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Abstract—The efficiency in image classification tasks can
be improved using combined information provided by several
sources, such as shape, color, and texture visual properties.
Although many works proposed to combine different feature
vectors, we model the descriptor combination as an optimiza-
tion problem to be addressed by evolutionary-based techniques,
which compute distances between samples that maximize their
separability in the feature space. The robustness of the proposed
technique is assessed by the Optimum-Path Forest classifier. Ex-
periments showed that the proposed methodology can outperform
individual information provided by single descriptors in well-
known public datasets.

Index Terms—Image classification, Evolutionary algorithms,
Descriptor Combination

I. INTRODUCTION

Image classification attempts to provide useful information

for several applications, that range from automatic diagnosis

in medical systems to target recognition in remote sensing

images. Important visual properties such as shape, texture,

and color are often used to describe images in recognition

applications.

In order to best represent images, one common strategy con-

sists in identifying the most accurate feature vector (descrip-

tion). On the other hand, in most cases there are many features

available with reasonable performance. In such situations, one

can employ feature combination approaches in order to im-

prove their individual recognition rates, since different features

may provide different, but complementary information about

images. Several works deal with this problem by learning the

most reliable features and weighting them according to some

“reliability”-based measure [1], [2], [3]. Other works address

this problem by using Linear Discriminant Analysis [4] and

Principal Component Analysis [5].

The use of features by themselves, however, may not

guarantee good performance results of applications that exploit

image visual content. In some cases, the performance is not

only dependent on the features extracted, but also on the

distance function employed to compare feature vectors. Papa

et al. [6], for example, have showed that one can improve

the recognition accuracy in image classification tasks, for the

same training and test sets, up to 7.28% by just changing the

distance function.

Torres et al. [7] have introduced the concept of image

descriptor in the context of Content-Based Image Retrieval.

An image descriptor is modelled as a pair that contains the fea-

ture vector extraction algorithm together with the appropriate

distance function. That modelling allows the development of

methods for combining image content descriptors that consider

both feature vectors and distance functions at the same time.

One natural choice for designing combination strategies

relies on the use of evolutionary algorithms. In that case, the

descriptor combination problem is modelled as an optimization

procedure, in which the distances associated with feature

vectors are combined in a more complex manner.

This paper investigates the use of two evolutionary tech-

niques for non-linear combination of descriptors: Particle

Swarm Optimization (PSO) [8], and Harmony Search (HS) [9].

PSO and HS are evolutionary-based techniques that have been

used for optimization problems. While PSO models the prob-

lem using the theory of social dynamics, HS employs the same

method used for musicians in order to compose songs with

optimal harmony. Thus, the best solution to the optimization

problem is the one that provides the best harmony. In the last

years, there is a exponential growing of works that employ

such techniques, since they can achieve interesting results

imitating the collective behavior of the nature.

This paper presents three original contributions: (i) proposal

of a new set of parameters to allow non-linear descriptor

combination using PSO; (ii) the design of a new combination

strategy based on HS; and (iii) evaluation of the proposed

methods on heterogeneous collections involving color and

texture descriptors, considering image classification tasks. The

validation protocol considers the use of the Optimum-Path

Forest (OPF) classifier, a graph-based approach widely used

in several applications [6]. The choice for this classifier is

motivated by its fast training and classification phases together

with its good recognition rates. Another point is that OPF

can easily handle different distance metrics, which is very

important in the context of classification tasks.

Faria et al. [10] proposed a descriptor combination approach

using a swarm-based optimization algorithm together with

Optimum-Path Forest (OPF) [6] for image classification pur-

poses. Their work aimed to model the descriptor combination

problem as an optimization procedure, in which the distances

associated with each feature vector are combined through a

linear equation, and the final distances are used to weight

the edges of the OPF graph. In this work, we extend the



above procedure by employing a new set of parameters in

order to allow a greater range of possible solutions than a

linear combination. Another difference relies on using PSO to

combine not only shape-based descriptors (as performed by

Faria et al. [10]), but also texture and color information.

