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Fig. 1. Teasing the need for inhomogeneity correction prior to skull stripping in high magnetic resonance field images (e.g.
3 Tesla). Left: Segmentation made by a popular automatic method. Right: Improved skull stripping applying a novel proposed
iterative inhomogeneity correction methodology.

Abstract—Bias field (inhomogeneity) correction and skull strip-
ping are initial standard procedures in medical image analysis
of the human brain. Several works have investigated the effects
of prior inhomogeneity correction on skull stripping using 1.5
Tesla magnetic resonance (MR) images, but this question remains
unanswered for higher magnetic fields. This paper fills this
gap using 3 Tesla MR-images, by proposing a novel alternate
sequence of skull stripping, morphological operations, inhomo-
geneity correction and intensity standardization, with the first
at the beginning and end of the sequence, denominated Iterative
Skull Stripping methodology. Conversely to what happens in 1.5T
images, experimental evaluation shows that, in 3 Tesla datasets,
inhomogeneity effect plays an important role in stripping the
brain. This observation produces a deep impact on previous and
future studies that rely on skull stripping operation.

Keywords-Image Segmentation, Brain Magnetic Resonance
Imaging, Inhomogeneity/Bias Correction, Standardization, Skull

Stripping

I. INTRODUCTION

Skull stripping and inhomogeneity (non-uniformity or bias

field) correction are two important procedures that compose

most of the frameworks in medical image analysis of the

human brain [1], [2], [3], [4]. Recent reviews of bias field

correction algorithms [5], [6], [7] analyzed the effects of skull

stripping prior to the inhomogeneity correction in 3 Tesla (3T)

images. For instance, [7] evaluated the Nonparametric Nonuni-

form intensity Normalization method [8] in a 3T database

using different configurations. They concluded that bias field

correction can be improved as long as a precise input brain

mask is provided. However, the question whether prior inho-

mogeneity correction improves skull stripping in 3T images
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remains open. Reviews about skull stripping methods [9],

[10] restricted their bias field investigations to 1.5 Tesla

MR datasets and synthetic images. For these MR modalities,

authors in [10] concluded that inhomogeneity correction did

not improve significantly the stripped brain in any condition.

This paper fills the gap of evaluating the influence of

inhomogeneity over skull stripping methods in 3T MR-images.

Our analysis shows that, in contrast to what happens in

1.5T and in synthetic images, some of the standard solutions

underestimate brain tissues in the external cortical area and

around the cerebellum.

Since inhomogeneity effects are stronger in higher magnetic

fields, it is extremely important to define the optimal solu-

tion for this modality. In order to improve previous results

of the standard state-of-art algorithms like Brain Extraction

Tool [11], we propose a novel methodology denominated

Iterative Skull Stripping (ISS) that extracts the brain by

iteratively applying an alternate sequence of skull stripping,

morphological operations, inhomogeneity correction, intensity

standardization, and skull stripping.

In the rest of this paper, Section II describes the evaluated

methods. The ISS solution is presented in Section III; Sec-

tion IV contains the experimental analysis and results; finally,

conclusions are summarized in Section V.

II. METHODS DESCRIPTION

In this section, we will briefly describe the evaluated

methods. Brain Extraction Tool [11] (BET) is a popular skull

stripping method. It uses the regional intensity properties to

compute the driving forces that push a template outward.

Robust regional image intensity minimum and maximum are

obtained from the histogram by excluding intensity outliers.

BET makes use of a nonlinear smoothness constraint on the

deformable model.

Nonparametric Nonuniform intensity Normalization [8]

(N3) is an up-to-date powerful technique for correcting the

intensity inhomogeneity in MR-images. It achieves high per-

formance without the construction of tissue intensity or geo-

metric models beforehand. N3 uses a deconvolution kernel to

correct the smoothing caused by the bias field, sharpening the

intensity histograms. Distinctly from the majority of the other

methods, N3 can be executed prior to skull stripping, since it

does not require a brain delineation.

