
Fluid Simulation on Surfaces in the GPU
Leonardo Carvalho

IMPA
Rio de Janeiro, Brazil

leo1984@impa.br

Maria Andrade
UFAL

Maceió, Brazil
mcosta@impa.br

Luiz Velho
IMPA

Rio de Janeiro, Brazil
lvelho@impa.br

Abstract—In this paper we present a method to simulate
fluids on smooth surfaces of arbitrary topology using a graphics
processing unit (GPU). To do this we use the parametrization
of Catmull-Clark subdivision surfaces, and obtain the metric
information of the distortion caused by this parametrization, so
we can calculate differential operators of functions defined on this
surface. Then the Navier-Stokes equations on surfaces are solved
in the domain of parametrization of each surface patch. This
process can be done in parallel for each point in the discretization
of the surface, so the GPU implementation can heavily increase
the velocity of computation.

Keywords-Surfaces; Catmull-Clark subdivision; Differential
operators; GPU; cuda; efficiency; Fluid simulation.

I. INTRODUCTION

In recent years, many researches were developed to use
the Navier-Stokes equations for fluid simulation. In partic-
ular, these investigations have contributed in many areas,
like special effects industry. Bridson [1] presents a practical
introduction to fluid simulation for computer graphics, with
an overview of algorithms used to simulate two and three-
dimensional incompressible flows.

Stam [2] proposed an algorithm called stable-fluids that
solves the Navier-Stokes equations for three-dimensional flu-
ids, which is fast, stable and it is the basis to simulate smoke,
water and fire, but this process is dissipative. Fedkiw et al. [3]
made a change in the discretization in order to reduce the
problem of dissipation.

Stam [4] also developed a method to simulate fluids on
surfaces of arbitrary topology solving the Navier-Stokes equa-
tions in the domain of the surface parametrization. His method
handles the distortion caused by the parametrization and cross-
patch boundary conditions. The author used a parametrization
of a Catmull-Clark surface [5], using his evaluation method
described in [6].

Fluid simulation is generally a computing intensive task,
so it can take a lot of time to be performed. To minimize
this problem, algorithms can exploit multiple processors com-
puters, solving the partial differential equations in parallel. A
good choice is to use the Graphics Processing Units (GPUs),
which were originally developed to accelerate graphics opera-
tions, like the rendering of a virtual scenario, but recently they
have been used to solve more general problems that require
compute-intensive parallel computation, due to the design of
these units. In this case, they are called General Purpose
GPUs, or simply GP-GPU. Initially, developers could take

advantage of the GPU power through the graphics pipeline
using shading languages such as Cg (C for graphics) [7], but
this requires that the programmers understand the graphics
processing pipeline, and know how to solve their problems
in this context. More recently, NVIDIA developed CUDA, a
general purpose parallel computing architecture that allows the
development of programs that run in the GPU using C as a
high-level programming language [8]. With this architecture
it is not necessary for the developer to know the graphical
pipeline, so it is possible to make programs in the GPU without
having to adapt the solution of a problem to this pipeline.
NVIDIA [9] has developed numerous practical techniques for
creating realistic effects in the GPU, including the stable fluids
method. Some researchers implemented fluid simulation in
the GPU, like [10] that implemented real-time simulations
of large scale three dimensional liquids. In [11] a method
was developed for rendering the surface of fluids in real-
time using SPH [12]. In [13] it is described a technique to
solve the incompressible Navier-Stokes fluid equations using
SMAC. All these methods were developed for fluid-simulation
in non-curved spaces with two or three dimensions. Hegeman
et al. [14] simulate flow for an arbitrary surface of genus zero
using GPU and conformal map.

In our work we made a GPU implementation in CUDA
of the scheme developed by Stam [4] for fluid-simulation
on smooth surfaces of arbitrary topology. The next sections
present: the basic concepts of a surface formed by parametric
patches, with some differential operators defined on this
surface, and the transition functions that make coordinate
changes between patches; the parametrization of subdivision
surfaces; a discretization of a surface and its operators; the
solution of Navier-Stokes equations in this scheme; and finally
the implementation in the GPU of the method.

II. BASIC CONCEPTS

Let S be a surface formed by parametric patches Xp :
Ωp → R3, where Ωp = [0, 1] × [0, 1], and Xp(x

1, x2) =
(y1
p(x1, x2), y2

p(x1, x2), y3
p(x1, x2)).

