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Abstract—Motion is one of the main characteristics that
describe the semantic information of videos. In this work, a
global video descriptor based on orientation tensors is proposed.
This descriptor is obtained by combining polynomial coefficients
calculated for each image in a video. The coefficients are found
through the projection of the optical flow on Legendre polyno-
mials, reducing the dimension of per frame motion estimations.
The sequence of coefficients are then combined using orientation
tensors. The global tensor descriptor created is evaluated by a
classification of the KTH video database with a SVM classifier.
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I. INTRODUCTION

Human action recognition in videos has several applications.
Most works approach this problem by a motion analysis and a
representation step. Starting from the interesting work of mod-
eling the apparent motion by a projection onto a polynomial
basis [1], we propose a new global motion descriptor, based
on orientation tensors, for the problem of action recognition
in videos. Tensors have been largely used to compute optical
flow, but its use is still growing on motion analysis and there
are few works that use tensor as a descriptor for human action
recognition [2], [3], [4].

The main contribution of this work is the introduction of
a video motion indexing scheme based on the modeling of
optic flow in video stream. Thus, using statistics on the model
hyperparameters, we are able to build a signature (or feature
vector) whatever is the width of frames duration of the video.
More specifically, we use Legendre polynomial coefficients
(which only depends on the chosen degree) to code a per
frame optical flow in a tensor that is then accumulated in time
defining a global descriptor for video motion.

A. Related work

Through the use of spectral features of a tensor, Jia et al
[3] proposes a method for action recognition based on mul-
tiresolution features. A series of silhouettes are transformed
into an image called Serial-Frame from which are extracted
features for the construction of an eigenvalues and eigenvector
space called Serials-Frame Tensor. Analyzing this space, they
can separate useful information to recognize different types of

action. The video dataset created by authors has 4 different
types of actions: running with a tool lifted, walking, running
while hitting with bare hand and walking while waving hand.

Also using the idea of silhouettes, Khadem and Rajam
[4] create a set of silhouettes to form a third order tensor
comprising three modes: pixels, actions and people. Then they
apply a single value decomposition which allows the descriptor
to be used to compare the videos of Weizmann database. They
argue that this approach is better than the classic principal
component analysis.

We can see that these tensor descriptors are all local ones.
In general, local descriptors for human action recognition are
more explored and achieve greater recognition rates. Hence,
there are few references about global descriptors for human
action recognition.

Zelnik et al presents a global descriptor based on histogram
of gradients [5]. This descriptor is applied on the Weizmann
video database and is obtained extracting multiple temporal
scales through the construction of a temporal pyramid. To
calculate this pyramid, they apply a lowpass filter on the video
and sample it. For each scale, the intensity of each pixel
gradient is calculated. Then, a histogram of gradients is created
for each video and compared with others histograms to classify
the database.

In order to apply a global descriptor on the KTH database,
Laptev et al [6] apply the Zelnik descriptor [5] in two different
ways: using multiple temporal scales as the original and using
multiple temporal and spatial scales.

A more recent approach is presented in Kihl et al [2]
and is based on vector fields comparison. The vector fields
are obtained through the projection of optical flow on an
orthogonal polynomial basis of a given degree which gives
a polynomial approximation of it [1]. From the similarity
measure, they can retrieve a vector field within video se-
quences. This similarity measure is based on the covariance
of the highest eigenvalues of a tensor created from the vector
field. This descriptor is tested on videos of motions and can
be used for interactive user interfaces. Our work is based
on the same idea of polynomial approximation, however our
work is not related to the descriptor created by them. They
propose a per frame motion descriptor. We propose a tensor



descriptor for the whole video or any sequence of frames.
Another difference is that they propose a similarity that is
based in a tensor decomposition. In our approach, the tensor
itself is the descriptor and they are compared by a simple L2
norm.

II. PROPOSED METHOD

A. Optical flow modeling using polynomials
The basic idea of a polynomial based model is to approx-

imate a vector field with a linear combination of orthogonal
polynomials [1], [2]. Let us define F an optical flow:

F :
Ω ⊂ R2 → R2

(x1, x2) 7→ (V 1(x1, x2), V 2(x1, x2))
(1)

where the functions V 1(x1, x2) and V 2(x1, x2) corresponds to
the horizontal and vertical displacement of the point (x1, x2) ∈
Ω.

