THE EXPERT’S VOICE® IN JAVA

- ,llilf!///ﬁ L &

Java Quick
Syntax Reference

Mikael Olsson

S/ S S S SIS IITTTZ =~
Ap ress®

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Authorcccnvsmmmismmsn s ————— Xi
INtroduction ... —————— Xiii
Chapter 1: Hello World..........cccuunmmmmmmmmmnmmmmmmmmmsssssssssssssssssssssssssnns 1
Chapter 2: Compile and RuN..........cccinninemmmmmsssssmmmmsssssnmsssssssnnssssnns 3
Chapter 3: Variablescccuemmmimsssennmmnssssssnmsssssssssssssssssssssssssssssssnns 5
Chapter 4: 0peratorscccueemmmmsssssnmmmsssssnmmsssssssssssssssssssssssssnsssssnns 9
Chapter 5: Stringcccceeeeemmmmmmmmmsssssssssnnnmes s ssssssnsens 13
Chapter 6: Arraysccccrrssssessmmssssssssmssssssssssssssssssssssnssssssssnnnssssnans 15
Chapter 7: Conditionalsccccussemmmmsssssnnmmssssssnmssssssssssssssnsnsssssans 19
Chapter 8: LOOPS.....cuuuemmmmsssssnnmmssssnsnssssssnnnssssssnsnssssssnnnsssssnnnnssssnnns 21
Chapter 9: Methodsccusemmmmnssnnnnmsssssnnsmssssssnssssssssssessssnsssssssnns 25
Chapter 10: Classccccurrmsssmnnmmsssssssmsssssssnssssssssssssssssssssssssnsssssssnns 29
Chapter 11: StatiC.......cccccmmrrrrmmssssssssssnnnrrssssssss s 35
Chapter 12: Inheritance.........cccunmmememmmmmmmmmmssssss——————— 39
Chapter 13: Overridingccccuumssessssmmmmmmmsssssssssssssssssssssssssssssssnns 41
Chapter 14: Packages and Import..........c.ccccnsmmmmssmmmnsssnssssssssssans 45
Chapter 15: AcCesS LeVelS......uummmmmmmmmmmmmmmmmsssssssssssssssssssssnsssssnsnas 47
Chapter 16: Constants.........ccccvunmmmmmmmsssnnnmmsssssnmsssssssssssssssssssssnnns 51
Chapter 17: Interface......c..ccvssumrmsssmsmsssnsssssnssssssssssssssssssssssssnssssanes 53
iii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS AT A GLANCE

Chapter 18: Abstractccciinnemmmmmnnsemnmmnsssnmmnsssnmsass——— 57

Chapter 19: ENUM.......ceeemmiiiriinissssssssssnsnsesssssssssssssssssssssssssssssnnssnss 59

Chapter 20: Exception Handlingcuccmmmmnsssnnnmmssssssnssssssssssssssnns 61

Chapter 21: Boxing and UnNboOXingcccsemssssmnnsssssssnnsssssnsnsssssnnns 65

Chapter 22: GENEIiCSuurussmrrssansrssanssssansesssnsesssnsesssnnesssnnssssnnssssnns 67
INA@X...oiiissnnnnssssnnnnsssssnnnnnssssnnnssssssnnnnsssssnnnnnssssnnnnnssssnnnnsssssnnnnnnssnnnnnss 73
iv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Java is a high-level object-oriented programming language developed by Sun
Microsystems, which became part of Oracle Corporation in 2010. The language is

very similar to C++, but has been simplified to make it easier to write bug free code.

Most notably, there are no pointers in Java, instead all memory allocation and deallocation
is handled automatically.

Despite simplifications like this Java has considerably more functionality than both
C and C++, due to its large class library. Java programs also have high performance and
can be made very secure, which has contributed to making Java the most popular general
purpose programming language in use today.

Another key feature of Java is that it is platform independent. This is achieved by only
compiling programs half-way, into platform independent instructions called bytecode.
The bytecode is then interpreted, or run, by the Java Virtual Machine (JVM). This means
that any system that has this program and its accompanying libraries installed can run
Java applications.

There are three class libraries available for the Java programming language:

Java ME, Java SE and Java EE. Java ME (Mobile Edition) is a stripped down version of
Java SE (Standard Edition), while Java EE (Enterprise Edition) is an extended version
of Java SE that includes libraries for building web applications.

The Java language and class libraries have undergone major changes since their
initial release in 1996. The naming conventions for the versions have gone through a few
revisions as well. The major releases include: JDK 1.0, JDK 1.1, J2SE 1.2, J2SE 1.3, J2SE 1.4,
J2SE 5.0, Java SE 6 and Java SE 7, which is the current version as of writing.