We want to calculate properties defined on S using values in
the domain space (x1, x2) ∈ Ωp , but to avoid distortions it is
necessary to include geometric information about the surface
in the calculations. We use the tangent vectors

Xxk =

(
∂y1

∂xk
,
∂y2

∂xk
,
∂y3

∂xk

)
, k = 1, 2,

mailto:leo1984@impa.br
mailto:mcosta@impa.br
mailto:lvelho@impa.br


where p is omitted to simplify notation, to define the local
metric matrix (gi,j):

gi,j = 〈Xxi , Xxj 〉 , i, j = 1, 2,

from which we get G = det(gi,j). The elements of the inverse
matrix (gi,j) = (gi,j)

−1 can be obtained by

g1,1 =
g2,2

G
, g2,2 =

g1,1

G
, g1,2 = g2,1 = −g1,2

G
.

With this metric, we can calculate differential operators of
functions defined on S. These operators were taken from [15].
The gradient of a scalar function ϕ on S is given by

∇ϕ =

(
g1,j ∂ϕ

∂xj
, g2,j ∂ϕ

∂xj

)
,

where we are using Einstein’s notation 1, with indices from 1
to 2. The divergence of a vector function u is

∇ · u =
1√
G

∂

∂xi

(√
Gui

)
.

The Laplacian is then

∇2ϕ = ∇ · ∇ϕ =
1√
G

∂

∂xi

(√
Ggi,j

∂ϕ

∂xj

)
.

To correctly calculate these operators, we must handle the
intersection of adjacent patches, using transition functions
from one domain to another. In [4], each edge of a domain
Ωp receives a label from 0 to 3, defined in a counterclockwise
order, then the transition function from patch pi to an adjacent
patch pj is given by φ〈ei,ej〉, where ei and ej are the labels
of the common edge of these patches, the operator 〈·, ·〉 is
defined by2 〈ei, ej〉 = (4 + ei − (ej + 2)%4)%4, and

φ0(x1, x2) = (x1, x2),

φ1(x1, x2) = (x2, 1− x1),

φ2(x1, x2) = (1− x1, 1− x2),

φ3(x1, x2) = (1− x2, x1).

Figure 1 shows an example of the transition function from
a patch pi (on the left) to patch pj (on the right). In this case,
ei = 1, ej = 0, so 〈ei, ej〉 = 3, and the transition function is
then φ3. So, for a function ϕ defined on the surface, a value
on the edge 1 of patch pi is equal to a value in edge 0 of
patch pj .

In general the relation is given by ϕpi(x
1, x2) =

ϕpj (φ〈ei,ej〉Tei(x
1, x2)), where

T0(x1, x2) = (x1, x2 + 1),

T1(x1, x2) = (x1 − 1, x2),

T2(x1, x2) = (x1, x2 − 1),

T3(x1, x2) = (x1 + 1, x2).

To transform vectors from one patch to another, we also
need the Jacobian matrix Mi of each transition function φi,

1The Einstein’s notation means aib
i,jcj =

∑
i,j aib

i,jcj .
2Where a%b means a modulus b.

13

0 1

0

32

2

Fig. 1. Example of transition function.

which we can easily see that is a rotation matrix of angle
i(π/2) counterclockwise, i.e.

Mi = Riπ/2, i ∈ [0, 3].

For a vector function v defined on the surface, the relation
between a vector in the edge between patches pi and pj is
vpi(x

1, x2) = M〈ei,ej〉vpj (φ〈ei,ej〉Tei(x
1, x2)).

III. SUBDIVISION SURFACES

In computer graphics it is usual to use a coarse polygon
mesh that approximates the shape of a desired surface. To
obtain the smooth surfaces, each polygonal face is subdivided
into smaller faces that better approximate the smooth surface
and in the limit of subdivision we get the smooth surface.

In this work we used the Catmull-Clark subdivision surface,
which is a generalization of bi-cubic uniform B-spline for
arbitrary meshes. This process generates limit surfaces that
are C2 continuous everywhere except at extraordinary vertices
where they are C1 continuous. In particular, at each point on
a surface the tangent plane can be defined.

Stam [6] developed a technique to evaluate the limit
surface of a Catmull-Clark subdivision surface, the result is
a parametrization, where each quadrilateral in the polygonal
base mesh generates a parametric patch Xp : Ωp → R3, where
Ωp = [0, 1]× [0, 1], so it fits the scheme described in the last
section, then it is a good candidate to be used in the method
that we will present. The author made his implementation
publicly available thanks to Alias–wavefront at http://www.
dgp.toronto.edu/∼stam/reality/Research/SubdivEval.

IV. DISCRETIZATION

We want to make calculations using differential operators
in a discrete set of points of S. At each point we must be able
to obtain the metric from the parametrization, and the partial
derivatives necessary to the operators. Usually we can not get
the continuous derivatives, so we approximate them using a
finite differences scheme.

A. Domain discretization

If each Ωp is quadrilateral, a simple and natural way of
discretizing the points is by using an N×N regular grid. To get
accurate and unbiased derivatives we use the so-called MAC
grid [1], [16], which is a staggered grid, where values from

http://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval
http://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval


scalar functions are calculated at the center of cells, the first
coordinates of a vector function are located at vertical edges,
and the second coordinates are located at horizontal edges, see
Figure 2. This kind of grid was also used by Stam [4], and
we mostly follow the model developed there.