This optical flow is then approximated by projecting the
displacement functions onto each polynomial Pi,j , which
belong to an orthogonal basis, as such Legendre basis.

In that way, it reduces the dimension of the optical flow
field. Thus, we can express F̃ = (Ṽ 1(x1, x2), Ṽ 2(x1, x2)),
using a basis of degree g, as:{

Ṽ 1(x1, x2) =
∑g

i=0

∑g−1
j=0 ṽ

1
i,jPi,j

Ṽ 2(x1, x2) =
∑g

i=0

∑g−1
j=0 ṽ

2
i,jPi,j

(2)

where {
ṽ1
i,j =

∫ ∫
Ω
V 1(x1, x2)Pi,jω(x1, x2)dx1dx2

ṽ2
i,j =

∫ ∫
Ω
V 2(x1, x2)Pi,jω(x1, x2)dx1dx2

(3)

It is important to note that the number of polynomials which
composes a basis of degree g is:

ng =
(g + 1)(g + 2)

2
(4)

B. Orientation tensor: coding frame coefficients
An orientation tensor is a representation of local orientation

which takes the form of an N ×N real symmetric matrix for
N -dimensional signals [7].

Given the vector ~v with N elements, it can be represented
by the tensor T = ~v~vT . It is desired that the eigenvector with
the largest eigenvalue of the tensor points out the dominant
direction of the signal. A signal with no dominant direction
is represented by an isotropic tensor, which is a sphere on
three dimensions. It is important to note that the well known
structure tensor is a specific case of orientation tensor [8].

An individual tensor for each frame is created using the
coefficients ṽ1

i,j and ṽ2
i,j (Eq. 3) calculated through the poly-

nomial approximation of optical flow.
From the optical flow approximation, we create a vector ṽf

for each frame f of the video:

ṽf = [ṽ1
0,0, ..., ṽ

1
g,0, ṽ

2
0,0, ..., ṽ

2
g,0] ∈ Rm (5)

Using the vector ṽf , we create an orientation tensor Tf =
ṽf ṽf

T for each frame f of the video, which is a matrix
2ng × 2ng . This orientation tensor captures the covariance in-
formation between ṽ1

i,j and ṽ2
i,j . It carries only the information

of the polynomial of frame f .

C. Global tensor descriptor: series of frame tensors

The main idea of our work is to present a new global
motion descriptor. We have to express the motion average
of consecutive frames using a series of tensors. This can be
achieved by

∑b
a Tf using all video frames or an interval of

interest. By normalizing Tf with a L2 norm, we are able
to compare different video clips or snapshots regardless their
length or image resolution.

If the accumulation series diverges, we obtain an isotropic
tensor which does not hold useful motion information. But, if
the series converge as an anisotropic tensor, it carries mean-
ingful average motion information of the frame sequence. The
conditions of divergence and convergence need further studies.
In our experiments (Sec. III), this basic global descriptor is
called ND.

D. Global tensor descriptor: adding the variation of the
polynomial coefficients

It is also possible to add more information to the global
descriptor. In order to capture the motion variation in time,
we can use both the polynomial coefficients (Eq. 3) and an
approximation of their first temporal derivative:

∂tṽf =

[
ṽ1i,j(f)− ṽ1i,j(f − 1)

∆t
,
ṽ2i,j(f)− ṽ2i,j(f − 1)

∆t

]
i+j<g

(6)

Hence, the new coefficient vector is ṽf
new = [ṽf , ∂tṽf ].

The orientation tensor Tf for each frame is computed as
above, resulting in a matrix of 4ng × 4ng . The global motion
descriptor obtained by accumulation and normalization now
captures the rate of motion changes in time.

It is important to note that the accumulated tensor created
is symmetric, so we can use only a triangular superior (or
inferior) matrix to represent the video, which reduces the
number of coefficients of the final tensor descriptor.

In our experiments (Sec. III), this descriptor enhanced with
temporal derivative of coefficients is called WD.

III. EXPERIMENTAL RESULTS

Validation set.: To validate our tensor descriptor, we use
the KTH video dataset [9]. Although it is a base with relatively
simple actions, there are so few studies suggesting global
descriptors that it is still a good reference for comparison.

