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Abstract—In this paper, histogram uniformization of digital
images by means of the finite field cosine transform (FFCT)
is examined. The approach consists in dividing the image into
blocks and applying the FFCT, in a recursive manner, to each
block. Simulations of the procedure show that the histogram
of the transformed image exhibits a uniform shape and its
pixels have low correlation with their neighbors. This result is
achieved due to the modular arithmetic used in the application
of the FFCT to the image blocks. The suitability of the proposed
technique in the context of image encryption is discussed.

Keywords-image encryption; histogram uniformization; finite
field cosine transform.

I. INTRODUCTION

Nowadays, the distribution of multimedia content on
the Internet and other communication networks became a
practice usually performed by users with different profiles.
In this scenario, techniques devoted to protect this kind
of information play an important role, providing confiden-
tial transmission and assuring the integrity of the received
data. These are some of the reasons why the interest in
studying watermarking, steganography and encryption for
digital image, video and audio, has increased over the
years [1], [2], [3].

Steganographic techniques have the main purpose of
hiding a relevant information (a text or an image, for
example) behind an apparently unimportant image. In a
practical steganographic technique, an unauthorized person
should not be able to realize the presence of any hidden
information [4]. A digital watermark is a kind of fingerprint
introduced without changing visual and statistical aspects
of an image. Watermarking has application in scenarios
where an information can be maliciously modified by an
eavesdropper. The authorized recipient should be able to
verify the presence of the referred fingerprint, ratifying the
origin of the image (the copyright holder, for example)
and/or determining the type of modification it may have
suffered [5].

The present paper lies in the context of image encryption,
where an image – the plaintext – is directly modified and
transformed in another image – the ciphertext – with aspect
completely different from the former, under some cryp-
tographic assumptions [6]. A complete image encryption

scheme requires the use of a key and the investigation of
several security criteria. In this paper, we focus on a specific
feature required by image encryption schemes: the resistance
against statistical attacks. This is done by the introduction
of a technique to uniformize histograms of digital images.
The proposed approach causes a visual effect similar to pixel
scrambling [7]; it should be included as a preliminary step
of an image encryption system, with the main purpose of
hiding the histogram of the original image and, therefore,
avoiding the effectiveness of the mentioned attacks.

The uniformization technique proposed in this work is
based on the finite field cosine transform (FFCT), the
application of which requires operations involving modular
arithmetic only [8], [9]. This means that rounding is not
necessary and efficient computations can be carried out; once
the values of the pixels of the transformed images are integer
numbers, their coding and, consequently, their transmission
or storage are easier.

After this introduction, in Section II, theoretical aspects
of the FFCT are reviewed. In Section III, the proposed
histogram uniformization technique is presented and metrics
used to evaluate its performance are considered. In Sec-
tion IV, we present simulations for the proposed technique
and analyze its results; several points of the procedure are
discussed and comparisons with other techniques are made.
Also in this section, we give suggestions to extend the
approach to a complete image encryption scheme. The paper
closes with some concluding remarks on Section V.

II. FINITE FIELD COSINE TRANSFORMS

In this section, the main theoretical aspects related to
finite field cosine transforms are reviewed. We start by
presenting some definitions concerning trigonometry in fi-
nite fields [10]. The most important results related to the
eigenstructure of such transforms are also presented [11].

The FFCT was originally introduced in [8]. Actually, there
are 8 types of finite field cosine transforms and also 8 types
of finite field sine transforms. They constitute the family
of finite field trigonometric transforms (FFTT), which is
completely described in [9]. Such transforms employ the
following definition related to trigonometry in finite fields.



Definition 1: Let ζ be a nonzero element in the finite
field GF(p), p an odd prime. The finite field cosine function
related to ζ is computed modulo p by

cosζ(x) :=
ζx + ζ−x

2
, (1)

x = 0, 1, . . . , ord(ζ), where ord(ζ) denotes the multiplica-
tive order of ζ.

The definition of the finite field cosine function could
contain additional details, such as the possibility of having
the number ζ in the field GI(p), the integer Gaussians set
modulo p, and the condition p ≡ 3(mod 4) [8], [11]. It
is remarkable to observe that the finite field cosine hold
properties similar to those of the standard real-valued cosine
function, such as unit circle and addition of arcs, for
instance.

The finite field cosine transform adopted in this work is
the FFCT of type 2. The FFCT of a vector with elements in a
finite field is computed according to the following definition.