Fig. 2. Discretization grid.

The metric values are stored in a denser (2N+1)×(2N+1)
grid, such that at every position of the grid (center, edges
and corners), there is the metric information. This has to be
calculated only once, in a precomputation step.

To handle boundary conditions, we add cells that are outside
of the patch domain (the gray cells in Figure 2). So the grid
resolution for each patch is in fact (N+2)× (N+2), the first
coordinates of vector fields are stored in a (N + 3)× (N + 2)
grid, the second coordinates in a (N + 2)× (N + 3) grid, and
the metric values in (2N + 3) × (2N + 3) grids. The values
at the extern cells are obtained from neighbour patches, or,
when there isn’t a neighbour patch at some side, they receive
values according to boundary conditions. For scalar fields, a
value at a boundary cell can be obtained using grid versions
of the transition functions:

[0, i, j] = (i, j),

[1, i, j] = (j,N + 1− i),
[2, i, j] = (N + 1− i,N + 1− j),
[3, i, j] = (N + 1− j, i).

Then for a scalar field ϕ we make

ϕ0,i = ϕ3
[t3,N,i]

, ϕN+1,i = ϕ1
[t1,1,i]

,

ϕi,0 = ϕ0
[t0,i,N ], ϕi,N+1 = ϕ2

[t2,i,1],

where ϕk is the scalar field of the adjacent patch at edge k,
i = 1, · · · , N , and tk = 〈k, ek〉, see Figure 3.

For vector fields, it is necessary to multiply the values from
a neighbour patch adjacent to edge k by the transition matrix
Mtk . Define T such that Tu(i+0.5,j) =

(
u1

(i+0.5,j), 0
)

and

Tu(i,j+0.5) =
(

0, u2
(i,j+0.5)

)
for integer values i and j. Then

we can get boundary values for vector fields using:

e
0

0

e
3 3 1

e1

e
2

2

Fig. 3. Boundary cells.

(
u1
i− 1

2 ,0
, u2
i,− 1

2

)
= Mt0

(
Tu0

[t0,i− 1
2 ,N ] + Tu0

[t0,i,N− 1
2 ]

)
,(

u1
N+ 3

2 ,j
, u2
N+1,j− 1

2

)
= Mt1

(
Tu1

[t1,
3
2 ,j]

+ Tu1
[t1,1,j− 1

2 ]

)
,(

u1
i− 1

2 ,N
, u2
i,N+ 3

2

)
= Mt2

(
Tu2

[t2,i− 1
2 ,1] + Tu2

[t2,i,
1
2 ]

)
,(

u1
− 1

2 ,j
, u2

0,j− 1
2

)
= Mt3

(
Tu3

[t3,N− 1
2 ,j]

+ Tu3
[t3,N,j− 1

2 ]

)
,

where uk is a vector field of the adjacent patch at edge k.
To compute the metric information

√
G at a boundary cell,

we just copy this value from an adjacent patch like any scalar
field, because it does not depend on the orientation of the
patches. When tk is even then it is easy to see that the metric
data g1,1, g1,2 and g2,2 do not change, so they can be simply
copied from the neighbour patch. But for an odd tk, we must
swap values g1,1 and g2,2, and change the sign of g1,2, due to
the changing in orientation of the derivatives Xx1 and Xx2 .

To set the value at corner cells we may calculate some
average of the neighbours cells, our results were satisfactory
using just the average of the two boundary cells adjacent to
each corner cell.

B. Discretization of operators

The differential operators must be discretized so we can
work in the domain described in last section. Let ϕ be a scalar
field defined in the center of each cell. The gradient of ϕ is
a vector field, so we store its coordinates in cell edges. The
first coordinates are calculated in vertical edges (i − 0.5, j),
the required derivatives at these positions can be discretized
as:(
∂ϕ

∂x1

)
i− 1

2 ,j

≈ ϕi,j − ϕi−1,j

h
,(

∂ϕ

∂x2

)
i− 1

2 ,j

≈ ϕi−1,j+1 − ϕi−1,j−1 + ϕi+1,j+1 − ϕi+1,j−1

4h
,

where h is the grid spacing.



Similarly, for values in horizontal edges we have(
∂ϕ

∂x1

)
i,j− 1

2

≈ ϕi+1,j − ϕi−1,j + ϕi+1,j−1 − ϕi−1,j−1

4h
,(

∂ϕ

∂x2

)
i,j− 1

2

≈ ϕi,j − ϕi,j−1

h
.

