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Abstract—The aim in this paper is to explore whether the
Fisher-Rao metric can be used to characterise the shape changes
due to gender difference. We work using a 2.5D representation
based on facial surface normals (or facial needle-maps) for gender
classification. The needle-map is a shape representation which can
be acquired from 2D intensity images using shape-from-shading
(SFS). Using the von-Mises Fisher distribution, we compute
the elements of the Fisher information matrix, and use this to
compute geodesic distance between fields of surface normals to
construct a shape-space. We embed the fields of facial surface
normals into a low dimensional pattern space using a number
of alternative methods including multidimensional scaling, heat
kernel embedding and commute time embedding. We present
results on clustering the embedded faces using the Max Planck
and EAR database.

Keywords-Fisher-Rao metric; surface normal; shape-from-
shading.

I. INTRODUCTION

Over the past decade there has been a considerable growth
in interest in the statistical theory of shape [1],[2]. This field of
study has been the result of a synthesis of ideas from a number
of different areas including statistics, computer vision, pattern
recognition and machine learning, and the realization that the
areas share a considerable common ground [3].

Statistical theories of shape variation [4] have been shown
to be powerful tools for image interpretation. One important
approach is to represent a shape by a set of landmark points
on the boundary, and to capture shape variations using the
covariance matrix for the Cartesian co-ordinates of the land-
mark points [1], [2]. Often, Cartesian landmarks are not the
most convenient shape representation. For certain classes of
shape, directional information is more convenient. However,
if the statistical analysis of shapes is attempted with non-
Cartesian data then the construction of shape-spaces is no
longer a straightforward problem.

Our aim is to construct a shape-space that can be used to
recognise instances of the same face from 2.5D images and
also, to construct a model for variations in facial shape due
to changes in different gender using information provided by
facial needle-maps. A facial needle-map is the description of
the local orientation of a facial surface, from which the facial
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surface can be recovered by surface integration. Moreover, the
orientation field is an intermediate representation in human
visual perception, and is a component of the 2.5D sketch
introduced by Marr [5]. This 2.5D representation is critical for
shape-processing, and can be derived from 2D retinal images
using shape-from-shading.

One recent and powerful development in this area has been
to explore the use of techniques motivated by information
theory, and in particular to use the Fisher-Rao metric to mea-
sure the similarities of statistical shape models and construct
shape-spaces. In the literature Maybank [6] shows how to use
Fisher information for line detection, Mio et al. [7] apply
non-parametric Fisher-Rao metrics for image segmentation
and Peter [8] has presented a unified framework for shape
representation and deformation.

In this paper we are particularly interested in the use of
these ideas to represent variations in facial shape, and to
determine the modes of variation due to factors such as
gender. The reported work is motivated in part by the fact
that faces have multiple shape properties, which can be used
to categorize them according to different levels of specificity.
Examples include gender, ethnicity, age, expression, identity,
attractiveness and distinctiveness [4]. In particular, we are
interested in how such shape variations manifest themselves in
terms of changes in the field of surface normals. The reason for
this is that we aim to fit statistical models of shape to 2D facial
images, and from these images recover information concerning
3D shape. One natural way of doing this that captures features
of the human vision system is to employ shape from shading
to recover surface shape from variations in brightness. Here it
is more natural to represent the facial surface using fields of
surface normals rather than surface height information, since
the former are more directly linked to the physical process of
light reflectance.

As a result surface normal models are more suitable for
the purposes of fitting to image data. However, due to their
non-Cartesian nature the statistical modeling of variations
in surface normal direction is more difficult than that for
landmark positions. To overcome this problem, we make use of
the statistical representation developed by Smith and Hancock
[9] which converts surface normals into a Cartesian form
using the equidistance azimuthal projection. With the surface



normal data in Cartesian form we construct a shape-space for
variations due to changes gender difference.

Fields of surface normals can be viewed as distributions
of points residing on a unit sphere and may be specified
in terms of the elevation and azimuth angles. It is natural
to parameterise such statistical variations in direction using
the von-Mises Fisher (vMF) distribution, which is specified in
terms of a mean surface normal direction and a concentration
parameter. Our goal in this paper is to explore how to use the
vMF distribution for shape representation, and in particular to
recognise variations in facial shape due to gender difference.