Definition 2: Let ζ ∈ GF(p) be an element with multi-
plicative order 2N . The finite field cosine transform of the
vector x = [x0, x1, . . . , xN−1], xi ∈ GF(p), is the vector
X = [X0, X1, . . . , XN−1], Xk ∈ GF(p), of elements

Xk :=

√
2

N

N−1∑
i=0

βkxi cosζ

[
k

(
i+

1

2

)]
, (2)

where

βr =

{
1/
√

2, r = 0,
1, r = 1, 2, . . . , N − 1.

It can be shown that the FFCT given in Definition 2 is
invertible by the formula [8], [9]

xi :=

√
2

N

N−1∑
k=0

βiXk cosζ

[(
k +

1

2

)
i

]
. (3)

The computation of the FFCT of a vector x can be
represented by the matrix equation

X = Cx,

where C corresponds to the transform matrix, the elements
of which are obtained directly from Equation (2). By
comparing Equations (2) and (3), we verify that CCt =
CtC = I, where Ct and I denote, respectively, the matrix
C transpose and the identity matrix. This means that the
inverse FFCT is obtained by using the transform matrix
Ct [11]. Using such a matrix notation, the FFCT can be
extended to two dimensions; the transform of a matrix m
with dimensions N×N , that is, the two-dimensional version
of the FFCT can be computed by

M = CmC.

The period of the FFCT matrix [11] is of great importance
for the application described in this paper, since it requires
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Figure 1: Schematic diagram for image histogram uni-
formization.

the recursive computation of the FFCT, as described in
the next section. Such a parameter corresponds to the least
integer and positive power l giving Cl = I. The period is
the multiplicative order of the matrix C while an element of
the group GL(N,GF(p)). Differently from other transforms
such as, for example, the discrete Fourier transform, whose
transform matrix always has period equals to 4, the FFCT
matrix defined in Equation (2) apparently does not present
any regularity in its period [11].

In order to investigate this question, we write the matrix C
as C = UΛUt, where U is a unitary matrix, the columns
of which are the eigenvectors of C, and Λ is a diagonal
matrix, the elements of which are the eigenvalues of C.
Since UUt = I, then Cl = UΛlUt, where Λl is obtained
by computing the l-th power of each element in the main
diagonal of Λ. Therefore, l is the period of C, if l is the
least common multiple of the multiplicative orders of the
eigenvalues of C. It is conjectured that the eigenvalues of
the matrix C are all distinct; they also can lie in extension
fields [11]. This means that it is possible to obtain FFCT of
type 2 matrices with larger periods1, compared to the periods
of other transforms. FFCT of types 1 and 4, for example,
have period l = 2, i.e., such transforms are involutions [9].

III. HISTOGRAM UNIFORMIZATION BASED ON THE
FFCT

In this section, the procedure for uniformizing the his-
togram of a digital image by using the finite field cosine
transform is described. The basic idea is to divide the
original image into blocks of fixed size and take such blocks
sequentially, from left to right and from top to bottom,
and applying the two-dimensional FFCT a certain number
of times. The number of times in which the transform is
recursively applied depends on the parameters of the FFCT
being used. This procedure is illustrated in Figure 1. The
original image is recovered by applying the inverse FFCT
to the transformed image.

The description of the effects of the FFCT application
on the histogram of an image can be made by considering
some aspects of modular arithmetic. If each pixel of a gray
scale (8 bits) image is multiplied modulo p by a constant K,
the result is a displacement of the frequency of occurrence
of this image symbols (integer numbers from 0 to 255).

1The existence of repeated eigenvalues would reduce the FFCT matrix
period.



If K = 2 and p = 257, for example, after the modular
multiplication, the frequency of occurrence of the symbol
200 will be associated to the symbol 143.

When the product between each symbol and a constant
K is substituted by a linear combination which involves
a block of symbols (transform application), the process
becomes more complex. However, the aspect observed in the
situation presented as an example is also verified. Although
the difference among the frequency of occurrence of the
symbols is large, the tendency is that the application of the
FFCT produces transformed blocks composed by uniformly
distributed symbols [12].

The use of finite field tools provide advantages with
respect to computational complexity and accuracy, since
rounding or truncation are not necessary [13]. In this context,
the finite field GF(p), where p is a Fermat prime, i.e., a
prime of the form p = 2m + 1, is a structure where the al-
gorithm for the computation of transforms are simplest [14].