Then the gradient coordinates can be calculated:

(∇ϕ)
1
i− 1

2 ,j
=
(
g1,1

)
i− 1

2 ,j

(
∂ϕ

∂x1

)
i− 1

2 ,j

+
(
g1,2

)
i− 1

2 ,j

(
∂ϕ

∂x2

)
i− 1

2 ,j

(∇ϕ)
2
i,j− 1

2
=
(
g2,1

)
i− 1

2 ,j

(
∂ϕ

∂x1

)
i,j− 1

2

+
(
g2,2

)
i− 1

2 ,j

(
∂ϕ

∂x2

)
i,j− 1

2

To calculate the divergence of a vector field u we need the
derivatives:(

∂

∂x1

(√
Gu1

))
i,j

≈

(√
Gu1

)
i+ 1

2 ,j
−
(√

Gu1
)
i− 1

2 ,j

h
,

(
∂

∂x2

(√
Gu2

))
i,j

≈

(√
Gu2

)
i,j+ 1

2

−
(√

Gu2
)
i,j− 1

2

h
,

where
(√

Gu1
)
i,j

=
(√

G
)
i,j
u1
i,j . Then we can get

(∇ · u)i,j =
1(√
G
)
i,j

(
∂

∂x1

(√
Gu1

))
i,j

+
1(√
G
)
i,j

(
∂

∂x1

(√
Gu1

))
i,j

.

The Laplacian can be calculated doing ∇2ϕ = ∇ · ∇ϕ.

V. FLUID SIMULATION

An incompressible fluid is a velocity field u satisfying the
Navier-Stokes equations:
∂u

∂t
= − 1

ρ∇p− (u · ∇)u + 1
ρ∇ ·

(
η
(
∇u +∇uT

))
+ f ,

∇ · u = 0

where p is the pressure, ρ is the fluid density, η is the viscosity
coefficient and f is an external force. The first equation is
called the momentum equation, and the second one is the
incompressibility equation, which is the same to say that
the fluid’s volume is constant (consequence of Reynold’s
Transport Theorem.)

Here we will treat the fluids in a Eulerian viewpoint, where
we look at quantities in the fluid at fixed points in space.
Another option would be a Lagrangian viewpoint, where the
fluid is viewed as a particle system, where each point is a

separate particle with a position x and velocity u [1]. The
Eulerian viewpoint was chosen because it is more suitable to
the discretization scheme described in the last section.

The Navier-Stokes equations can be solved numerically by
splitting, where it is divided into four equations:

∂u

∂t
= −(u · ∇)u (advection),

∂u

∂t
=

1

ρ
∇ ·
(
η
(
∇u +∇uT

))
(viscosity),

∂u

∂t
= f (external forces),

∂u

∂t
= −1

ρ
∇p,

such that ∇ · u = 0 (incompressibility).

Temam [17] was the first to prove that this splitting scheme
works. Let un be the solution of the Navier-Stokes equations
at time n∆t. We start with a divergence-free velocity field u0,
which is the initial condition for the equation. We calculate
un+1 using the values from un. Each equation can be solved
using a suitable algorithm, the result from one equation
is given as input to another equation. This sequence of
solutions must be done in a sequence, such that the output
of one equation must satisfy the necessary conditions to
the input of the next equation. For example to guarantee
volume conservation the advection step must be done with a
divergence-free velocity field, so this step must be calculated
just after the calculation of incompressibility [1]. This was not
followed in [4], where the advection was calculated before the
incompressibility conditions, so the results there may be less
accurate.

Given a divergence-free un, we can start calculating the
result uA of advection. Observe that, from the advection
equation, we get

∂uA

∂t
= −(un · ∇)uA = −(ūn · ∇R2)uA,

where ūn = (u1
ng

11 + u2
ng

12, u1
ng

12 + u2
ng

22), and ∇R2 is
the gradient in R2. This is equivalent to an advection in R2

with velocity field ūn, which can be solved using a semi-
Lagrangian technique, where we calculate the trajectory of
each point using ūn to find its position at the time t − ∆t.
This position can fall at any point of the domain, or even at a
point in the domain of another patch. To get the velocity inside
a domain Ω at an arbitrary position (i, j) we interpolate the
values around this position for each component. For points
outside the domain Ω, we look for a domain that contains this
point, searching this point in the domain of one neighbour
patch, always applying the transition function to get the
coordinates of the point in the current patch. This process is
repeated until we find a patch domain that contains the point.
The velocity at position (i, j) is multiplied by the transition
matrix from the original domain to the domain of the patch
that contains this point, this matrix can be calculated by the
sum s of every tk from each visited patch domain, this sum
results in the total number of rotations necessary to go from



the original domain to the final domain, then the matrix is
Ms%4.