Working in the surface normal domain, we show how to use
the vMF distribution to represent unstructured surface normal
data without landmarks. To measure the similarity between
two fields of surface normals parameterized using the vMF
distribution we make use of the Fisher-Rao metric. In this way
facial similarity is measured by the geodesic distance between
the shapes on a statistical manifold.

The remainder of the paper is organized as follows. Section
II describes how to use the PGA method to construct the
statistical model for face needle-maps. Section III describes
how the Fisher-Rao metric can be used to measure the
similarity of facial needle-maps. Section III-C discusses how
multidimensional scaling can be used to embed faces into a
low-dimensional pattern space based on the Fisher-Rao metric.
Section IV provides some experiments on gender discrimina-
tion using Max Planck dataset. Finally, Section VI offers some
conclusions and suggests some directions for future research.

II. CARTESIAN REPRESENTATION OF VECTOR FIELDS

In this section, we explain how directional data can be
converted into a Cartesian form using the exponential map
from a manifold to a tangent space.

A unit vector n ∈ R3 may be considered as a point lying on
a spherical manifold n ∈ S2, where S2 is the unit 2-sphere.
The two are related by n = Φ(n) where Φ : S2 7→ R3 is
an embedding. Likewise, a field of N surface normals U ∈
RN×3 describing a surface may be considered as a point on
a manifold U ∈ S2(N) =

∏N
i=1 S

2.

A. The Log and Exponential Maps

If v ∈ TnS2 is a vector on the tangent plane to S2 at n ∈ S2

and v 6= 0, the exponential map, denoted Expn, of v is the
point on S2 along the geodesic in the direction of v at distance
‖v‖ from n. Geometrically, this is equivalent to marking out a
length equal to ‖v‖ along the geodesic that passes through n
in the direction of v. The point on S2 thus obtained is denoted
Expvn. This is illustrated in Fig. 1.

The inverse of the exponential map is the log map, denoted
Logn. Therefore, the equality Logn(Expn(v)) = v holds. The
geodesic distance between two points n1 ∈ S2 and n2 ∈ S2

can be expressed in terms of the log map, i.e. d(n1, n2) =
‖Logn1

(n2)‖. The exponential and log maps for the space of
a field of N surface normals, S2(N), are simply the direct
products of N copies of the maps for S2 given above.

v

n

Expn(v)
TnS

2

||v ||

Fig. 1. The exponential map.

B. Spherical Medians and Variance

A distribution of spherical directional data n1, . . . ,nK ∈ R3

can be characterised using the mean direction n̂0 = n̄
|n̄|

where n̄ = 1
K

∑K
i=1 ni [10]. If we consider the distribution

of unit vectors as a distribution of points on a spherical
manifold n1, . . . , nK ∈ S2, where Φ(nk) = nk, it is clear
that the mean direction is dependent on the embedding Φ
and is the extrinsic mean of a distribution of spherical data:
µΦ = arg min

n∈S2

∑K
i=1 ‖ Φ(n)− Φ(ni) ‖2.

If we define the projection π : R3 7→ S2 as π(n) =
arg min
n∈S2

‖Φ(n)− n‖2, We may show that the mean direction

is the extrinsic mean:

µΦ = π(n̄) = π

(
1

K

K∑
i=1

Φ(ni)

)
(1)

In other words, the extrinsic mean is the Euclidian av-
erage (or centre of mass) of the distribution of points in
R3, projected back onto the closest point on the sphere. A
more natural definition of the average of a distribution of
points on the unit sphere uses arc length as the choice of
distance measure. Since a 2-sphere is a Riemannian manifold
and great circles are geodesics, arc length is the Riemannian
distance d(., .) between a pair of points and hence, d(n1, n2) =
arccos (Φ(n1) · Φ(n2)). Using this definition of distance, we
can define the intrinsic mean: µ = arg min

n∈S2

∑K
i=1 d(n, ni).