After J2SE 1.4 the version number was changed from 1.5 to 5.0 for marketing
reasons. As of J2SE 5.0, there is one version number for the product and another one used
internally by the developers. J2SE 5.0 is the product name, while Java 1.5 is the developer
version. Similarly, Java SE 7 is the product and Java 1.7 the internal version number. For
simplicity’s sake, the Java versions will be referred to as Java 1-7 in this book. Note that
Java is designed to be backwards compatible. Thus the Virtual Machine for Java 7 can still
run Java 1 class files.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Hello World

Installing

Before you can program in Java you need to download and install the Java Development
Kit (JDK) Standard Edition (SE) from Oracle’s website.! Among other things, the JDK
includes the Java compiler, the class libraries and the virtual machine needed to run
Java applications. Oracle’s download page also has a link to obtain Netbeans? bundled
with the JDK. Netbeans is an Integrated Development Environment (IDE) that will make
development in Java much easier. Alternatively, another free IDE you can use is Eclipse,®
or if you do not want to use any IDE at all a regular text editor will work just fine.

Creating a project

If you decide to use an IDE (recommended) you need to create a project, which will
manage the Java source files and other resources. Alternatively, if you prefer not to use an
IDE you can create an empty file with the .java extension, for example MyApp.java, and
open it in your text editor of choice.

To create a project in Netbeans, go to the File menu and select New Project. From the
dialog box select the Java Application project type under the Java category and click next.
On this dialog box set the project name to “MyProject” and the name of the main class to
“myproject.MyApp”. Change the project’s location if you want to, and then hit the Finish
button to generate the project. The project’s only file, MyApp.java, will then open up,
containing some default code. You can go ahead and remove all of that code so that you
start with an empty source file.

Hello world

When you have your project and programming environment set up the first application
you will create is the Hello World program. This program will teach you how to compile
and run Java applications, as well as how to output a string to a command window.

'http://www.oracle.com/technetwork/java/javase/downloads/index.html
*http://www.netbeans.org
*http://www.eclipse.org

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.netbeans.org/
http://www.eclipse.org/
http://www.it-ebooks.info/

CHAPTER 1 © HELLO WORLD

The first step in creating this program is to add a public class to your MyApp.java
source file. The class must have the same name as the physical source file without the file
extension, in this case “MyApp”. It is legal to have more than one class per file in Java, but
only one public class is allowed, and that name must match the filename. Keep in mind that
Java is case sensitive. The curly brackets following the class name delimits what belongs to
the class and must be included. The brackets, along with their content, is referred to as a code
block, or just a block.

public class MyApp {}

Next, add the main method inside the class. This is the starting point of the application
and must always be included in the same form as is shown below. The keywords themselves
will be looked at in later chapters.

public class MyApp {
public static void main(String[] args) {}

}

The last step in completing the Hello World program is to output the text by calling
the print method. This method is located inside the built-in System class, and then
another level down inside the out class. The method takes a single argument - the string
to be printed - and it ends with a semicolon, as do all statements in Java.

public class MyApp {
public static void main(String[] args) {
System.out.print("Hello World");
}

}

Note that the dot operator (.) is used to access members of a class.

Code hints

If you are unsure of what a specific class contains, or what arguments a method takes,
you can take advantage of code hints in some IDEs, such as Netbeans. The code hint
window appears anytime you are typing code and there are multiple predetermined
alternatives. It can also be brought up manually by pressing Ctrl + Space. This is a very
powerful feature that gives you quick access to the whole class library and their members,
along with descriptions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Compile and Run

Running from the IDE

With your Hello World program complete you can compile and run it in one of two ways.
The first method is by selecting run from the menu bar of the IDE that you are using.

In Netbeans the menu command is: Run » Run Main Project. The IDE will then compile
and run the application, which displays the text “Hello World”.

Running from a console window

The other way is to manually compile the program by using a console window
(C:\Windows\System32\cmd.exe). The most convenient way to do this is to first add the
JDK bin directory to the PATH environment variable. In Windows, this can be done by
using the SET PATH command, and then by appending the path to your JDK installation’s
bin folder separated by a semicolon.

SET PATH=%PATH%;"C:\Program Files\JDK\bin"

By doing this the console will be able to find the Java compiler from any folder for the
duration of this console session. The PATH variable can also be permanently changed.'
Next, navigate to the folder where the source file is located and run the compiler by typing
“javac” followed by the complete filename.
javac MyApp.java

The program will be compiled into a class file called MyApp.class. This class file
contains bytecode instead of machine code, so to execute it you need to call the Java
Virtual Machine by typing “java” followed by the filename.
java MyApp

Notice that the .java extension is used when compiling a file, but the .class extension
is not used when running it.

'http://www.java.com/en/download/help/path.xml

www.it-ebooks.info

http://www.java.com/en/download/help/path.xml
http://www.it-ebooks.info/

CHAPTER 2 © COMPILE AND RUN

Comments

Comments are used to insert notes into the source code and will have no effect on the
end program. Java has the standard C++ comment notation, with both single-line and
multi-line comments.

// single-line comment

/* multi-line
comment */

In addition to these, there is the Javadoc comment. This comment is used to generate
documentation by using a utility included in the JDK bin folder which is also called

Javadoc.

/** javadoc
comment */

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Variables

Variables are used for storing data during program execution.