We can then use uA as input for the next step, the addition
of external forces. The equation ∂u

∂t = f can be discretized
using a simple forward Euler: uF = uA + ∆tf . So, we just
sum the values of the external forces to the current velocity.

When the fluid is viscous (η > 0) we need to solve
the viscosity equation ∂u

∂t = 1
ρ∇ ·

(
η
(
∇u +∇uT

))
. In the

planar (or volumetric) case, when η is constant this equation
simplifies to ∂u

∂t = η
ρ∇ · ∇u, because we have ∇ · ∇uT =

∇(∇ · u) = ∇(0) = 0. But in surfaces generally we have
∇ ·∇uT 6= ∇(∇ ·u), so we can not make this simplification.
In [4], this was not noticed, so the author used the simplified
equation, which can be viewed as an approximation of the
fluid viscosity.

The viscosity equation is discretized as(
I − η

ρ
∆tA

)
uV = uF ,

where I is the identity, and A is a discretization of the operator
∇ ·

(
∇u +∇uT

)
, calculated using the discretization of the

gradient and divergent operators. This is a linear system that
can be solved using some simple iterative method. We only
used constant values for η, but this scheme can also be applied
for variable viscosity fluids.

According to Helmholtz-Hodge Decomposition Theorem
we can decompose the velocity field into a curl-free com-
ponent and a divergence-free component. To solve the in-
compressibility conditions, we calculate the divergence-free
component of the velocity discretizing the equation ∂u

∂t =
− 1
ρ∇p, as

uP = uV − ∆t

ρ
∇p.

This is a projection of the current velocity into a divergence-
free space. The pressure p can be obtained by solving the
Poisson equation ∆t

ρ ∇
2p = ∇ · uF , which is a linear system

that can be solved with some iterative method, improved with
a multigrid technique. Defining ϕ = ∆t

ρ p, this becomes simply
∇2ϕ = ∇ · uF , and the solution of projection is uP = uF −
∇ϕ. Since this is the last step, we have un+1 = uP .

We can add a scalar field representing the concentration of
particles moving through the velocity field, satisfying:

∂s

∂t
= −(u · ∇)s+ κ∇2s+ S

where s is the concentration, κ is a diffusion rate and S is
source of concentration. This field can be used to visualize
the fluid. To find this field we split its equation into three
parts:

∂s

∂t
= −(u · ∇)s (advection),

∂s

∂t
= κ∇2s (diffusion),

∂s

∂t
= S (sources).

We can start with the sources equation, which is similar to
the external forces addition for velocity field. The equation is
discretized by s1 = s0 + S∆t.

The next step is diffusion, which can be discretized by (I−
∆tκ∇2)s2 = s1, forming a linear system of equations with a
sparse matrix, whose solution can be found (or approximated)
using an iterative method.

The last step is the advection, observe that

∂s

∂t
= −(u · ∇)s = −(ū · ∇R2)s,

where ū = (u1g11 + u2g12, u1g12 + u2g22). So we advect s
using the velocity field given by ū.

VI. IMPLEMENTATION IN THE GPU

We see that the problem described here can be easily
parallelized, so it is suitable to be solved using many core
processors, which can considerably improve the performance
of the method. One possibility is to use the processors of a
graphics processing unit (GPU). We implemented the method
in the GPU using CUDA.

A. Data structures

To implement the method in CUDA, firstly the problem
data must be transfered to the GPU memory. In CPU the
grid data are stored in arrays of size w × h × n patches,
where n patches is the number of patches of the sur-
face, such that the value g(i,j,p) at position (i, j)
and patch p ∈ [0, · · · , n patches − 1] is accessed via
g[i + j*w + p*w*h]. For scalar fields w = h = N + 2,
and the value ϕpi,j is stored at phi(i,j,p) For vector fields,
the first coordinate uses w = N+3, h = N+2 and the second
coordinate uses w = N+2, h = N+3. So u1(i,j,p) stores
the value (u1)pi−0.5,j of the first coordinate of a vector field
u, and u2(i,j,p) stores the value (u2)pi,j−0.5 of the second
coordinate of u. For the metric we use w = h = 2N + 3 to
store the values

√
g, g11, g12 and g22. The value (

√
g)pi,j is

accessed via g(2*i, 2*j, p), and similarly for the other
values.

The arrays could be just copied to the GPU global memory
using arrays in the same format and be used the same way
as in the CPU, but this way would not take advantage of the
GPU capabilities. A better option is to put data in the texture
or surface memory, which are cached in the texture cache,
optimized for 2D spatial locality. In our case we can use a
layered texture/surface reference putting the data of each patch
in a layer. The data of the patches are stored in CUDA arrays
created with cudaMalloc3DArray() and copied from and
to CPU using cudaMemcpy3D().