For spherical data, this is known as the spherical median
[11]. This point cannot be found analytically, but can be
solved for iteratively using the gradient descent method of
Pennec [12]. We initialise our estimate as the Euclidian mean
of distribution, i.e. µ(0) = µΦ. The current estimate is then
updated iteratively as follows:

µ(j+1) = Expµ(j)

(
1

K

K∑
i=1

Logµ(j)
(ni)

)
(2)

To find the intrinsic mean µ ∈ S2(N) of a sample of
K fields of N surface normals: U1, . . . , UK ∈ S2(N), we
replace the exponential and log maps in Equation 2 with the
corresponding maps for the space S2(N). We can use the log
map and intrinsic mean to define the sample variance of a
distribution of points on the sphere:



σ2 =
1

K

K∑
i=1

d(µ, ni)
2 =

1

K

K∑
i=1

‖Logµ(ni)‖2 (3)

Suppose that each of the K training examples is a range
image which consists of an array of depth data each containing
N = Xres × Yres pixels. For the pixel indexed p in the kth
training sample the depth is zkp . Using the range data we
estimate the surface normal directions, and the surface normal
at the pixel location p for the kth training image is nkp .

We calculate the spherical median µp of the distribution of
surface normals n1

p, . . . ,n
K
p at each pixel location p using (2).

The surface normal nkp is represented by its position on the
tangent plane TµpS

2 given by the log map: vkp = Logµp(nkp) ∈
R2.

A field of surface normals projected to the tangent plane to
their local spherical median may be represented as the long
vector: vk = [vk1 , . . . , v

k
N ]T

With the intrinsic mean of the distribution to hand, we can
transform each field of surface normals representing a facial
surface to a distribution of 2-dimensional points in a Cartesian
space using the log map. These projected points retain their
variance with respect to the average direction and provide a
convenient representation with which to work.

C. Principal Geodesic Analysis for facial Needle-maps

In this section, we explain how to apply PGA to a set
of example facial needle-maps for the purpose of learning a
statistical model of facial shape. PGA is a generalization of
PCA from data residing in a Euclidean space to data residing
on a Riemmanian manifold. The goal of PCA is to find a linear
subspace of the space in which the data lies, and maximize
the variance of the projected data in the subspace. In PGA, the
notion of a linear subspace is replaced by that of a geodesic
manifold. The geodesics that traverse the submanifold are
referred to as principal geodesics. They are analogous to the
principal axes in PCA, expect that each principal axis in PCA
is a straight line. In the spherical case, a principal geodesic
corresponds to a great circle. To project a point n1 ∈ S2 onto
a great circle C is to find the point on C that is nearest to n1

in terms of geodesic distance. The projection πc : S2 → C is
defined as: πC(n1) = arg min

n∈S2

d(n1, n)2 where d(n1, n) is the

geodesic distance between n1 and n on the spherical manifold.
For a geodesic C passing through the intrinsic mean µ, this
projection can be approximated linearly in the tangent space
TµS

2

logµ(φC(n1)) ≈
d∑
i=1

vi. logµ(n1), (4)

where v1, ...., vd is an orthonormal basis for TµS2, and can
be obtained using standard PCA. Then, the principal geodesic
for the S2 space are obtained under the exponential map
expµ(v1), i = 1...d. This approximation enables us to compute
the principal geodesics by applying PCA in the tangent plane
TµS

2.

Suppose there are K example facial needle-maps, each
having N pixel locations. The surface normal at the pixel
location l for kth needle-map is nkl. The intrinsic mean µl
of the surface normals n1l, ...., nkl at each pixel location l is
calculated. The surface normal nkl is then represented by its
log mapped position ukl = log nkl in the tangent plane TµS2.
The process is illustrate in Figure 2.

PCA1

(a) (b)

Fig. 2. Projection of surface normals on the unit sphere (a) to points on the
tangent plane at the mean (b) [9].

On the right are the log mapped positions of the points
with the mean as the center of the projection. For the kth

training needle-map, we concatenate the x, y-coordinates of
ukl at the N pixel locations, and form the 2N dimensional
log mapped long vector uk = [uk1x, uk1y, . . . , ukNx, ukNy]T

in the tangent plane TµS2(N). The K long vectors form the
column-wise data matrix U = [u1| . . . |uK ], and the covariance
matrix is Σ = 1

KUU
T . Because N , the dimensionality of

the facial needle-maps, is usually too large to make the
manipulation of Σ feasible, the numerically efficient snap-shot
method of Sirovich [13] is used to compute the eigenvectors
of Σ. Accordingly, we construct the matrix Σ̂ = 1

KU
TU , and

locate its eigenvalues and eigenvectors. The ith eigenvector
ei of Σ can be computed from the ith eigenvector êi of
Σ̂ using ei = Uêi. The ith eigenvalue λi of Σ equals
the ith eigenvalue λ̂i of Σ̂ when i ≤ K. When i > K,
λi = 0. The K − 1 leading eigenvectors of Σ form the
columns of the eigenvector matrix (projection matrix) Φ =
(e1|e2| . . . |eK−1), where K is the number of sample facial
needle-maps. Given a facial needle-map, the log mapped long
vector u = [u1x, u1y, . . . , uNx, uNy]T is computed, then the
corresponding PGA feature vector is b = ΦTu. From the PGA
feature vector b = [b1, . . . bK−1]T , the needle-map can be
generated using: nl = expµl((Φb)l) at each location l.