The method presented in [12] that we will refer to as

Reference Voxel (RV) is a recent algorithm for inhomogeneity

correction. It assumes that white matter (WM) voxels are not

far from other brain voxels. Bias field is estimated based

on relationships between global maximal intensity and local

maxima restricted to an adaptive spherical adjacency centered

in each voxel.

III. ITERATIVE SKULL STRIPPING METHODOLOGY

We start this section by showing the differences and prob-

lems faced when stripping the brain in 1.5T and in 3T

datasets. Although contrast between gray matter (GM) and

WM tissues is improved in 3T, the gradient between GM

and cerebral-spinal fluid (CSF) is weaker due to stronger

bias field (Figure 2). It is expected that brain boundaries

composed by such weaker edges are harder to be distinguished.

Figure 3 shows common segmentation problems that arise

when segmenting 3T images with BET and an alternative

method called Clouds [13] with their standard parameters.

We can conclude from the presented analysis and previous

studies [7] that inhomogeneity correction and skull stripping

are mutually dependent tasks in 3T images. On one hand, most

inhomogeneity correction methods require a brain mask as

input. Bias field correction by N3 without the input mask is not

as effective as we show in the experiments of Section IV. On

the other hand, stripping the brain from the original image usu-

ally results in underestimation of the brain volume (Figure 3).

To handle this circular reference problem, we propose the

ISS solution that uses alternately any combination of methods

for inhomogeneity correction and skull stripping, along with

morphological operations and intensity standardization. First,

ISS strips the brain from the original image just to have an

estimation of the brain mask (Figure 4(a-c)). As the brain mask

is underestimated, the mask is dilated and used as input to

an inhomogeneity correction algorithm (Figure 4(d-e)). The

complement of the dilated mask is computed, multiplied by

the original image and added to the corrected brain (Figure 4(f-

g). The combined image now has the brain region free from

inhomogeneity effects and can be stripped again with more

precision (Figure 4(h).

It is important to note that the corrected brain of Fig-

ure 4(e) may be standardized [14] to the source image domain.

Standardization is specially important if the inhomogeneity

correction method changes the range of the intensities since,

the corrected brain restricted to the dilated mask from the first

stripping operation is combined with the mask complement

multiplied by the input image in order to restore the entire

image domain.

Algorithm 1 summarizes the main ideas of ISS. In Lines

1 and 2, the iteration number and the current full image are

initialized. Line 3 executes the first skull stripping required

at the beginning of the process. The remaining code (Lines

3 to 12) is the main loop of the algorithm. When the last

iteration is achieved (checked in Line 4), the execution is

over, and the stripped brain is returned (Line 13). Lines 5 to 6

compute a binary brain mask and dilate it using mathematical

morphology, to ensure that most of the brain is contained

in the mask. Dilation may be performed or not based on

the employed skull stripping method behavior. The current

image, restricted to the dilated binary mask, is then corrected

from bias effects (Line 7). After that, the corrected brain is

standardized (Lines 8) and added to the complement mask

of the dilated brain, multiplied by the original image (Line

9).Finally, iteration number is updated (Line 10), the brain

is segmented from the composed image I (Line 11), and

execution jumps back to Line 4.

Note that one might employ different parameters or even

distinct skull stripping and inhomogeneity correction algo-

rithms in each iteration. Also, instead of using a defined
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Fig. 2. (a) 1.5 Tesla image and (b) its gradient. (c) 3.0 Tesla image and (d) its gradient. Edges between CSF and dura matter, and between GM and CSF in
the cortex region are clearer in 1.5 Tesla images.

(a) (b)

Fig. 3. (a) Brain segmented by BET. (b) Segmentation performed by Clouds. Input image is shown in Figure 2(c). Using standard parameters, both methods
underestimated brain tissues.

number of iterations T , the user might stop execution when

M is satisfactory, in a semi-automatic fashion. We observed

that in practice, two iterations of the algorithm (i.e. T = 2)

are enough to achieve good results.