The value g(i,j,p) of a grid in texture memory is
accessed via

tex2DLayered(tex_ref, i+0.5, j+0.5, p)

where tex_ref is a texture reference bound to some CUDA
array. The sum with 0.5 is necessary to align the grid
positions with texture coordinates. We use non-normalized



texture coordinates, with linear filtering. So if the value i is
any floating-point number between 0 and w−1, and j between
0 and h − 1, then the result is a bilinear interpolation of the
four neighbour grid points around this position.

For a grid in surface memory, g(i,j,p) is accessed via

surf2DLayeredread(&a, surf_ref, i*4, j, p)

where we have to multiply the x-coordinate by the byte size
of the element because surface memory uses byte addressing.
We can also write in the grid using

surf2DLayeredwrite(a, surf_ref, i*4, j, p).

B. Precomputing

The surface evaluation needs to be calculated only once, we
compute for each point of the discretization its position on the
surface, the derivatives for each direction x1 and x2, and from
that we calculate the metric information.

The surface is evaluated with an implementation in CUDA
of the method described in [6]. Each point on the surface is
given by Xp(x

1, x2) =
∑K
i=1 ϕi(x

1, x2)ppi , where K is the
number of control points used by patch p, ppi is the projection
of the i-th control point into the eigen-space of the Catmull-
Clark subdivision matrix, ϕ depends on the eigen-data of this
matrix and on cubic B-spline basis functions. To minimize the
number of calculations, we firstly evaluate the basis functions,
since they depend only on the local coordinates of each point
in the discretization, so they can be used for every patch. Then
we evaluate the surface using a CUDA implementation of the
function EvalSurf described in [6], also calculating the first
derivatives at each direction. With position and derivatives it is
straightforward to get the metric. The positions and derivatives
data are kept in OpenGL vertex buffer objects to be used in
the drawing of the surface.

C. Solving equations

In CUDA we create special functions called kernels, that
are executed in parallel, each one in one CUDA thread. The
threads are distributed hierarchically in blocks and grids, such
that threads form a one, two or three-dimensional block, and
blocks form a one, two or three-dimensional grid. Each thread
block is managed by one GPU core, that executes a group of
32 threads called warp. If all the threads in a warp execute
the same instructions then they are all executed in parallel,
otherwise each execution path is executed serially. So to
prevent loosing performance it is important to distribute the
threads such that in the same block most of the kernels have
the same execution path.

Another important issue refers to the memory management.
Using appropriate structures we can improve the performance
of the reading/writing operations. In our case, using the texture
and surface memories we get the best performance in the
execution of threads in the same warp that read texture
addresses that are close together in 2D.

To solve the Navier-Stokes equations, we distribute the
threads such that each block processes points in the same
patch of the surface. This way we prevent that threads in

the same warp execute data that are not close in 2D. Each
block is two-dimensional, containing a total number of threads
that is a multiple of 32, such that none of the warps contains
less than the maximum warp size. The blocks are organized
in three-dimensional grids (this requires a GPU with CUDA
capabilities 2.0 or above), where the first two dimensions
correspond to the block distribution in a patch, and the third
dimension indicates the patch index. When we are processing
scalar fields, each kernel will process the point (i, j) of patch
p, where i, j ∈ [1, · · · , N ], p ∈ [0, · · · , n patches − 1]. To
identify (i, j) and p at each kernel, we calculate:

int i = blockIdx.x*blockDim.x +
threadIdx.x + 1;

int j = blockIdx.y*blockDim.y +
threadIdx.y + 1;

int p = blockIdx.z;

If N is not a multiple of the block dimensions, then in
some blocks we will have i > N or j > N , we can ignore
these cases, but this reduces the performance of the program,
because there will be some threads in the same warp with
different execution paths. Then it is better to avoid these cases,
choosing properly the block dimensions.

For the velocity field each kernel of coordinates (i, j, p)
processes the values (u1)pi−0.5,j and (u2)pj,i−0.5, where i ∈
[1, · · · , N + 1] and j ∈ [1, · · · , N ].

To update the boundaries, we use a kernel that gets for each
boundary of each patch the corresponding neighbour patch
index and the transition number tk, and uses the transition
function to calculate the position of the cell at the neighbour
patch. The informations about the neighbour patches and the
values tk are stored each in an array of size 4 ∗ n patches,
created when the surface was constructed. Then the neighbour
patch index of patch p at edge e ∈ {0, 1, 2, 3} is accessed
by doing neigh_indices[p*4 + e]. Another kernel is
responsible for the corners cells, been called only four times
per patch, calculating the average of the cells next to each cell.

