the recent progress of deformation transfer [16], [17]fane (GPLVM [11], [28]) has been shown to robustly generalize
capture([18], [19] and mesh-based performance capture-métgll from small training sets and it does not tend to over-fit
ods [2], [3] is enabling the creation of an increasing nundfer as other techniques. Recently, a variety of GPLVM approgiche
mesh-based animations for human subjects. As a resuigdithave been widely used for learning human motion either using
and reusing these animations is becoming an important.iss@élynamic representation [29] or a shared latent struc80F [

A number of approaches have been developed to proc&?se techniqueg were also used to model large dimensional
and edit general mesh animations [4], [5], [6], [7], [8], bug_ata, such as silhouettes [31], voxel data [32] and even
unfortunately these methods cannot be easily used by anim&oPle deformable models [33]. However, to the best of our
tors or integrated into the conventional animation pipelifor Knowledge, such technique has never been used to learn time-
animations that can be represented by an underlying kinema@"ying surface details for more complex models like in our
skeleton, e.g. human subjects, an underlying representati SYStem-
more flexible for editing operations, it enables its inté¢igm
into a conventional animation package and it simplifies the
overall process. Recent techniques to simplify the renderi  An overview of our approach is shown in Fig. 2. The input
task for such mesh animations [9] and new methods to convgtour method is an animated mesh sequence comprising of
a sequence of mesh poses [10] or mesh animations [2] tova , frames. The mesh-based character animatigiC/(d =
skeleton-based format have been investigated. Our tG.(lZﬁ,\rli(ﬂ]\/[7 pt]) is represented by a sequence of triangle mesh models
extends these latter editing approaches by preservingrtee fi = (V' = vertices, T = triangulation) and position data
time-varying details during the manipulation process, cluhi pe(vi) = (4, v, 21), for each vertexy; € V at all time steps
increases the quality of the final result (Fig. 1). t.

Example-based skinning methods attempt to improve simpleOur framework is inspired by Botsch and Kobbelt [34],
linear deformation by adding or correcting surface detailshere a new representation for mesh editing is proposed usin
from a given set of examples. In case the animation edits aenultiresolution strategy. In contrast to their method, $ys-
not too large or complex, pose-space deformation [20],,[21Em can be applied to a sequence of spatio-temporally cohere
weighted pose space deformations [22], and related paperashes and it allows the manipulation of the entire animatio
would be able to provide reasonable results. Similar tegles by decomposing it into coarsel{C A¢) and fine (M CAFr)

I1l. OVERVIEW
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Fig. 2. Overview of our method: an input mesh-based characienadion

is decomposed into coars@/(C A¢) and fine (M C Ar) deformation com- L. . . .
ponents. This enables the user to edit the underlying sieleased represen- Square deviations between the vertices in the skinned model

tation and the time-varying details of the input are faitlyfubconstructed in and the vertices in the input mesh pose for each frame. We
the final animation. perform this optimization for each joint subsequently diit
ing the skeleton’s hierarchy. In contrast/to [10], [2], thisple

deformation components. A model for coarse deformationsgﬁategy is fast and it is more robust against artifacts due t
created by automatically fitting a kinematic skeleton to thge non-rigid components of the input animation. Although w
input and by calculating the joint parameters and blendinge not as general as the related work regarding the estimati
skinning weights such that the input animation is reproducgy the underlying skeleton structure, in our experiments, o
as close as possible, Sect. IV. automatic approach is able to correctly convert animatizfns

Unfortunately, only a skeleton-based model is not able {ffferent human subjects wearing a variety of clothing eyl
represent the fine time-varying details of the input. In ordg;q (6,
to encode such details, a GPLVM-based technique is used t@yr final skinned modeM C A¢ closely matches the input
learn the motion-dependent fine non-rigid details, SecThé  animation. However, non-rigid time-varying details canbe
combination of both models not only enables the conversi@@cyrately reproduced in this representation. In the nest s
of the input mesh-based character animation in a new hybfigh, a new method is used to learn such time-varying details
representation, but it also enables its manipulation pve®g \hich enables the faithful reconstruction and manipuratif

the important time-varying details, Sect.]VI. the input.
IV. SKELETON-BASED REPRESENTATION V. LEARNING TIME-VARYING SURFACE DETAILS