III. GEODESIC DISTANCES BETWEEN FIELDS OF SURFACE
NORMALS USING THE FISHER-RAO METRIC

The construction of shape-spaces is an emerging and ex-
citing area of statistics, offering many fresh challenges ([14]
[15]). The development of a rigorous statistical theory of shape
began with the work by Kendall [16] which describes the shape
formed by a set of random points under Brownian motion,
and has been used in the statistical analysis of shape in both
archaeology and astronomy. Bookstein [17] and Ziezold [18],
on the other hand, have developed methods for analysing the
variations in biological forms. In the image analysis literature
there are numerous examples of the use of Kendall’s shape



spaces [19] and [20]. Recent developments in statistical shape
theory due to Small ([21]) suggest that improved shape spaces
can be obtained by representing objects as points on a high-
dimensional surface (a manifold) in such a way that different
views of a given object correspond to a single point on the
manifold. The aim in this paper is to explore whether the
Fisher-Rao metric can be used to measure different facets of
facial shape estimated from fields of surface normals using the
von-Mises Fisher (vMF) distribution.In particular we aim to
characterise the shape changes due to differences in gender.
We make use of the vMF distribution since we are dealing
with surface normal data over the sphere <2.

A. The von-Mises Fisher distribution (vMF)

A d-dimensional unit random vector x (i.e., x ) is said to
have multi-variate von Mises-Fisher (vMF) distribution if its
probability density function is given by:

fp(x, µ, κ) =
κ
p
2−1

(2π)
p
2 I p

2−1(κ)
exp(κµTx) (5)

where x is a p dimensional vector residing on the hyper-
sphere Sp−1 submersed in <p, and Il(κ) is the modified Bessel
function of the first kind of order l. The density f(x|µ, κ) is
parameterized by the mean direction µ, and the concentration
parameter κ, so called because it characterizes how strongly
the unit vectors draw room to f(x|µ, κ) are concentrated
about the mean direction µ. Larger values of κ imply stronger
concentration around the mean direction. In particular when
κ = 0, f(x|µ, κ) reduces to the uniform density on Sd−1,
and as κ → ∞ , f(x|µ, κ) tends to a point density. Mardia
et.al [10] give details of the vMF distribution. The distribution
is unimodal and rotationally symmetric around the direction
µ. Finally, the vMF distribution is uniform over the hyper-
sphere for κ = 0. The maximum likelihood estimators for the
two parameters are obtained as follows. Suppose we have m
samples of the unit vector x, i.e., x1, ....xm. The estimator of
the mean direction is given by

µ =

∑m
i=1 xi

||
∑m
i=1 xi||

(6)

There is no closed form estimator for the concentration
parameter κ̂. Instead, it is the solution of the transcendental
equation:

I p
2
(κ̂)

I p
2−1(κ̂)

=
1

m
||

m∑
i=1

xi||

In practice we solve this equation using the Newton-
Raphson method [22]. It is worth noting that Jupp and Mardia
[10] have developed some non-iterative approximations which
apply under small and large values of κ. For p=3, the distri-
bution is referred to as the vMF distribution.

B. Fisher Information Matrix
The Fisher information matrix is a Riemannian metric which

can be defined on a smooth statistical manifold, i.e., a smooth
manifold whose points are probability measures defined on a
common probability space [23],[24],[7].