To calculate the advection step for the concentration and
velocity fields, we calculate the field ū of the velocity modified
by the metric as we saw before, and put it in the current
velocity field in the texture memory, we also store a copy of the
current velocity and the current concentration s in the texture
memory. For each position of the velocity or concentration we
calculate the trajectory of a particle traveling according to the
velocity ū. In the calculation of this trajectory, the point can
fall in an arbitrary position, where we the value of the velocity
or concentration is calculated efficiently by the GPU using its
texture fetching units. Generally most of the points fall in a
nearby location, so the texture access is optimized using the
texture cache. When a point falls in a different patch we may
loose a bit of the performance, since threads in the same warp
may have different execution paths.

The addition of external forces is a simple operation, where
we get the forces defined by some function, and just sum
them to the current velocity multiplied by the time variation.
Similarly we add concentrations from sources, but in this case



we limit the values to avoid concentrations bigger then 100%.
For the viscosity step, we use an iterative method to solve

the linear system. In the GPU, the velocity values are updated
in parallel, then to avoid conflicts with reading/writing opera-
tions, in each thread we calculate the new velocity value using
the current velocity field, and we call __syncthreads()
to make sure that all other threads had already calculated their
corresponding new values so we can safely update the field.

For the projection step we find ϕ (a scalar field) that
satisfies ∇2ϕ = ∇ · u, using a multigrid v-cycle scheme with
Jacobi iterations [18]. We run some iterations to calculate an
approximation ϕA of ϕ in the highest level, improve this result
summing it with the error e that satisfies ∇2e = ∇·u−∇2ϕA.
The error e is calculated in a lower level, where the grid size is
smaller then the grid size of the highest level. Again we run
some iterations to find an approximation of e and improve
it with the error of this approximation, calculated in a even
smaller level. This process of improving the error calculation
is repeated until we reach the lowest level, when N = 1,
and then the result of one level is summed to the next level
and improved with more iterations until we come back to the
highest level, where we finally get ϕ. The most computing
intensive step is the calculation of the Jacobi iterations, that
must be done for each point of the grid of all the patches. But
it can be easily parallelized since the operation for each point
is exactly the same. So we created a kernel to calculate the
Jacobi iteration to improve the approximation for the current
level. After each iteration we must update the neighbour cells
to keep the result consistent. After finding ϕ we run a kernel
that updates the velocity subtracting ∇ϕ from the current u.

For the diffusion of concentration, generally it is sufficient
to do some Jacobi iterations, but if a more precise result is
desired it is possible to use a multigrid scheme similar to the
one used in the projection step.

VII. RESULTS

In our tests we used an NVIDIA GeForce GTX 470, which
has 448 CUDA cores. We implemented some forces, like the
gravity force, also used in [4], which is proportional to the
concentration s and the projection of the downward direction
into the tangent plane at each surface point, and a force similar
to something “walking” on the surface, following a curve and
pushing the fluid with a force tangent to this curve.

For visualization of the fluid, we mapped the concentration
values to colors, assigning one color for the 0% concentration,
another one for the 100% concentration, and interpolating
these colors for intermediate concentration values.

In Figure 4 we can see the result at two different steps with
a toroidal surface, where we put sources of concentration at
the center of each patch. In the left we see one of the first
steps of the simulation, and in the right we see the result after
several steps, also changing the position of the surface (in the
gravity force calculation, the downward direction is relative to
the viewer, so it changes in relation to the surface as we move
it).

Fig. 4. Toroidal surface.

For Figure 5 we used a quadrangulation of the Stanford
bunny, the initial concentration is shown in the left, and in
the right picture we can see the result after some steps of the
algorithm, using the gravity force.

Fig. 5. Two steps of the simulation using the bunny.

In Figure 6 we see for two surfaces the result after some
steps using forces “walking” in circular paths at each patch.

In Table I we can compare the time taken for one full step
(including all substeps) in the gpu and in the cpu (with a
2.80GHz processor) for each surface we tested. We executed
the simulation with the same parameters for all surfaces, only
changing the resolution of the grids. We can see how the gpu
implementation is much faster than the cpu implementation.
A limitation of the structures we used is that there is a limit
size for texture dimensions, so we were not able to run the
program with N = 64 with the denser meshes (like bunny).
However for dense meshes it is usually sufficient to use a small
grid size. In most of the cases it is not even necessary to use
more than a few hundreds of patches. The fertility surface we
used was created using a 3D modeling tool, it only uses 166
patches, but it is a good approximation of the well known
triangular mesh.