In this paper, gray scale images are considered and,
therefore, their processing requires a transform such that
p ≥ 257. However, the greater the prime number used to
define the transform is, more bits are needed to represent
the image after applying the transform. In order to avoid this
fact, the proposed technique uses the Fermat prime p = 257
to define an FFCT with N = 8; the number ζ = 128, with
ord(ζ) = 16, is chosen and the transform matrix is, from
Equation (2),

C =



15 15 15 15 15 15 15 15
137 163 98 106 151 159 94 120
160 6 251 97 97 251 6 160
163 151 120 159 98 137 106 94
242 15 15 242 242 15 15 242
98 120 106 163 94 151 137 159
6 97 160 251 251 160 97 6

106 159 163 120 137 94 98 151


.

(4)
Powers of the above transform matrix were calculated using
a computer program and the period l = 16, 974, 594 was
encountered for such a matrix.

In Figure 2, the image lena.bmp, with dimensions 512×
512 pixels, and its original histogram are presented; addi-
tionally, the image after the uniformization process illus-
trated in Figure 1, with each block transformed only once by
the matrix in Equation (4), and its respective histogram are
presented. In this figure, we verify that, after the application
of the transform, the visual information of the image is
completely damaged and a noisy aspect is observed. With
respect to the new histogram, we observe that its distribution
appears to be uniform, which suggests that a statistical
analysis would not be effective for the evaluation of the
original image content. It is important to emphasize that this
illustrative result was obtained by applying the FFCT only
once to each image block, which indicates that, differently
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Figure 2: Example of FFCT-based histogram uniformization.
(a) Original image lena.bmp; (b) lena.bmp histogram; (c)
Image with uniformized histogram; (d) Uniformized his-
togram.
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Figure 3: Recursive computation of the finite field cosine
transform of an 8× 8 image block.

from other techniques, our approach does not requires a large
number of iterations [7].

A. Recursive application of the FFCT

As we have mentioned, the uniformization of the his-
togram of a gray scale image is done by using an FFCT with
p = 257, such as that whose transform matrix is given by
Equation (4). Although the application of this FFCT to each
image block only once produces, from the point of view of
histogram uniformization, results such as those presented in
Figure 2, it brings implications related to image coding. In
particular, the transformed image may contain pixels with
values equals to 256, which are not adequate to an 8-bit
coding.

In order to avoid this limitation, we apply the FFCT
recursively to each image block until the resulting block has
no pixels with value equals to 256. Such a criterion for the
recursive application of the FFCT is illustrated in Figure 3.
This process is invertible by computing the inverse transform
also repeatedly until encountering the original image block,
which does not contain any pixel with value equals 256.

Since there is no superposition among image blocks, the
recursive application of the FFCT to each block can be done
in parallel. Independently of this fact, such an operation
represents an additional computational load to the proposed
histogram uniformization technique. In order to evaluate the
effect of this procedure, in Section IV, we count the number
of blocks of a test image which need a determined number
of FFCT applications until the resulting block has no pixels
with value equals to 256. Observe that, if the number of
recursive transform applications required by an image block
(according to the criterion illustrated in Figure 3) is larger
than the period of the transform matrix, the procedure fails.
This ratifies the importance of using a transform with period
as large as possible in the uniformization process.

B. Metrics to evaluate the proposed technique

In order to evaluate the performance of the proposed
uniformization technique, we consider the metrics described
as follows. The first metric is the gray difference degree [7],
which requires, initially, the computation of the gray differ-
ence of a pixel with a neighbor pixel (GN ). This parameter
is given by

GN =

∑
[G(x, y)−G(x′, y′)]2

4
, (5)

where

(x′, y′) =


(x− 1, y)
(x+ 1, y)
(x, y − 1)
(x, y + 1)

(6)

and G(x, y) denotes the value of the pixel in position (x, y).
The average neighborhood gray difference of the whole
image (dimensions M ×N pixels) is

AN(GN(x, y)) =

∑M−1
x=2

∑N−1
y=2 GN(x, y)

(M − 2)× (N − 2)
. (7)

The gray difference degree is then defined by

GVD =
AN ′(GN(x, y))−AN(GN(x, y))

AN ′(GN(x, y)) +AN(GN(x, y))
, (8)

where AN and AN ′ denote, respectively, the average neigh-
borhood gray difference of the image before and after the
histogram uniformization. The closer to 1 the value of GVD,
the better the effect of the uniformization procedure.

Another metric we consider is the correlation between two
adjacent pixels of an image (the adjacency can be horizontal,
vertical or diagonal) [7]. By selecting randomly P pixels of
the image, the correlation coefficient is computed by

rxy =
cov(x, y)√
D(x)D(y)

, (9)

where cov(x, y) = 1
P

∑P
i=1(xi−E(x))(yi−E(y)), D(x) =

1
P

∑P
i=1(xi − E(x))2 and E(x) = 1

P

∑P
i=1 xi; xi is the

value of the i-th selected pixel and yi is the value of the
correspondent adjacent pixel. It is expected that an image,
before being submitted to the histogram uniformization,
has correlation coefficient close to 1; it is desirable that
the correlation coefficient of the image with uniformized
histogram be as close to 0 as possible.