Let I = [0,1], I for Bessel function and p: I × <k → <+,
(x,θ) 7→ p(x;θ), a k-dimensional family of positive probability
density functions parameterized by the vector of parameters
θ = (θ1, ...., θk)T ∈ <k. In classical information geometry the
Riemannian structure of the parameter space <k is defined by
the Fisher information matrix with elements:

gij(θ) =

∫
p(x|θ) ∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)dx. (7)

The notation ∂θi is used for the partial derivative with
respect to the component θi of θ, where θ is a vector of
parameters associated with the density p. The Fisher-Rao
metric tensor (7) is an intrinsic measure, allowing us to analyze
a finite, k-dimensional statistical manifold M without consid-
ering how M resides in an R2k+1 space. In our case, we have 4
parameters and θ = (κ, µ1, µ2, µ3)T , where µ = (µ1, µ2, µ3)T

is the density parameter vector with θ = κ, µ1, µ2, µ3.
For simplicity, we concatenate the components of the mean

surface normal µ and write θ = (κ, µT )T and perform vector-
differentiation with respect to µ to simplify our calculations. In
the following sections we detail how to compute the element
of Fisher Rao information matrix for the von-Mises Fisher
distribution.

1) Computing gκ,κ: We commence by computing

gκ,κ =

∫
x

fp(x, κ, µ)
∂

∂κ
log fp(x, κ, µ)

∂

∂κ
log fp(x, κ, µ)dx.

(8)
Substituting for the vMF distribution, we have

gκ,κ =

∫
x

(2π)
p
2 I p

2−1(κ)e−κµ
tx

κ
p
2−1[

∂

∂κ

κ
p
2−1

(2π)
p
2 I p

2−1(κ)
eκµ

tx

]2

dx

(9)

Performing the partial derivative with respect to κ, we have:

gκ,κ =

∫
x

(2π)
p
2 I p

2−1(κ)e−κµ
tx

κ
p
2−1[

κ
p
2−1

(2π)
p
2 I p

2−1(κ)
(µtx)eκµ

tx +
eκµ

tx

(2π)
p
2

×(
I p

2−1(κ)(p2 − 1)κ
p
2−2

I p
2−1(κ)2

)
−

(
12κ

p
2−1(I p

2−2(κ)) + I p
2 (κ)

I p
2−1(κ)2

)]
dx

(10)



Moving terms that do not depend on x integral, we have:

gκ,κ =
κ
p
2−1

(2π)
p
2

1

I p
2−1(κ)

∫
x

eκµ
tx

(
1

κ2

)
[
(κµtx)2 + 2a(κµtx) + a2

]
dx

(11)

a =
( p2−1)I p

2
−1(κ)−κ2

(
I p
2
−2(κ)+I p

2
(κ)

)
I p
2
−1(κ)

where we can define as:

gκ,κ =
1

κ2

(
κ2 < cosθµ >

2 +2aκ < cosθµ > +a2

)
(12)

Where, < cosθµ >=
∫
g
yeydy when y = κµTx

< cosθµ >=
∫
g
yeydy when y = κµTx

In the above we can set p = 3 since we are dealing with a
vMF distribution over a 2D field of surface normals.

2) Computing gκ,µ: We commence by computing

gκ,µ =

∫
p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂µ
log p(X|θ)dx (13)

Again, substituting for the vMF distribution, we have:

gκ,µ =

∫
x

(2π)
p
2 I p

2−1(κ)

κ
p
2−1

e−κµ
tx

[
∂

∂κ

(
κ
p
2−1

(2π)
p
2 I p

2−1(κ)
eκµ

tx

)]
[
∂

∂µ

(
κ
p
2−1

(2π)
p
2 I p

2−1(κ)
eκµ

tx

)]
dx

(14)

Perfoming the partial derivatives with respect to κ and µ
and collecting terms together:

gκ,µ =

[
2
(
p
2 − 1

)
I p

2−1(κ)− κ
(
I p

2−2(κ)− I p
2 (κ)

)
2(I p

2−1(κ))2

]
∫
x

κ
p
2−1

(2π)
p
2 I p

2−1(κ)
(eκµ

tx)xdx

(15)

Since∫
x

κ
p
2
−1

(2π)
p
2 I p

2
−1(κ)

(eκµ
tx)xdx =

∫
x
fp(x, κ, µ)xdx

is just the mean f(x, κ, µ) we have:

gκ,µ =

[
2
(
p
2 − 1

)
I p

2−1(κ)− κ
(
I p

2−2(κ)− I p
2 (κ)

)
2(I p

2−1(κ))2

]
µ

(16)

3) Computing gµ,µ: Finally, we compute:

gµ,µ =

∫
x

p(x|θ) ∂
∂µ

log p(x|θ) ∂
∂µ

log p(x|θ)dx (17)