In Table II we see how long each sub-step takes in the
simulation. It is based on the simulation using the fertility
model (166 patches), with the circular forces, and N = 32.
We show all steps in the order we run them, including the
update of the texture, which is used only for visualization.
We can see that the most expensive steps are the diffusion,
viscosity and projection, taking more than 80% of the total
simulation. In most of the cases, we work with inviscid fluids
(without viscosity), so this step is not a big problem. We can
reduce the number of iterations used in the projection and



Fig. 6. Forces following circular paths on the dog and fertility models.

surface (n patches) N = 8 N = 16 N = 32 N = 64
toroidal (128) 14/ 24/ 54/ 152/

106 378 1511 6209
fertility (166) 16/ 28/ 70/ 193/

144 517 2078 8574
dog (238) 20/ 40/ 94/ 278/

228 828 3413 16169
bunny (1292) 93/ 181/ 469/ —

3247 15227 63440

TABLE I
TIME TAKEN IN MILISECONDS FOR ONE FULL STEP FOR EACH SURFACE

TESTED IN GPU/CPU.

diffusion steps, so that it takes a smaller time to be computed,
but this also reduces the precision of the method. Changing this
parameter we can balance quality and performance as desired.

VIII. CONCLUSION AND FUTURE WORKS

In this work we implemented fluid simulation on surfaces
using the GPU. We used suitable structures to take advantage
of the GPU resources, increasing the performance of the
simulation. For future works we may study different solvers
to improve even more the method, specially for the projection
method, which is the most computationally expensive step. We
can also study how this scheme can be applied to solve other

Step Average time Percent
Add forces 0.28ms 0.39%
Viscosity 19ms 26.58%
Projection 32.48ms 45.45%
Add sources (s) 0.08ms 0.11%
Advection (s) 2.01ms 2.81%
Diffusion (s) 10.8ms 15.11%
Update texture 1.81ms 2.53%
Advection 5.01ms 7.01%
Total 71.47ms 100.00%

TABLE II
TIME TAKEN FOR EACH SUB-STEP.

types of equations, like reaction-diffusion systems for natural
patterns generation, or any other problems that are usually
solved in two dimensions, which we can extend to work on
surfaces.

REFERENCES

[1] R. Bridson, Fluid Simulation for Computer Graphics. A K Peters/CRC
Press, Sep. 2008.

[2] J. Stam, “Stable fluids,” in Proceedings of SIGGRAPH 99, ser. Computer
Graphics Proceedings, Annual Conference Series, Aug. 1999, pp. 121–
128.

[3] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,”
in Proceedings of ACM SIGGRAPH 2001, ser. Computer Graphics
Proceedings, Annual Conference Series, Aug. 2001, pp. 15–22.

[4] J. Stam, “Flows on surfaces of arbitrary topology,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 724–731, 2003.

[5] E. Catmull and J. Clark, “Recursively generated b-spline surfaces on
arbitrary topological meshes,” Computer-aided Design, vol. 10, pp. 350–
355, 1978.

[6] J. Stam, “Exact evaluation of catmull-clark subdivision surfaces at
arbitrary parameter values,” in Proceedings of SIGGRAPH, 1998, pp.
395–404.

[7] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a system
for programming graphics hardware in a c-like language,” ACM Trans.
Graph., vol. 22, no. 3, pp. 896–907, Jul. 2003.

[8] NVIDIA, NVIDIA CUDA Programming Guide 4.1, 2011.
[9] F. Randima, GPU Gems: Programming Techniques, Tips and Tricks for

Real-Time Graphics. Addison-Wesley Professional (April 1, 2004),
2004.

[10] N. Chentanez and M. Müller, “Real-time eulerian water simulation using
a restricted tall cell grid,” ACM Trans. Graph., vol. 30, no. 4, pp. 82:1–
82:10, Aug. 2011.

[11] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid
rendering with curvature flow,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games, ser. I3D ’09. New York, NY,
USA: ACM, 2009, pp. 91–98.

[12] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual Review of
Astronomy and Astrophysics, vol. 30, pp. 543–574, 1992.

[13] C. E. Scheidegger, J. Comba, and R. D. da Cunha, “Practical cfd
simulations on programmable graphics hardware using smac,” Computer
Graphics Forum, vol. 24, no. 4, pp. 715–728, 2005.

[14] K. Hegeman, M. Ashikhmin, H. Wang, H. Qin, and X. Gu”, “Gpu-based
conformal flow on surfaces,” Comunications in information and systems,
vol. 9, pp. 197–212, 2009.

[15] R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics.
Dover Publications, 1989.

[16] F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Surface,”
Physics of Fluids, vol. 8, no. 12, pp. 2182–2189, 1965.

[17] R. Temam, “Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires II,” Arch. Rat. Mech. Anal.,
vol. 33, pp. 377–385, 1969.

[18] D. Kincaid and E. Cheney, Numerical Analysis: Mathematics of Scien-
tific Computing, ser. Pure and applied undergraduate texts. American
Mathematical Society, 2002.


	Introduction
	Basic concepts
	Subdivision Surfaces
	Discretization
	Domain discretization
	Discretization of operators

	Fluid simulation
	Implementation in the GPU
	Data structures
	Precomputing
	Solving equations

	Results
	Conclusion and future works
	References