Finally, we can compute the entropy of an image after
the histogram uniformization [15]. The entropy H(m) of a
message source m can be measured by

H(m) =

M−1∑
i=0

p(mi)log2

1

p(mi)
, (10)

where M is the total number of symbols mi ∈ m and p(mi)
represents the probability of occurrence of symbol mi. For
a random source emitting 256 symbols, one has H(m) = 8
bits.

IV. SIMULATIONS AND DISCUSSION

In this section, we describe the simulations carried out to
evaluate the proposed method and discuss their results. We
also suggest some strategies to extend the method and use
it as the first step of an image encryption scheme.



Table I: Percentages of blocks of test images submitted
to recursive applications of the FFCT, in the histogram
uniformization procedure.

# App. peppers mandril lake jetplane lena camera
1 78.1494 78.2715 78.3447 77.7344 77.0264 78.1738
2 17.5293 17.3096 16.7236 17.2607 17.4561 17.3340
3 3.4180 3.3447 3.9307 3.9795 3.9795 3.6133
4 0.6348 0.7812 0.8301 0.8057 1.2939 0.8057
5 0.1953 0.2197 0.1221 0.1465 0.2197 0.0488
6 0.0488 0.0488 0.0488 0.0732 0.0244 0.0244
7 0.0000 0.0244 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0244 0.0000 0.0000 0.0000 0.0000 0.0000

A. Computer Simulations

The experiments run in Matlabr, where programs to im-
plement the histogram uniformization technique, presented
in Section III, and to compute the metrics, presented in
Section III-B, were developed. In our tests, we consider the
images presented in the first row of Figure 4. All images
have dimensions 512 × 512 pixels and are in gray scale.
The transform matrix employed is given by Equation (4).
In case the image size has not an exact division by blocks
zeroes can be appended.

The proposed histogram uniformization procedure was ap-
plied to each test image, which has 4096 image blocks with
dimensions 8×8 pixels. The results are shown in the second
row of Figure 4. For all images, the visual effects are similar
to those observed in Figure 2; a noisy aspect is observed in
the transformed image tests. In Figure 5, we present the
histograms of the original and the transformed test images.
We observe that the modified distributions appear to be
uniform, which suggests that a statistical analysis would not
be effective for the evaluation of the original image content.

In our simulations, we also compute the percentage of
image blocks submitted to a given number of recursive ap-
plications of the FFCT. Such results are shown in Table I. In
all images, almost 80% of the blocks had to be transformed
only once. A rather small percentage of blocks had to be
transformed more than twice. This indicates that the extra
computational effort due to the recursive application of the
FFCT is unrepresentative. We also observe that the largest
number of rounds necessary for a block was 9. Once the
transform matrix we have used has a large period, there is
not any risk of returning the transformed block to its original
block by the FFCT recursive computation.

In Table II, the values for GVD and vertical, horizontal
and diagonal correlation coefficients for each test image are
presented. We can see that the application of the FFCT
to the images produces values for GVD considerably close
to 1. The results we have obtained are better than those
achieved by the well known Arnold method, which scram-
bling the pixels only and produces GVD around 0,9 (this
value may decay significantly, according to the number of

Table II: Gray difference degrees (GVD) and correlation
coefficients of the original test images (rxy) and the test
images with uniformized histogram (r̃xy); (v), (h) and (d)
are related to vertical, horizontal and diagonal correlation
respectively.

Metric peppers mandril lake jetplane lena camera
GVD 0.9794 0.9563 0.9638 0.9779 0.9821 0.9813
rxy(h) 0.9801 0.9134 0.9772 0.9697 0.9851 0.9898
r̃xy(h) 0.0024 -0.0049 0.0010 -0.0009 0.0031 -0.0029
rxy(v) 0.9798 0.9335 0.9764 0.9723 0.9710 0.9826
r̃xy(v) -0.0013 0.0015 0.0021 -0.0015 0.0046 0.0024
rxy(d) 0.9702 0.8664 0.9626 0.9480 0.9584 0.9725
r̃xy(d) -0.0096 -0.0045 0.0026 0.0025 -0.0002 0.0018

iterations) [7], [16]. Also in [7], an encryption method based
on chaotic sequences generated by secret keys is proposed.
The GVD achieved by our technique are similar to those
ones of that work. However, our approach involves less
complexity (depending on the image size, the generation
and the application of a chaotic sequence for scrambling
may require a significant processing time).