The remainder of this paper is organized as follows. Sec-

tion II introduces the descriptor model used in this work,

and Sections III and IV briefly state the OPF background

theory and the employed evolutionary techniques, respectively.

Section V presents the proposed approach for descriptor com-

bination and Section VI discusses the conducted experiments.

Finally, Section VII states conclusions.

II. IMAGE DESCRIPTION MODEL

In this section, we formalize the adopted image description

model [7], [11].

Definition 1. An image Î is a pair (DI , ~I), where:

• DI ⊂ Z
2 is a finite set of pixels, and

•
~I : DI → D

′ is a function that assigns to each pixel p in

DI a vector ~I(p) of values in some arbitrary space D
′

(for example, D′ = IR3 when a color in the RGB system

is assigned to a pixel).

Definition 2. A simple descriptor (briefly, descriptor) D is

defined as a pair (ǫD, δD), where:

• ǫD : Î → R
n is a function, which extracts a feature

vector ~vÎ from an image Î .

• δD : Rn×R
n → R is a similarity function that computes

the similarity between two images as a function of the

distance between their corresponding feature vectors.

Definition 3. A feature vector ~vÎ of an image Î is a point in

R
n space: ~vÎ = (v1, v2, ..., vn), where n is the dimension of

the vector.

Figure 1 illustrates the use of a simple descriptor D to

compute the similarity between two images ÎA and ÎB . First,

the extraction algorithm ǫD is used to compute the feature

vectors ~vÎA and ~vÎB associated with the images. The similarity

function δD is then used to determine the similarity score d

between the images.

Definition 4. A composite descriptor D̂ is a pair (D, δD),
where:

• D = {D1, D2, . . . , Dk} is a set of k pre-defined simple

descriptors.

• δD is a similarity function which combines the simi-

larity values obtained from each descriptor Di ∈ D,

i = 1, 2, . . . , k.

Figure 2 illustrates the use a composite descriptor D̂ to

compute the distance between images ÎA and ÎB .

III. OPTIMUM-PATH FOREST CLASSIFICATION

The OPF classifier works by modelling the problem of

pattern recognition as a graph partition in a given feature

space. The nodes are represented by the feature vectors and the

edges connect all pairs of them, defining a full connectedness

Fig. 1. Simple Descriptor.

Fig. 2. Composite Descriptor.

graph. This kind of representation is straightforward, given that

the graph does not need to be explicitly represented, allowing

us to save memory. The partition of the graph is carried out by

a competition process between some key samples (prototypes),

which offer optimum paths to the remaining nodes of the

graph. Each prototype sample defines its optimum-path tree

(OPT), and the collection of all OPTs defines an optimum-

path forest, which gives the name to the classifier [6], [12].

The OPF can be seen as a generalization of the well-known

Dijkstra’s algorithm to compute optimum paths from a source

node to the remaining ones [13]. The main difference relies

on the fact that OPF uses a set of source nodes (prototypes)

with any smooth path-cost function [14]. In case of Dijkstra’s

algorithm, a function that summed the arc-weights along a path

was applied. In regard to the supervised OPF version addressed

here, we have used a function that gives the maximum arc-

weight along a path, as explained below.

Let Z = Z1 ∪Z2 ∪Z3 be a dataset labelled with a function

λ, in which Z1, Z2 and Z3 are, respectively, a training,

validation, and test sets. Let S ⊆ Z1 a set of prototype

samples. Essentially, the OPF classifier creates a discrete

optimal partition of the feature space such that any sample

s ∈ Z2 ∪Z3 can be classified according to this partition. This

partition is an optimum path forest (OPF) computed in ℜn by

the Image-Foresting Transform (IFT) algorithm [14].

The OPF algorithm may be used with any smooth path-cost



function which can group samples with similar properties [14].

Particularly, we used the path-cost function fmax, which is

computed as follows:

fmax(〈s〉) =

{
0 if s ∈ S,

+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) means the distance between samples s and

t, and a path π is defined as a sequence of adjacent samples.