Again, substituting for the vMF distribution and performing
the partial derivative with respect to µ

gµ,µ =
κ
p
2−1

(2π)
p
2 I p

2−1(κ)

∫
x

(e−κµ
T x)
[
(eκµ

tx)κx
]2
dx (18)

gµ,µ =
κ
p
2−1

(2π)
p
2 I p

2−1(κ)

∫
x

(κx)2eκµ
T xdx

=

∫
x

fp(x, κ, µ)(κx)2dx = κ2µµT

= γ(κ)µµT (19)

Substituting for the elements of the metric tensor gκ,κ, gκ,µ
and gµ,µ, the (4×4) Fisher information matrix (M) are:

M =

(
g

(1×1)
κ,κ g

(1×3)
κ,µ

g
(3×1)
µ,κ g

(3×3)
µ,µ

)
=

(
α(κ) β(κ)µT

β(κ)µ γ(κ)µµT

)
We make use of the Fisher-Rao metric to compute the

geodesic distance between the two parametric densities. Con-
sider two corresponding 4x4 image regions for which the
estimated parameter vectors are: θak = (κak , µak

)T and
θbk = (κbk , µbk

)T and the mean concentration parameter and
mean vector are κ̂ = 1

2 (κak + κbk) and µ̂ = 1
2 (µak + µbk).

For small changes in parameters the geodesic distance
between parameter vectors is:

ds2
ak,bk

= α(κ̂)(κak − κbk)2

+ 2β(κ̂)µ̂T (κak − κbk)(µ
ak
− µ

bk
)

+ γ(κ̂)(µ
ak
− µ

bk
)T µ̂µ̂T (µ

ak
− µ

bk
). (20)

Now, to discover the desired geodesic between two paramet-
ric densities, we can use the Fisher-Rao metric (7) to calculate
the distance between the faces.

ds2 = α(κ̂)(κ̂1 − κ̂2)2 + µT (µ1 − µ2)[2β(κ̂)(κ1 − κ2)

+ γ(κ̂)µT (µ1 − µ2)] (21)

To compute the total facial dissimilarity, we sum the
geodesic distances over all 4x4 non-overlapping image blocks.
The total dissimilarity is given by

D2
a,b =

∑
k

ds2
ak,bk

(22)



C. Embedding Techniques

To visualise the distribution of geodesic distances we use a
number of manifold embedding techniques to embed the facial
shapes into a two-dimensional pattern space. The method
studied is multi-dimensional scaling (MDS) [25]. We compare
the results with the other two embeddings systems: heat
kernel [26] and commute time [27]. MDS is a family of
methods that maps measurements of similarity or dissimilarity
among pairs of feature items, into distances between feature
points with given coordinates in a low-dimensional space.
The first step is to compute the squared distance matrix
DS = [D2

a,b)]a, b = 1, ..., n. This matrix is subjected to
the eigendecomposition DS = ΦDΛΦTD where ΛD is the
diagonal eigenvalue matrix with the eigenvalues ordered in
decreasing size along the leading diagonal. The embedding
co-ordinate matrix YD =

√
ΛDΦTD has the vectors of em-

bedding co-ordinates of the n data-points as columns. Both
the heat kernel embedding and the commute time embedding
commence from the Laplacian matrix. Let W = exp[−kDS]
be the matrix with elements W (a, b) = exp[−kDS(a, b)]
where k is a scaling constant. The Laplacian matrix is L =
D−W where D is the diagonal degree matrix with elements
D(a, a) =

∑n
b=1W (a, b). The eigendecomposition of the

Laplacian matrix is L = ΦLΛLΦL. From the eigendecompo-
sition it is straightforward to compute the co-ordinate matrices
of both the Laplacian eigenmap YL =

√
ΛLΦTL and the heat-

kernel embedding YH = exp[−ΛLt]Φ
T
L . The commute-time

between nodes a and b is the expected number of steps for
a discrete-time random walk to reach node b from a and
then return again. The embedding which preserves commute
time as Euclidean distance between nodes has co-ordiante
matrix YC = V ol√