The correlation coefficient of an image before and after
the histogram uniformization are respectively denoted by
rxy and r̃xy; P = 4000 pixels were selected by using
a generator of uniformly distributed random numbers. As
expected, while rxy is considerably close to 1 for all images,
r̃xy is close to 0. This indicates the low level of correlation
between two adjacent pixels in the transformed images.
Considering the correlation coefficients we have obtained,
the proposed method has produced results that are better
than those of the Arnold method and similar to those
presented in [7]. With the purpose of illustrating this result,
correlation distributions of original and transformed image
lena.bmp are shown in Figure 6. In this figure, randomly
chosen pixels and corresponding horizontal adjacent pixels
are considered. Similar distributions are obtained for other
images and directions in pixel adjacency.

For all images used in our simulations, after the uni-
formization procedure, the entropy has assumed values vary-
ing from 7.9992 to 7.9994. This means that the transformed
images are close to a random source and the proposed
technique is also secure against the entropy attack [17].

B. Extending the method

We have left clear that the proposed histogram uniformiza-
tion procedure solely does not provide the encryption of
an image. Although visual and statistical characteristics of
the transformed images have a random aspect, there is
not any key involved in the process and some important
cryptographic features, such as confusion, are absent [18].
In order to implement a complete image encryption scheme,
an extension of our method is considered.

Our suggestion is to use the histogram uniformization
procedure as a first step and introduce a second processing
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Figure 4: Original and uniformized gray scale images used in the simulations. (a),(g) peppers.bmp; (b),(h) mandril.bmp;
(c),(i) lake.bmp; (d),(j) jetplane.bmp; (e),(k) lena.bmp; (f),(l) camera.bmp. All images have dimensions 512× 512 pixels.
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Figure 5: Histograms of original and transformed gray scale images used in the simulations. (a),(g) peppers.bmp; (b),(h)
mandril.bmp; (c),(i) lake.bmp; (d),(j) jetplane.bmp; (e),(k) lena.bmp; (f),(l) camera.bmp.
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Figure 6: Correlation distributions in original and transformed image lena.bmp. Randomly chosen pixels and corresponding
horizontal adjacent pixels are considered.
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Figure 7: The positions of the black pixels in the image are
determined by a secret key. Each selected pixel is taken as
the top-left corner of an 8×8 image block to be recursively
transformed using the FFCT.

step also based on the finite field cosine transform. Such a
second step must be dependent on a secret key, which would
be used to select blocks to be transformed by the FFCT.
Such a transformation would also be recursive and more
than one round could be applied. In Figure 7, the proposed
second step is illustrated. The positions of the black pixels
are determined by the key. Such pixels are then used as
the top-left corner of 8 × 8 image blocks to be recursively
transformed using the FFCT. More specifically, the positions
of the black pixels can be defined by algorithms such as that
one described in [19]. In this work, a key-dependent method
for generating a sequence of pseudorandom points uniformly
distributed in a two-dimensional region is given.

Differently from the uniformization procedure, in the
second step, there is superposition among the blocks. This
means that, if two keys lead to a difference in the determina-
tion of only one black pixel position, the resultant encrypted
images can be substantially different; if we try to decrypt
an image using a key which is minimally different from
the correct key, the obtained image can also be significantly
distinct from the original image. Analogously, if two mini-
mally different images are encrypted using the same key, the
correspondent ciphered images can be sufficiently distinct.
These facts are related to the key sensitiveness of the method
and to its resistance against the differential attack [15].
Naturally, details related to these aspects and also to the
key-space of the method should be analyzed carefully.

Finally, we remember that, in the histogram uniformiza-
tion, image blocks can be processed in parallel. On the other
hand, in the second step, due to the superposition among
the blocks, this is not possible. This makes important to
reconsider the time delay involved in the entire system.

V. CONCLUDING REMARKS

In this paper, a procedure to uniformize image histograms,
based on the finite field cosine transform, was introduced.

As we emphasized throughout the text, the technique should
be part of a complete image encryption system and its aim
is to eliminate the effectiveness of attacks which explore
the frequency of occurrence of the pixels values. This
kind of attack may be useful against encryption techniques
based on changes on pixels positions or transformations
which do not alter significantly the histogram of an image.
Simulations which indicate that the proposed scheme has
potential applicability in practical scenarios were presented.
The combination between the technique presented in this
paper and procedures dependent on a key, with the purpose
of implementing a complete image encryption scheme, is
currently under investigation.
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