In such a way, we have that fmax(π) computes the maximum

distance between adjacent samples in π, when π is not a trivial

path.

The OPF algorithm works with a training and a testing

phase. In the former step, the competition process begins

with the prototypes computation. We are interested in find-

ing the elements that fall on the boundary of the classes

with different labels. For that purpose, we can compute a

Minimum Spanning Tree (MST) over the original graph and

then mark as prototypes the connected elements with different

labels. Figure 3b displays the MST with the prototypes at the

boundary. After that, we can begin the competition process

between prototypes in order to build the optimum-path forest,

as displayed in Figure 3c. The classification phase is conducted

by taking a sample from the test set (blue triangle in Figure 3d)

and connecting it to all training samples. The distance to all

training nodes are computed and used to weight the edges.

Finally, each training node offers to the test sample a cost

given by a path-cost function (maximum arc-weight along a

path - Equation 1), and the training node that has offered

the minimum path-cost will conquer the test sample. This

procedure is shown in Figure 3e.

IV. BACKGROUND ON EVOLUTIONARY OPTIMIZATION

In this section, we briefly describe the evolutionary tech-

niques used for descriptor combination: Particle Swarm Opti-

mization and Harmony Search.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm mod-

elled on swarm intelligence that finds a solution in a search

space based on social behavior dynamics [8]. Each possible

solution to the problem is modelled as a particle in the swarm

that imitates its neighborhood based on the values of the fitness

function found so far.

Other definitions consider PSO as a stochastic and

population-based search algorithm, in which social behavior

learning allows each possible solution (particle) to “fly” onto

this space (swarm) looking for other particles that have better

characteristics, i.e., the ones that maximize a fitness function.

Each particle has a memory that stores its best local solution

(local maxima) and the best global solution (global maxima).

Thus, by taking this information into account, each particle

has the ability to imitate the others that give to it the best

local and global maxima. This process simulates social in-

teraction between humans looking for the same objective or

bird flocks looking for food, for instance. This socio-cognitive
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Fig. 3. OPF pipeline: (a) complete graph, (b) MST and prototypes bounded,
(c) optimum-path forest generated at the final of training step, (d) classification
process and (e) the triangle sample is associated to the white circle class. The
values above the nodes are their costs after training, and the values above the
edges stand for the distance between their corresponding nodes.

mechanism can be summarized into three main principles [8]:

(i) evaluating, (ii) comparing and (iii) imitating. Each particle

can evaluate others in its neighborhood through some fitness

function, can compare it with its own value, and, finally, can

decide whether it is a good choice to imitate them.

The entire swarm is modelled in a multidimensional space

ℜN , in which each particle pi = (~xi, ~vi) ∈ ℜ
N has two main

features: (i) position (~xi) and (ii) velocity (~vi). The local (best

current position x̂i) and global solution ŝ are also known. After

defining the swarm size, i.e., the number of particles, each one

of them is initialized with random values for both velocity

and position. Each individual is then evaluated with respect

to some fitness function and its local maximum is updated.

At the end, the global maximum is updated with the particle

that achieved the best position in the swarm. This process

is repeated until some convergence criterion is reached. The

updated position and velocity equations of particle pi, in the

simplest form that governs the PSO, are, respectively, given

by

~vi = w~vi + c1r1(x̂i − ~xi) + c2r2(ŝ− ~xi) (2)

and

~xi = ~xi + ~vi, (3)

where w is the inertia weight that controls the power of

the interactions between the particles, and r1, r2 ∈ [0, 1] are

random variables that give the idea of stochasticity to the PSO

method. Constants c1 and c2 are used to guide particles onto

good directions.



B. Harmony Search

Harmony Search (HS) is an evolutionary algorithm inspired

in the improvisation process of music players [9]. The main

idea is to use the same process adopted by musicians to

create new songs to obtain a near-optimal solution for some

optimization process. Basically, any possible solution is mod-

elled as a harmony and each parameter to be optimized can

be seen as a musical note. The best harmony (solution) is

chosen as the one that maximizes some optimization criteria.