Λ−
ΦT− where V ol =

∑N
a=1D(a, a) is the

volume and Λ− and Φ− are matrices obtained by deleting
the rows and columns corresponding to zero elements of the
Laplacian eigenvalue matrix. We assess the quality of the
resulting low-dimensional data representation by evaluating to
what extent the local structure of the data is retained. The
evaluation is performed by measuring the generalization error
of a 1-nearest neighbour (1-NN) classifier that is trained on the
low-dimensional data representation. Here an object is simply
assigned to the class of its nearest neighbour [28],In addition,
we use the Rand Index to assess the degree of agreement
between two partitions of the same set of objects. Based
on extensive empirical comparison of several such measures,
(Milligan and Coooper, 1986) recommended the Rand Index
as the measure of agreement even when comparing partitions
having different numbers of clusters [29],

IV. EXPERIMENTAL RESULTS

Our experiments are concerned with assessing shape varia-
tion in fields of surface normals due gender difference. We
aim to explore if the techniques described can be used to
distinguish the gender of different subjects.

The procedure adopted is as follows. We estimate fields
of surface normals by computing the derivatives of the height

data, and projecting these onto a fronto-parallel plane. We refer
to the fields of surface normals obtained as facial needle-maps.
We align the needle-maps obtained from the different range
of images to give the maximum overlap (correlation). Each
field of surface normals is tessellated into non-overlapping 4x4
blocks. For each pair of blocks, we estimate the mean surface
normal direction and the concentration parameter. For each
pair of facial needle-maps be compute the Fisher-Rao metric
on a block-by-block basis, and then compute the dissimilarity
by summing over the blocks. For the set of n faces under
consideration we construct a n × n dissimilarity matrix. We
then apply embedding technique (MDS) to the dissimilarity
matrix to obtain embedding co-ordinates for the n faces.

We use MDS, heat kernel and commute time embedding
technique to analyze the experiments (details about those
techniques III-C are described in the Section III-C). Also,
we assess the quality of the resulting low-dimensional data
representation by evaluating to what extent the local struc-
ture of the data is retained. The evaluation is performed by
measuring the Classification error of a 1-Nearest Neighbour
(1-NN) classifier that is trained on the low-dimensional data
representation. Here an object is simply assigned to the class
of its nearest neighbour.In addition, we use the Rand Index to
assess the degree of agreement between two partitions of the
same set of objects. Based on extensive empirical comparison
of several such measures, Milligan and Coooper, 1986 [29]
recommends the Rand Index as the measure of agreement
even when comparing partitions having different numbers of
clusters.

A. Gender Discrimination

We experiment on two sets of data. One is the ground-
truth needle-maps calculated from the Max Planck data set.
The Max-Planck Face Database [30] [31] comprises 200 (100
females and 100 males) laser scanned (Cyberware TM) human
heads without hair. The facial needle-maps are obtained by
first orthographically projecting the facial range scans onto
a frontal view plane, and then aligning the plane according
to the eye centers, and cropping the plane 142x124 pixels to
maintain only the inner part of the face. Finally, the surface
normal at each pixel position is computed using gradients of
the processed range image.

Figures 3 and 4, show MDS embedding of the pattern of
distances into a 2-dimensional space for, respectively, Max
Planck data set and EAR data set.

These MDS embedding show the best results achieved using
1-NN classifier. The blue markers are used to denote male
subjects, and the red ones female subjects. We can draw
the following conclusions from these plots. First, turning our
attention to the embedding, using the Fisher-Rao metric the
distribution of male and female markers are concentrated
differently. In particular the female markers are more densely
concentrated. This would suggest that probabilistic separation
may be feasible, and the unambiguous male subjects sepa-
rated from the female ones. Second, it is worth noting that
attempting to discriminate male and females faces on the basis
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Fig. 3. Gender difference - Max Planck data set.
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Fig. 4. Gender difference - EAR data set.

of shape alone is a difficult task, and human observers make
numerous additional cues such as hair-style.

Table I shows the results using 1-NN classifier training for
MDS, Heat Kernel and Commute Time. The results achieved
in MDS gives the best result achieved so far. We have 96%
of recognition using Max Plank data set and 97% using EAR
data set. Using the other two embedding we got an average
of 60% of recognition.

See Table II, we analyse that using Rand Index classifier
training we achieved the best results using heat kernel em-
bedding technique, the average for both data set is 80% of
recognition.

We observe in Table I that the performance from the 1-NN
classifier gave the best result using MDS embedding technique
for both Data sets. Table II shows that, using Rand Index
technique, the best result for both data sets is heat kernel
embedding. Also, commute time is not a good classifier for
both Classification errors technique.