Experimental protocol: . The optical flow is computed
by a method described in [10]. This method was chosen
because we found experimentally that it computes a more
regular optical flow than the one computed by the standard
Lucas-Kanade [10]. We run a multiclass classifier using a one-
against-all strategy and a Bayes criterion for model selection.
Each class is modeled using a SVM classifier with a triangular
kernel function with Euclidian distance.

Results.: In order to study the performance of our de-
scriptor, we evaluate the two types of descriptors as described
in the previous section: basic tensor (ND) (Sec. II-C) and
with derivative information (WD) (Sec. II-D). Instead of
using the entire optical flow of the video frames, it is also
possible to use only the optical flow from a region with most



representative motion. Then, we tested a sliding window with
fixed dimensions put around the subject who is doing the
action. The center of mass of global optical flow gives the
center of the window. It works for KTH scenes because they
have only one person acting and a nearly static background.
Both descriptors can be computed inside this window, thus we
have two more variations: basic tensor using window (ND-W),
and tensor with derivative using window (WD-W).

Degree 1 4 8 17 22
Rate 70.02% 77.31% 78.24% 79.74% 81.13%

TABLE I
RECOGNITION RATES FOR SEVERAL DEGREES FOR ND DESCRIPTOR

W
alk

Jo
g

Run Box HClap
HW

av

W
alk

86.81 21.53 4.86 0.00 0.00 0.00

Jo
g

10.42 54.17 11.11 0.00 0.70 0.00

Run 2.78 24.31 84.03 3.5 0.00 0.00

Box 0.00 0.00 0.00 96.50 9.03 4.86

HClap
0.00 0.00 0.00 0.00 88.19 18.05

HW
av

0.00 0.00 0.00 0.00 2.08 77.08

TABLE II
CONFUSION MATRIX FOR THE ND DESCRIPTOR AND BASIS DEGREE OF

22: FINAL TENSOR DESCRIPTOR WITH 609960 ELEMENTS.

Table I shows the recognition rates of the basic descriptor
using several polynomial degrees (Sec. II-C). Note that higher
degree is, better is the recognition rate. The best recognition
rate was 81.13% with polynomial degree of 22. The resulting
confusion matrix is shown on Table II. As expected, the worst
recognition rate is found for jogging. This can be explained
by high similarities between the optical flow of this class and
the ones of walking and running.

Degree 1 4 8 17 22
Rate 79.16% 84.83% 83.45% 83.21% 82.86%

TABLE III
RECOGNITION RATES FOR SEVERAL DEGREES FOR WD DESCRIPTOR

W
alk

Jo
g

Run Box HClap
HW

av

W
alk

90.28 22.22 2.08 0.00 0.00 0.00

Jo
g

9.03 61.81 8.33 0.00 0.00 0.00

Run 0.70 15.97 89.58 1.40 0.00 0.00

Box 0.00 0.00 0.00 98.60 9.72 5.56

HClap
0.00 0.00 0.00 0.00 89.58 15.28

HW
av

0.00 0.00 0.00 0.00 0.69 79.17

TABLE IV
CONFUSION MATRIX FOR THE WD DESCRIPTOR AND BASIS DEGREE OF 4:

FINAL TENSOR DESCRIPTOR WITH 1830 ELEMENTS.

Table III shows the recognition rates for the descriptor
coding the derivative of polynomial coefficients. The best
recognition was 84.83% with a basis of degree 4. The con-
fusion matrix is shown on Table IV. We can see that frame
coherence reduces significantly the mislabelling of jogging,
walking and running actions. The speed of the motion (cap-
tured by the added derivative) is the main difference between
them. The high recognition rate with low polynomial degree is
remarkable. With degree 4, the final descriptor for (WD) has
only 1830 elements. This is much better compared to the best
result for (ND) with 609960 elements for degree 22 (Table II).

Degree Recognition rate ND-W Recognition rate WD-W
1 70.00% 76.60%
8 76.60% 82.39%

12 81.01% 84.94%
17 83.79% 86.44%
23 84.71% 85.75%

TABLE V
RECOGNITION RATES FOR SEVERAL DEGREES USING A SLIDING WINDOW

WITH DIMENSIONS 60X100.