The algorithm is composed by few steps, as follows: (1)

initialize the optimization problem and algorithm parameters;

(2) initialize a Harmony Memory (HM); (3) improvise a new

harmony from HM; (4) update the HM if the new harmony

is better than the worst harmony in the HM, include the new

harmony in HM, and remove the worst one from HM; and

(5): if the stopping criterion is not satisfied, go to Step 3.

The HS parameters required to solve the optimization prob-

lem are the harmony memory size (HMS), the harmony mem-

ory considering rate (HMCR), the pitch adjusting rate (PAR),

and the stopping criterion. HMCR and PAR are parameters

used to improve the solution vector, i.e., they can help the

algorithm to find globally and locally improved solutions in

the harmony search process.

In Step 2, the HM matrix (Equation 4) is initialized with

randomly generated solution vectors with their respective

values for the objective function:

HM =




x1

1
x2

1
. . . xN

1
f(x1)

x1

2
x2

2
. . . xN

2
f(x2)

...
...

...
...

...

x1

HMS x2

HMS . . . xN
HMS f(xHMS)


 ,

(4)

where x
j
i denotes the decision variable j from harmony i, and

f(xi) means the objective function. Note that in HS principles,

each harmony hi = (~xi) has only the information about its

position in the search space (Harmony Memory), and each

line in the HM matrix stands for one harmony.

In Step 3, a new harmony vector ~x′=(x′1,x′2 ,. . . , x′N )

is generated from the HM based on memory considerations,

pitch adjustments, and randomization (music improvisation).

It is also possible to choose the new value using the HMCR

parameter, which varies between 0 and 1 as follows:

x
′j ←

{
x′j ∈

{
x
j
1
, . . . , x

j
HMS

}
with probability HMCR,

x
′j ∈ φj with probability (1-HMCR),

(5)

in which φj denotes the range of values for variable j,

for φ = (φi, φ2, . . . , φN ). The HMCR is the probability of

choosing one value from the historic values stored in the HM,

and (1-HMCR) is the probability of randomly choosing one

feasible value not limited to those stored in the HM. In order

to make it clear, an HMCR=0.7 means that 70% of the notes

(decision variables) to compose the new harmony h′ = (~x′)
will be picked from HM, and the remaining ones will be

randomly generated within the interval φj .

Further, every component j of the new harmony vector ~x

is examined to determine whether it should be pitch-adjusted:

Pitching adjusting decision for x′j ←

{
Yes with probability PAR,

No with probability (1-PAR).
(6)

The pitch adjustment for each instrument is often used

to improve solutions and to escape from local optima. This

mechanism concerns shifting the neighboring values of some

decision variable in the harmony. If the pitch adjustment

decision for the decision variable x
′j is Yes, x′j is replaced

as follows:

x′j ← x′j + rb, (7)

where b is an arbitrary distance bandwidth for the continuous

design variable, and r is a uniform distribution between 0 and

1. In this paper, we set b = 1.

In Step 4, if the new harmony h′ is better than the worst

harmony in the HM, the latter is replaced by this new harmony.

Finally, in Step 5, the HS algorithm finishes when it satisfies

the stopping criterion. Otherwise, Steps 3 and 4 are repeated

in order to improvise a new harmony again.

V. PROPOSED APPROACH FOR DESCRIPTOR COMBINATION

Faria et al. [10] have proposed an optimization-based ap-

proach for descriptor combination where the best descriptor

was the one that maximized the accuracy of OPF classifier in

an evaluating set. Let D̂∗ = (ǫD̂∗
, δD̂∗

) be such descriptor.

We have that δD̂∗
can be formulated as:

δD̂∗
=

N∑

i=1

αiδDi
, (8)

in which αi ∈ ℜ stands for a regularization parameter and

δDi
denotes the distance matrix for descriptor Di. Thus, the

descriptor combination task means to combine the distances

of each descriptor and to use them to weight the arcs between

samples in the OPF graph.