TABLE I
CLASSIFICATION ERROR OF 1-NN CLASSIFIER

Embedding Max Planck data set EAR data set
MDS 0.0455 0.028

Heat Kernel 0.4697 0.3333
Commute Time 0.4242 0.4091

V. GENDER IDENTIFICATION PERFORMANCE

Compared to the results from Section IV-A, it is clear
that using Fisher-Rao metric to classify gender difference
provide best results. Recognising gender difference is an
advance of the research in the field to recognise gender

TABLE II
CLASSIFICATION ERROR OF RAND INDEX

Embedding Max Planck data set EAR data set
MDS 0.1450 0.3200

Heat Kernel 0.1200 0.1950
Commute Time 0.4900 0.4900

TABLE III
GENDER IDENTIFICATION PERFORMANCE

Related Works Gender Identification Performance
Lu Xiaoguang et al. [33] 97%
Wen Yi Zhao et al. [34] 93%

Zing Wu [32] 97%
Ziyi Xu et al. [35] 92, 38%

Volker Blanz et al. [36] 84, 75%

difference. Also, we can compare our results with the work by
Wu [32], which developed statistical methods to find gender
discriminating features from facial needle-maps. The method
constructs a gender sensitive weight maps to quantify the
non-uniform distribution, and develop three novel variants of
PGA, namely, weighted PGA, supervised weighted PGA, and
supervised PGA. The weight map used in weighted PGA is
a straightforward difference between the mean faces of the
men and women. The best classification accuracy achieved
using supervised weighted PGA is of 92.5%. This accuracy
is not only higher than that achieved using standard PGA
(87.5%), but also higher than the accuracy of 88.5% achieved
using linear discriminant analysis. To improve this weight
map construction in supervised weighted PGA by learning the
weight map from all the labeled data. Unlike the above two
methods, the weight map in supervised PGA describes the
pairwise relationship between labeled data. The weight maps
are incorporated into the construction of gender discriminating
models, and these models are used to extract gender discrimi-
nating features. For this method the classification accuracy in
the work is of 97%. Also, Lu Xiaoguang et al. [33] proposed
a multimodal facial gender and ethnicity identification. Two
different modalities of human faces, range and intensity are
explored. The range information, containing 3D shape of the
face object, is utilized for ethnicity identification; Wen Yi
Zhao et al. [34] proposed a method based on shape-from-
shading (SFS) which improves the performance of a face
recognition system in handling variations due to pose and
illumination via image symsthesis. In the Table III, we can
observe a comparative with the related works. Ziyi Xu et al.
[35] proposed a novel hybrid face coding method by fusing
appearance features and geometric features. Volker Blanz et
al. [36] presented a method for face recognition across large
changes in viewpoint. The method is based on a Morphable
method of 3D faces that represents face-specific information
extracted from a dataset of 3D scans.

Analyzing the Table III, our research compared to related
works achieved the best performance. We achieved 97, 20%
using EAR data set with classification error 1-NN. Also, we
have a success using classification error of Rand Index with
88% of identification using Max Plank data set.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we are able to show a notion of distance,
using Fisher-Rao metric, between fields of surface normals
on a shape manifold. The immediate next step is to construct
individual shape-spaces for each class of object. Another line
of investigation will be to revisit the problem of computing
geodesic distance between needle-maps, in a way that explic-
itly accounts for the shape of manifold on which they reside.

The overall goal of this paper was to use statistical shape
analysis to construct shape-spaces that span gender difference
by facial needle-maps, and use the resulting shape-model
to perform face recognition under varying expression and
gender. Facial needle-maps describe the local orientation of
facial surfaces, which on one hand reveal the facial shape
information, and on the other hand can be recovered from
2D images using shape-from-shading.

There are clearly a number of ways in which this work
may be extended. We have concentrated on frontal view facial
surfaces and we can only recover facial shapes from images
with the same viewpoint. We calculate the four distances
(Section II) and Fisher-Rao metric (Section III) using 2.5D
frontal images from Max-Planck face database [30] and Notre
Dame biometric database [37]. Even though the ability to deal
with varying pose is almost always claimed to be a benefit of
3D face capture, this problem could be solved by incorporating
our methods into a set of view-based models similar to those
proposed by Pentland et al. [38] and Reisfeld et al. [39] which
proposed that a set of separate submanifolds can be obtained
by applying PGA to facial needle-maps of each viewpoint.
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