IV. EXPERIMENTS AND RESULTS

The following experiments elucidate the influence of single

and iterative inhomogeneity correction over skull stripping in

3 Tesla database. For this purpose, we combine BET skull
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Fig. 4. Sample of ISS algorithm execution. The numbers inside quotation marks refer to the lines of algorithm 1. Intensity standardization is not showed
here, since inhomogeneity correction did not change the original range. (a) Input brain sagittal slice. (b) First skull stripping “Line 3”. (c) Binary brain mask
“Line 5”. (d) Dilated brain mask “Line 6”. (e) Intensity correction of the input image restricted to the dilated mask “Line 7”. (f) Binary mask containing the
complement of the stripped brain “Line 9”. (g) Addition of the corrected brain and the complement of the input brain “Line 9”. (h) Final skull stripping from
the image (g) “Line 11”.

Algorithm 1: Iterative Skull Stripping

Inputs: Image I0, number of iterations T .
Outputs: Stripped Brain M .
Auxiliary: Variable t, temporary images B,D, I, J,K,M .

1: I ← I0.
2: t← 1.
3: M ← Brain(I).
4: while t 6= T do
5: B ← Binary(M).
6: D ← Dilate(B). {Optional. Use D ← B if B is large enough.}
7: J ← Correction(I,D).
8: K ← Standardize(J, I0).
9: I ← SUM(Complement(I0, D),K).
10: t← t+ 1.
11: M ← Brain(I).
12: end while
13: Return M .

stripping method with RV and N3 inhomogeneity correction

procedures. To the best of our knowledge there is no public

3 Tesla database with skull stripping ground-truth. Therefore,

we used a database composed by 10 T1-images of 3T. The

individuals are males and females, from 24 to 53 years old,

and they have normal brains. The scanner is a 3T scanner

(Philips Achieva), - T1- weighted 3-dimension gradient echo

with 1mm isotropic voxels, acquired in the sagittal plane (1mm

thick, flip angle, 8; TR, 7.1; TE, 3.2; matrix, 240x240; e FOV,

240x240cm). Ground-truths (GTs) were manually delineated

by a specialist.

Even though it is possible to achieve better results by ajust-

ing the parameters of the skull stripping methods, sometimes

this procedure is not practical. It takes time and requires extra

effort of the user to evaluate several segmented images. For

instance, in a population study containing hundreds of subjects

it is unfeasible to analyze skull stripping results of each image

with different parameters. In this case, one can choose default

parameters or select the parameters based on a few samples.

We ran several experiments over our dataset and observed that

the best set of parameters differs for each image.

Therefore, we executed experiments using the default pa-

rameters of considered methods according to the expected

and/or suggested settings given by the authors. For BET, we set

the center of gravity manually, by using ’-c’ parameter, as sug-

gested in FMRIB Software Library (FSL) website1, because

images have a large portion of the neck. BET parameter ’-c’

was set to 90 120 155. These coordinates correspond to Right-

Left, Posterior-Anterior, and Inferior-Superior orientations,

respectively.

First, skull stripping was performed in original images

(BET). Than, we compared these results to BET skull stripping

after inhomogeneity correction by N3 without brain mask

input and default parameters (N3+BET). Then, we tested ISS

methodology in the framework of Algorithm 1, employing

two skull stripping iterations with the configurations: BET,

followed by N3 and BET (ISS:BET+N3+BET), and BET,

followed by RV and BET (ISS:BET+RV+BET). Both N3 and

RV were executed with default parameters. We also tried to

correct inhomogeneity using N3 without a brain mask input,

prior to the first skull stripping, that is ISS:N3+BET+RV+BET

and ISS:N3+BET+N3+BET, but it did not improve the results

of ISS:BET+RV+BET and ISS:BET+N3+BET, respectively.

ISS was tested with five different morphological dilation

operations, using spherical kernel of radius 2.0mm, 3.0mm,

1http://www.fmrib.ox.ac.uk/fsl/



4.0mm, 5.0mm, and 6.0mm.

The best results for both ISS:BET+N3+BET and

ISS:BET+RV+BET were achieved using a dilation with radius

of 5mm. Dilation by smaller radius usually underestimate the

brain volume. Using larger radius, excessively increases the

mask volume, reducing the effectiveness of the inhomogeneity

correction algorithms. Therefore, we just present results of

ISS using radius of 5mm. Table I summarizes the accuracy

of the evaluated methodologies using the Dice metric [15]

between each result and its respective GT. ISS:BET+N3+BET

achieved the best results for most of the images, followed by

ISS:BET+RV+BET, N3+BET, and BET.