Let α = (α1, α2, . . . , αM ) be the set of all regularization

parameters. One can observe that δD̂∗
is a linear combination

of all distance matrices, and α corresponds to the set of

parameters that will be optimized by some approach. Faria

et al. [10] employed PSO for such task. Their objetcive was

to use the OPF recognition rate over a validation set as the

function to be maximized.

In this work, we extended the above formulation beyond a

linear combination of α by introducing a new set of parameters

β = (β1, β2, . . . , βM ). Therefore, Equation 8 is rewritten as:

δD̂∗
=

N∑

i=1

αiδ
βi

Di
, (9)

in which −2 ≤ αi, βi ≤ 2, βi ∈ ℜ. The main idea behind

such formulation is to allow a greater variability of arithmetic

computations, which have been restricted to only the set of αi

in Equation 8.



Let ξ = {(αi, βi)}, i = 1, 2, . . . , N , be the set of

parameters to be optimized, and ξ∗ = (α∗

i , β
∗

i ) be the one

that maximizes the OPF accuracy over a validation set. In

order to make it clear, suppose we have a dataset with two

descriptors extracted. Thus, ξ = {(α1, β1); (α2, β2)}. In this

case, the PSO/HS search space would have four dimensions,

and each particle/harmony position j would be done by

~xj = (αj
1
, α

j
2
, β

j
1
, β

j
2
), 1 ≤ j ≤ M . In this case, M stands

for the number of particles/harmonies.

The proposed methodology has two phases: (i) the design

phase which employs training and validation sets to find ξ∗,

(ii) and the classification phase that computes the new distance

d for each test sample s to all training samples, as stated in

the OPF classification procedure (Section III). Let ds,x be the

distance between s and the training sample x. Thus, ds,x can

be found as follows:

ds,x =

N∑

i=1

α∗

i δ
β∗

i

Di
(s, x), (10)

in which δDi
(s, x) denotes the distance between samples s

and x using descriptor i. Figure 4 illustrates the proposed

methodology.

Fig. 4. Proposed methodology for descriptor combination.

The proposed methodology extends the work of Faria et

al. [10] beyond a linear descriptor combination and also

introduces the Harmony Search optimization algorithm to this

task. In addition, this paper also combines information from

color and texture, which differs from [10] that has been limited

to shape descriptors.

VI. EXPERIMENTAL RESULTS

In order to assess the robustness of the proposed method-

ology for descriptor combination, we compared it with the

one introduced by Faria et al. [10]. In addition, we also

evaluated the use of HS for linear and non-linear combination

of descriptors.

We used two well-known public datasets, as follows:

• Corel1: this dataset contains 3,906 images labelled in 85

classes, and the number of images per class ranges from

7 to 98 images.

1http://vision.stanford.edu (As of June 2012).

• Free Photo2: we used a subset containing 3,426 images

labelled in 9 classes, and the number of images per class

ranges from 70 to 854 images.

With regard to descriptors, we employed Local Activity Spec-

trum (LAS), Global Color Histogram (GCH), Color Autocor-

relogram (ACC), Border/Interior pixel Classification (BIC),

and Quantized Compound Change Histogram (QCCH) for

the Corel dataset; and LAS, GCH, Homogeneous Texture

Descriptor (HTD), BIC, and Color Coherent Vector (CCV)

for the Free Photo dataset. A detailed description about these

descriptors can be found in [15]. Recall that all experiments

were carried out with the OPF classifier and Euclidean distance

for all descriptors.

In order to compare the composite descriptor’s effectiveness,

we executed experiments with the single descriptors over 5

runnings with cross-validation. For that, 30% of the entire

dataset was used for training and 50% for classification

purposes. Table 1 shows the OPF mean accuracy for each

single descriptor.