Giving an input mesh-based character animatldd’' A, a We use a non-linear probabilistic technique to efficiently
skinned model /C'A¢) is created to reproduce the coarséearn the surface time-varying details of the input, whish i
deformation component of the input animation. This is dorigherently non-linear, from a small number of samples (i.e.
by automatically fitting a kinematic skeleton to the inputsime frames). This is achieved by learning the difference betwee
model (i.e. triangle mesh at first frame of the animation) antle input mesh animation and its corresponding skinned mode
by calculating the joint parameter8)(and blending skinning representation. This algorithm design is important beeaus
weights such thafl/ C A- reproducesM/ C' A approximately. it makes our representation more stable (i.e. by using the

Our goal is to deal with human-like characters. Thereforeparse skinned animation) and it enables a more detailed and
we include prior knowledge in our framework by means of accurate reproduction of the input (see Fig. 5(a) and Sd§t. V
known kinematic skeleton structure, Fig 3(left). Our kirgim Another advantage is that while absolute coordinate values
structure containsV ornTs = 18 joints connecting bone of neighboring vertices may be completely different, the fin
segments and its joint hierarchy is presented in [Fig. 3(righdeformations tend to be similar for neighboring verticesich
We parametrize the skeleton by the translation of the romohproves the performance of our learning scheme.
joint and three angular degrees-of-freedom for all oth&tgo Giving the mesh animatiod/C A and its skinned model
We fit our kinematic skeleton to the input character model b/ C' A, we create the details by subtracting for each vertex
using the method proposed in [13]. We also use the approatshoriginal positionp, (v;) in M C A from its positionps, (v;)
proposed in [13] to compute appropriate blending skinnirig MCA¢ at time stept: d:(v;) = p,(v;) — ps,(v;). Finally,
weights to connect the input mesh model to the underlying,; = [d;(v1), -+ ,di(vn)]” is a component o\ C Ay at
kinematic skeleton. time ¢t.

Thereafter, for each frame of the input animation, joint The skeletal motion (i.e. joint parameters) is linked to
parameterg are estimated such that the reconstructed skinntite fine deformations of the input model using a shared
model M C A¢ best reproduces the input mesh pose&fi@’ A. latent structure of GPLVMghared Gaussian Process Latent
Starting from the root of the hierarchy and stepping down dariable Models (SGPLVM) [30], via a low-dimensional latent
the leaves, this is achieved by optimizing the root traimtat space X, as illustrated in Figl 4. In conjunction with the
and the angles for each joint in order to minimize the averagiea of Gaussian Process Dynamical Models (GPDM) [29],



our latent space encoding is not only subject to the Stracty skeieton observation I o Mesh observation
of the high dimensional data, but it is also subject to tr space Ys space Yu
dynamics in this data, which enforces smoothness of t Yss@edal J& " 2 = (A, .., o]
temporal transitions of the latent variables. Our sharetna f57(x) " ;

approach is used since we assume that the skeletal mof . fu(x)

and the mesh details have a common underlying tempora fs(x) A j\
coherent behavior. Skeletal pose and mesh detaily’, are

related to the shared latent variables with a pair of forwa " Latent space X

mapping functionsfs(x) : X — Ys and fy(x) : X — Y,

whereY« represents @ «-dimensional ioint Fig. 4. ‘The relation between joint_parameters and surfacailslets
s rep S J parameter Vectorlearned using a shared latent space with dynamical consstralur model

andY)y is the Dj;-dimensional time-varying detail vector.  can generalize to different input configurations, as seetthbycolor-coded
The estimation of the mapping functiorig(x) and fy;(x) variance (blue=high— red=low).

is briefly described in the following. In SGPLVM [30}- . . i i )

dimensional latent variableX = [z, - - , 2] corresponding joint angles are used for Iearnlng and t_hat in our experigjent

to N given samples is and Yy, (denoted by¥ s andY ,,, We achlgvgd better results by discarding the joint angles fo

respectively) are acquired by maximizing the joint likelifg the root joint. _ o .

of Y5 and Y, with respect toX. In this optimization, the ~ While the latent spaceX is optimized by embedding

similarity between components &X (i.e. z; andz; where With Gaussian Process, a mapping function frgm to =

i # j) is evaluated by a non-linear kemel function. In ouf/ ' (¥s) : ¥'s — X) is not provided by the above mentioned

particular case, the similarity is determined in accorganith Process. In our work, after the latent spakeis optimized,

our sampling data, namely mesh details,{ and Z_/Mj) and the. ma}pplngYS — X is obtalngd by a regression function,

skeletal motion g5 and gy ). We use radial basis functionWhich is also leared by Gaussian Process [28].