Dice metric may be biased by a small differences as one

voxel distance between the result and the GT. To achieve

more robust result analysis [16], we also present in Tables II

and III the mean Euclidean distance error and the mean

Euclidean square distance error between the segmented and

the ground-truth boundaries, respectively. The results corrob-

orate with Dice metric evaluation that ISS:BET+N3+BET and

ISS:BET+RV+BET are the best options for stripping the brain.

It is specially interesting to note that ISS:BET+N3+BET and

ISS:BET+RV+BET produced the best rates in all cases, 7 and

3, respectively, using square Euclidean distance metric, which

assigns greater penalty to longer distances.

The differences among ISS:BET+N3+BET, N3+BET, BET

with respect to the mean square Euclidean distance are

all statistically significant according to pairwise t-tests with

p < 0.01. The only statistically significant involving

ISS:BET+RV+BET according to the same criteria relates to

BET methodology.

TABLE I
DICE METRIC ACCURACY OF BET SKULL STRIPPING (IN PERCENT).

CELLS CONTAIN MEAN VALUES OF BET, N3+BET, ISS:BET+RV+BET,
AND ISS:BET+N3+BET BY ISS METHODOLOGY. HIGHER VALUES

INDICATE BETTER RESULTS. THE BEST RESULTS ARE IN RED.

Image BET N3+BET ISS: ISS:
BET+RV+BET BET+N3+BET

0 95.18 95.38 95.27 95.67
1 94.19 94.88 96.39 96.30
2 94.00 94.51 94.85 95.17
3 94.32 94.72 95.17 95.30
4 94.59 95.49 95.72 95.81
5 95.15 95.43 95.50 95.58
6 95.49 95.62 95.43 95.78
7 93.96 94.12 94.72 94.76
8 94.49 94.70 94.93 95.08
9 94.63 95.24 94.83 95.50

Mean 94.60 95.01 95.27 95.50

Figures 5 to 7 show qualitative results in sagittal, coro-

nal, and axial slices of the brain, respectively. In Figure 5,

ISS:BET+RV+BET segmented the anterior superior part of the

parietal lobe with more precision than the other methodolo-

gies. The same can be said about the left and right portion

of the cerebellum in Figure 6. In Figure 7, on the other

hand, ISS:BET+N3+BET significantly improved the results of

BET segmentation all around the cortical region. Therefore,

inhomogeneity correction improvements are remarkable. We

TABLE II
MEAN EUCLIDEAN DISTANCE METRIC ACCURACY OF BET SKULL

STRIPPING (IN PERCENT). CELLS CONTAIN MEAN VALUES OF BET,
N3+BET, ISS:BET+RV+BET, AND ISS:BET+N3+BET BY ISS

METHODOLOGY. LOWER VALUES INDICATE BETTER RESULTS. THE BEST

RESULTS ARE IN RED.

Image BET N3+BET ISS: ISS:
BET+RV+BET BET+N3+BET

0 1.49 1.42 1.41 1.33
1 2.18 2.02 1.46 1.51
2 1.77 1.62 1.54 1.47
3 1.68 1.57 1.40 1.37
4 1.80 1.53 1.41 1.39
5 1.76 1.65 1.53 1.52
6 1.54 1.52 1.57 1.44
7 1.89 1.85 1.69 1.67
8 1.68 1.59 1.54 1.49
9 1.74 1.58 1.64 1.48

Mean 1.75 1.64 1.52 1.47

TABLE III
MEAN SQUARE EUCLIDEAN DISTANCE METRIC ACCURACY OF BET

SKULL STRIPPING (IN PERCENT). CELLS CONTAIN MEAN VALUES OF BET,
N3+BET, ISS:BET+RV+BET, AND ISS:BET+N3+BET BY ISS

METHODOLOGY. LOWER VALUES INDICATE BETTER RESULTS. THE BEST

RESULTS ARE IN RED.