Descriptor/Dataset Corel Free Photo

LAS 59.75%±0.60 74.58%±0.65
GCH 65.82%±0.76 78.69%±1.25

ACC(HTD) 74.27%±1.13 73.11%±1.31
BIC 72.67%±0.20 89.71%±0.96

QCCH(CCV) 57.38%±0.60 80.50%±0.61

TABLE I
SINGLE DESCRIPTOR EFFECTIVENESS. “ACC(HTD)” MEANS THAT ACC
WAS USED FOR THE COREL DATASET, AND HTD FOR THE FREE PHOTO

DATASET. THE SAME APPLIES FOR THE LINE WITH “QCCH(CCV)”.

With regard to the descriptor combination experiment, we

employed the same training and test sets as before with cross-

validation over 5 runnings. However, we use now a validation

set with 20% of the entire dataset size. As aforementioned,

the OPF recognition rate over such set is used as the fitness

function by PSO and HS approaches. The PSO and HS

parameters were empirically chosen, as follows: # of particles

(harmonies): 250, HMCR: 0.7, PAR: 0.6, w = 0.7, c1 = 1.6,

c2 = 0.4 and # number of iterations = 40. In order to allow a

fair comparison between PSO and HS, we set the same values

for the parameters with similar meaning (e.g., w for PSO and

HMCR for HS avoid traps from local maxima).

We conducted two different descriptor combination exper-

iments: LAS+GCH and ALL. While the former allows us to

combine texture (LAS) and color (GCH) information, in the

latter we opted to use all available descriptors. The initial

choice for LAS and GCH in the first experiment has only

empirical reasons. Table 2 shows the results considering the

use of the Faria et al. [10] approach.

One can see that PSO and HS improved the classification

rates with respect to single descriptors. Although PSO and

HS obtained similar accuracies, the latter was about 2.33%

faster (on average). Another point to be highlighted concerns

with the fact that the descriptor combination may not result

2http://www.freefoto.com (As of June 2012).



Descriptor/Dataset Corel Free Photo

PSO-LAS+GCH 67.78%±0.87 83.61%±0.50
PSO-ALL 75.40%±0.95 90.08%±0.73

HS-LAS+GCH 67.76%±0.66 83.78%±0.94
HS-ALL 75.48%±1.23 87.68%±0.87

TABLE II
COMPOSITE DESCRIPTOR EFFECTIVENESS ACCORDING TO THE FARIA ET

AL. [10] APPROACH.

in a high improvement of the recognition rate of a very good

descriptor, when it exists. However, the results demonstrated

that an slightly improvement may be always obtained. In

situations in which we do not have a very good descriptor,

the improvement may be around 6.89%, as displayed by PSO

and HS for the Free Photo dataset in Table 3, which also shows

the recognition rates of the proposed approach.

Descriptor/Dataset Corel Free Photo

PSO-LAS+GCH 68.04%±0.62 84.52%±0.71
PSO-ALL 76.77%±0.60 90.36%±0.72

HS-LAS+GCH 67.94%±0.74 84.28%±0.43
HS-ALL 75.34%±0.81 89.88%±0.91

TABLE III
COMPOSITE DESCRIPTOR EFFECTIVENESS ACCORDING TO THE PROPOSED

APPROACH.

We can see that the recognition rates of the proposed

approach are slightly better than the one presented by Faria et

al. [10]. For the Free Photo dataset, the gain is about 2.44%

considering the experiment with HS-ALL.

VII. CONCLUSIONS

Information from different sources can improve the clas-

sifier’s recognition rate. Motivated by that, in this paper, we

propose new approaches for non-linear descriptor combination

using two evolutionary algorithms: Particle Swarm Intelligence

and Harmony Search. In addition, we addressed the combina-

tion of descriptors associated with different visual properties,

such as texture and color.

The results have showed that HS and PSO obtain similar

recognition rates, being the former slightly faster. The pro-

posed approach also improves the classification rates of the

work addressed by Faria et al. [10], and have shed light over

the importance of using appropriate metrics for each feature

vector extraction approach.

Future work includes the investigation of Particle Swarm

Intelligence and Harmony Search in image retrieval tasks.
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