(RBF) to define the non-linear kerel function and scaled YSing fs(z) and fi(z), a new mesh model is generated

conjugate gradient (SCG) for the optimization ff(z) and &S foIIow_s:.flrst the coarse d_eformgthm(vi) is estimated

far (). from the joint parameters at timeusing our skinned model,
GPDM [29], which consists of an observation spacgi.e. Sect! V. Thereafterys, = [6,,6,1]" is mapped toy,,, =

Ys or Yay) and its latent spacé, is defined by two mappings. [d¢(v1). -+, de(vn)]” Via X: yy, = far(fs ' (ys)), and the

The first mapping is from the latent spaketo the observation time-varying detailsd;(v;) are calculated. Both terms are

spaceY, and the second one is from a pointfat 1 to a added together and the pose for the model is reconstructed.

point at¢ in X, fp(x), as also illustrated in Fig. 4. Similarly In our experiments, the dimension of the latent space and the

to SGPLVM, these mapping functions are acquired by maRumber of iterations for the SCG technique are set td bad

imizing the joint likelihood of Y and X, with respect to 100, respectively. These values enable convergence and they

X and X, respectively, whereX,,; = [z, - ,xy] and aré a good trade-off between training speed and accuracy of

X, =[xy, -, N_1] the final framework.

In our framework, the shared latent spade under the
dynamics constraint, is acquired by maximizing the product
of the joint likelihoods evaluated in SGPLVM and GPDM. Our approach has been tested on several mesh-based anima-
In contrast to previous work, where the initialization &f is tion sequences generated from performance capture methods
achieved by canonical correlation analysis (CCA) [35] or athat are publicly available [36], [3]. The animations con-
eraging the top eigenvectors of the principal componer@} [3tain walking, marching and fighting sequences. The input
in our method, X is initialized by using only the principal meshes were generated at a resolution of aralNpghrr =
components ofY 5. Thereafter, we optimize the product off000 — 10000K vertices and the animation sequences range
the joint likelihoods. SinceDs <« Dy, this approach results from Nyr = 70-400 frames long. In order to evaluate the
in a better initialization and optimization fa ;. performance of different algorithmic alternatives, wetfian

The goal of this learning scheme is to encode time-varyirggseries of experiments.
details of the input mesh animation using the joint paramete In our first experiment, we verified the efficiency of our
In general, a given joint angle configuration might corregpo system’s design by comparing the performance of our non-
to multiple surface details. Dynamics constraint with GPDNinear probabilistic model to learn the full range of deferm
allows us to properly model this situation and obtain ations in contrast to only encoding the time-varying details
improved latent space by mapping the data with similar BetaSect/ V. By encoding coarse and fine deformations, our non-
but different motions to different latent variablesXn In order linear model is able to reproduce the input, but unfortugate
to leverage this advantage, a temporal history of the inpistnot able to generalize well to different pose configuratio
skeletal motion is mapped froitis to X and then taY,,. In  Fig.[5(a) shows the result when we use a model trained with
our implementation, a concatenation of the joint paransdtar the full deformations (red line) and one trained with only
two frames is employedyg, = [0:,0,_1]T, whered; denotes the fine deformations to reconstruct the swing sequence [3].
the skeletal joint parameters at timePlease note that only The graph shows the average distance error between the

VI. EXPERIMENTS AND RESULTS
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Given the high dimension space of the input data (i. e.
Ds = 2 x 3 x (Njornts — 1) and Dy = 3 x Nyggr),
our third and last experiment analyzes the performance of ou
system to handle it, as well as lower dimensional spaces (i.e
mesh resolutions) generated by simplifying the originag.on
We generated a simplified version of the input animation by
decimating the character triangle mesh at the first framagusi
a surface mesh simplification procedure. We maintain the
temporal connectivity in the control mesh animation by sgvi
the sequence of edge collapses for the simplified character
model and by applying the same sequence of operations for
all meshes in the input sequence. Thereafter, we apply our
| framework to generate our hybrid representation and parfor
E— "% some manipulations using the control mesh animation. At the

'iﬁj end, a radial basis function approach, proposed in [36}séslu

Se———
130 4, [Frames]