W
alk

Jo
g

Run Box HClap
HW

av

W
alk

93.75 11.81 4.86 7.69 0.70 0.00

Jo
g

2.78 74.31 6.94 0.00 0.00 0.00

Run 3.47 13.89 88.19 2.10 0.00 0.00

Box 0.00 0.00 0.00 90.21 2.78 5.56

HClap
0.00 0.00 0.00 0.00 90.28 22.92

HW
av

0.00 0.00 0.00 0.00 6.25 71.53

TABLE VI
CONFUSION MATRIX FOR THE ND-W DESCRIPTOR AND BASIS DEGREE OF

23: FINAL TENSOR DESCRIPTOR WITH 180300 ELEMENTS.

W
alk

Jo
g

Run Box HClap
HW

av

W
alk

95.83 11.81 4.17 6.29 0.00 0.00

Jo
g

3.47 76.39 6.25 0.70 0.70 0.00

Run 0.70 11.81 89.58 2.10 0.00 0.00

Box 0.00 0.00 0.00 90.91 5.56 4.86

HClap
0.00 0.00 0.00 0.00 93.75 22.92

HW
av

0.00 0.00 0.00 0.00 0.00 72.22

TABLE VII
CONFUSION MATRIX FOR THE WD-W DESCRIPTOR AND BASIS DEGREE

OF 17: FINAL TENSOR DESCRIPTOR WITH 234270 ELEMENTS.

Table V shows the results for both descriptors using the
sliding window. We have tested several sizes of window and
the best for KTH database is 60x100 pixels. This size can
capture the most representative motions of the scenes.



We can see that the best result was found for the descriptor
with derivative and sliding window, which has a recognition
rate of 86.44% with a basis degree of 17, having 234270
elements. Its confusion matrix is shown in Table VII. A similar
performance of 84.83% is obtained by the descriptor (WD)
(Sec. II-D) without using the sliding window on the degree
4 with 1830 coefficients. The large amount of coefficients
is not advantageous in terms of time processing. The first
result took about 10 minutes and the former 89 minutes in
a platform based on Intel Core i7-870 2930Mhz with 8Gb
of 1333Mhz/DDR3. An overview of recognition rates for all
descriptor variants (ND, WD, ND-W, WD-W) in function of
the polynomial degree is shown in Figure 1. Table VI shows
the confusion matrix for the descriptor without derivatives and
with sliding window, which has a recognition rate of 84.71%
with a basis of degree 23.

Fig. 1. Overview of recognition rates for all four types of descriptors.

Finally, the descriptor proposed does not outperform the
best recognition rates with local information found for KTH
database as shown in Table VIII ([11], [12]). However, its
performance is close to the state-of-the-art methods, without
tracking salient objects. Note that it outperforms the best
global descriptor we have found in the literature [6].

[6] ND ND-W WD WD-W [11] [12]
72% 81.13% 84.71% 84.83% 86.44% 94.53% 95.33%

TABLE VIII
COMPARISON BETWEEN OUR GLOBAL DESCRIPTORS AND OTHER

STATE-OF-THE-ART APPROACHES.

IV. CONCLUSION

In this work, we proposed a global motion tensor descriptor
using a polynomial representation of the optical flow. We use
Legendre polynomial coefficients to code a per frame optical
flow in a tensor that is then accumulated in time. Although
our descriptor does not reach the recognition rate found by
local descriptors on KTH, we argue that global descriptors can
achieve a good balance between descriptor size, recognition
rate and time complexity, and should be more investigated.

Our method beats with a 86.83% recognition rate the global
descriptor found in literature [6], that has almost 72% of rate

based on histogram of gradients, and is a promising motion
representation that can be further improved.

The drawback of our method is that larger and complex
video datasets require higher degree polynomials to give
good classification results. As a consequence, the number
of coefficients increases exponentially leading to high time
complexity.

In order to improve the recognition rate of our descriptors,
we intend to further analyze the spectral characteristics of
the proposed orientation tensor. Moreover, we need to study
the conditions of divergence and convergence of the tensor
accumulation.
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application à l’étude d’écoulements fluides,” Ph.D. dissertation, Univer-
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