Image BET N3+BET ISS: ISS:
BET+RV+BET BET+N3+BET

0 3.57 3.15 3.12 2.65
1 8.17 6.99 3.39 3.64
2 5.30 4.29 3.76 3.45
3 4.53 3.86 2.74 2.58
4 5.45 3.62 2.83 2.71
5 5.10 4.42 3.38 3.40
6 3.58 3.49 3.54 2.92
7 6.52 6.31 4.52 4.69
8 4.35 3.81 3.37 3.16
9 5.02 3.98 4.25 3.39

Mean 5.16 4.39 3.49 3.26

repeated these qualitative experiments with more than 20 3T

images, and the results were similar.

The main drawback of ISS methodology is its relatively

higher computational cost. The execution time T1 of the

traditional approach composed by inhomogeneity correction

and skull stripping is given by

T1 = TI + TS , (1)

where TS and TI are the execution times of the skull stripping

and inhomogeneity correction algorithms, respectively. Using

ISS with one iteration, the execution time TISS is given by

TISS = TI + 2TS + TD + TA + TP , (2)

where TD, TA, and TP are the execution times of the bi-

nary morphological dilation, intensity standardization, and the

voxel-based image operations (i.e. addition, complement, and

multiplications), respectively. Therefore, we have:

TISS = T1 + TS + TD + TA + TP . (3)

In practice, TI may be different in Equations 1 and 2, since

the inhomogeneity correction is applied to the entire image in

the first case, and in the second it is restricted to the dilated
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Fig. 5. Results of skull stripping with default parameters in a sagittal slices of image 1 from the quantitative experiments performed by methodologies: (a)
Manual segmentation, (b) BET, (c) N3+BET, (d) ISS:BET+RV+BET, and (e) ISS:BET+N3+BET.

brain. This is the case of N3 as it is used in N3+BET and

ISS:BET+N3+BET approaches (e.g. Image 4 in Table IV).

Table IV displays the single-thread execution time of each

methodology over our dataset. The tests were executed in an

Intel Core i5-2400 PC, with 4GB of memory.

TABLE IV
EXECUTION TIME OF BET SKULL STRIPPING IN SECONDS. CELLS

CONTAIN MEAN VALUES OF BET, N3+BET, ISS:BET+RV+BET, AND

ISS:BET+N3+BET BY ISS METHODOLOGY. LOWER VALUES INDICATE

BETTER RESULTS.

Image BET N3+BET ISS: ISS:
BET+RV+BET BET+N3+BET

0 4.01 15.31 19.95 22.44
1 4.00 17.46 20.65 24.83
2 3.90 19.72 19.55 23.74
3 4.05 16.86 21.74 26.01
4 4.28 28.98 22.15 30.43
5 3.86 19.58 19.33 24.55
6 4.76 16.94 23.25 27.09
7 4.76 23.29 23.09 30.24
8 4.28 18.43 21.04 25.02
9 4.32 25.61 20.62 27.26

Mean 4.22 20.21 21.13 26.16

V. CONCLUDING REMARKS

The main contribution of this paper is showing that, in

3T datasets, inhomogeneity effect plays an important role

while stripping the brain, contrarily to what happens is 1.5T

images. To the best of our knowledge, this is the first study

demonstrating the inhomogeneity influence over skull strip-

ping algorithms using a 3T MR database. This observation

produces a deep impact on previous and future studies that

rely on skull stripping operation.

After noting that the combination N3+BET provides better

results than skull stripping with no bias-field correction, we

also propose an iterative methodology to correct inhomogene-

ity at the same time that brain is stripped and standardized,

called ISS. Even though ISS demands higher execution time,

it proved to be simple, accurate, and versatile, because it can

virtually use any combination of methods for inhomogeneity

correction and skull stripping.

There are several popular inhomogeneity correction and

skull stripping methods such as Brain Surface Extractor and

Bias Field Corrector [17] from BrainSuite2 framework; Hybrid

Watershed Algorithm (HWA) [18] contained in Freesurfer3;

and Clouds [13] among others. We will consider them and

more extensive evaluations in future works.
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