= 50% to reconstruct the fine resolution models based on the sequen
5% of edited control meshes.
e 100% We tested the performance of our system in six different res-
® 0w g, [Frames] olution levels: full mesh resolution a0% of the number of

vertices,75%, 50%, 25%, 10% and5%. As seen in the graph
in Fig. 5(b), the reconstruction accuracy of our system lier t
mml 1 Hybrid Model challenging samba sequence is similar in all resolutioeltev
Wl = skinned Model In the accompanying video, we can also see that visuallyther
is not much difference in the final result when we manipulate
the control mesh or the full fine resolution animation. There
fore, in order to make our approach more efficient, decrgasin
its overall processing time, we decided to perform the egiti
process following a multiresolution strategy using thetoain
mesh at a resolution 6% (Nv grr = 350—500). Please note
© that our system can still be applied to any resolution level a
Fig. 5. Experiments for the human-size samba sequence [3]:h@)gTaph  that for all sequences we tested, the time-varying detéilseo
shows that our system design is able to reproduce the swingesee more . . . .
accurately. (b) A multiresolution approach can be used infaamework to input animations were preserved during the process. We see
deliver the same level of quality and decrease computatimvaépand storage this multiresolution scheme as an additional advantageuof o
resources. (c) Graph comparing the reconstruction accwaopr skinned  framework as it allows the reduction of processing time and
?d%iitégg (l'fng&ra;'%;li’trhmb”d representation (blue linendestrating the .26 without decreasing the overall quality of the ationa
The performance of our framework to automatically convert
an input mesh-based character animation to our new hybrid
representation is shown in Fig 5(c). By using only the skihne
corresponding vertices of the human-size input animatiah amqgdel. as in related approaches [10], [2], time-varyingitet
our reconstructions. This demonstrates our correct chiojce 5re not preserved and the reconstruction is not accurate (re
using a non-linear model to encode only the fine time-varyinge in Fig./5(c)). Our hybrid solution preserves the detaif
deformations, as described in Sect. V. the input animation which yields a more faithful reconstiae
Our second experiment was used to determine the bestthe input (blue line in Fig. 5(c)). Fig. 6(e) also showsttha
combination of representations to be applied to our GPLVMwur approach reproduces better the original dynamic detail
based approach, Sett. V. Motion capture data can be rapthe skirt in comparison with linear blending skinning.igh
resented by euler angles, quaternions or exponential mapsperty of our new representation is specially useful royri
We applied all three representations to our method, and thre manipulation of the entire input animation.
our experiments exponential maps performed better. We alsd’he advantages of our hybrid representation are presented
tested two common representations for positional datdexerin Fig.[1, Fig.[6 and in the accompanying video. In Fig. 1,
displacements in xyz spaceXYZ) and differential coordi- the motions of the arms, torso and head of the girl dancing
nates [1] DIF). In our experiments, both mesh representatiosamba are edited and the skirt waves realistically in the
give similar results. Therefore, giving the fast generatid final edited animation. Fid.!6(a,b) shows a particular frame
XYZ, in contrast toDIF where a linear system needs to béor several input sequences and the respective editedt resul
solved for each frame, for the remainder of this paper we ussing our hybrid representation. As presented in Fig. 6(c),
the combination exponential maps and XYZ to generate thging our framework, we are able to change the motion
results. parameters of the underlying skeleton and generate cdnginc

120 [Frames]



deformations for the skirt. We are also able to change theatinp VII. CONCLUSIONS
skeleton dimensions, which enables us to even retarget th

§Ve presented a fast system to represent and manipulate an
input animation to a different character proportion, Fid)6 P 4 b b

input sequence of animated characters preserving its tanuor
The running time of our algorithm is dominated by thgime-varying details. By decomposing the input animatioto i

training phase of the GPLVM-based technique (aro8@wiin coarse and fine deformation components, a skinned model

for 100 frames). This step is done only once at the beginninghd a GPLVM-based technique are used to reproduce the

for each sequence and, thereafter, the editing operatioms jnput and to enable its meaningful manipulation. Our new

in real-time. Our timings were obtained with an Intel Cor@ybrid representation maintains the flexibility of mesisdrh

Duo Laptop at 2.4 GHz. Another advantage of our approaghethods while it allows for practical manipulations usihg t

is its ability to compress a mesh-based character animati@hventional animation tools.

without losing its time-varying details. Using our lowest

multiresolution level %), the input animation is compressed ACKNOWLEDGMENT
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Fig. 6.  Editing mesh-based character animations: input frafagsand
edited results (b). Our framework allows a more faithful maldpan of
the fighting, marching and walking sequences, respectiye)yf-or a single
frame, different surface details for the skirt can be reqoietéd based on the
underlying skeletal motion. (d) We are also able to modify thepprtions
of the input mesh model (left), simplifying the retargeting of naesh
animation (middle=changing torso and right=changing le@s) Comparison
between original frame (left), reconstructed frame using skeleton-based
representation (i.e. linear blending skinning) (middle) aeconstruction using
our full approach. Our method reproduces better the dethilkeodynamics
in the skirt from the original frame.
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