Data types

Depending on what data you need to store there are several kinds of data types. Java has
eight types that are built into the language. These are called primitives. The integer (whole
number) types are byte, short, int and long. The float and double types represent
floating-point numbers (real numbers). The char type holds a Unicode character and the
boolean type contains either a true or false value. Except for these primitive types, every
other type in Java is represented by either a class, an interface or an array.

Data Type Size (bits) Description

byte 8 Signed integer

short 16

int 32

long 64

float 32 Floating-point number
double 64

char 16 Unicode character
boolean 1 Boolean value

Declaring variables

To declare (create) a variable you start with the data type you want it to hold followed by
avariable name. The name can be anything you want, but it is a good idea to give your
variables names that are closely related to the values they will hold. The standard naming

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

convention for variables is that the first word should be lowercase and any subsequent
words initially capitalized.

int myInt;

Assigning variables

To give the variable a value you use the assignment operator (=) followed by the value.
When a variable is initialized (assigned a value) it then becomes defined (declared and
assigned).
myInt = 10;

The declaration and assignment can be combined into a single statement.

int myInt = 10;

If you need multiple variables of the same type, there is a shorthand way of declaring
or defining them by using the comma operator (,).

int myInt = 10, myInt2 = 20, myInt3;

Using variables

Once a variable has been defined it can be used by simply referencing the variable’s
name, for example to print it.

System.out.print(myInt);

Integer types

As shown earlier, there are four signed integer types that can be used depending on how
large a number you need the variable to hold.

byte myInt8 // -128 to +127

short myInt16 = 1; // -32768 to +32767
int myInt32 = // -2"31 to +2"31-1
long myInt64 = -1; // -2763 to +2763-1

|
N
-

|
o
-

In addition to standard decimal notation, integers can also be assigned by using
octal or hexadecimal notation.

int myHex = 0xF; // hexadecimal (base 16)
int myOct = 07; // octal (base 8)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Floating-point types

The floating-point types can store integers as well as floats. They can be assigned with
either decimal or exponential notation.

double myDouble = 3.14;
double myDouble2 = 3e2; // 3*10"2 = 300

Note that constant floating-point numbers in Java are always kept internally as doubles.
Therefore, if you try to assign a double to a float you will get an error, because a double has
a higher precision than a float. To assign it correctly you can append an “F” character to the
constant, which says that the number is in fact a float.

float myFloat = 3.14; // error: possible loss
// of precision

3.14F; // ok

float myFloat
A more common and useful way to do this is by using an explicit cast. An explicit

cast is performed by placing the desired data type in parentheses before the variable or

constant that is to be converted. This will convert the value to the specified type, in this

case float, before the assignment occurs.

float myFloat = (float)3.14;

Char type

The char data type can contain a single Unicode character, delimited by single quotes.
char myChar = 'A';

Chars can also be assigned by using a special hexadecimal notation that gives access
to all Unicode characters.

char myChar = '\u0000'; // \u0000 to \uFFFF

Boolean type

The boolean type can store a Boolean value, which is a value that can only be either true
or false. These values are specified with the true and false keywords.

boolean myBool = false;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Variable scope

The scope of a variable refers to the code block within which it is possible to use that
variable without qualification. For example, a local variable is a variable declared within
a method. Such a variable will only be available within the method’s code block, after it
has been declared. Once the scope (code block) of the method ends, the local variable
will be destroyed.

public static void main(String[] args)

{

int localVar; // local variable

}

In addition to local variables, Java has field and parameter type variables, which
will be looked at in later chapters. Java does not, however, have global variables, as
for example does C++.

Anonymous block

The scope of local variables can be restricted by using an anonymous (unnamed) code
block. This construct is seldom used, because if a method is large enough to warrant the
use of an anonymous block, a better choice is often to break up the code into separate
methods.

public static void main(String[] args)

{

// Anonymous code block

{
}

// localVar is unavailable from here

}

int localvar = 10;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Operators

Operators are used to operate on values. They can be grouped into five types: arithmetic,
assignment, comparison, logical and bitwise operators.

Arithmetic operators

There are the four basic arithmetic operators, as well as the modulus operator (%) which is
used to obtain the division remainder.

float x = 3+2; // 5 // addition
X = 3-2; // 1 // subtraction
X = 3*2; // 6 // multiplication
x =3/2; // 1 // division
X = 3%2; // 1 // modulus (division remainder)

Notice that the division sign gives an incorrect result. This is because it operates on
two integer values and will therefore round the result and return an integer. To get the
correct value, one of the numbers must be explicitly converted to a floating-point type.

float x = (float)3/2; // 1.5

Assignment operators

The second group is the assignment operators. Most importantly, the assignment
operator (=) itself, which assigns a value to a variable.

Combined assignment operators

A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

int x = 0;
X += 5; // X = X+5;
X -=5; // X = x-5;
X *= 5; // x = x*5;
x /=5; // x = x/5;
X %=5; // x = x%5;

Increment and decrement operators

Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (--) operators.

+Hx; // x +=1
--x; // x -=1

Both of these can be used either before or after a variable.

++X; // pre-increment
--x; // pre-decrement
x++; // post-increment
x--; // post-decrement

The result on the variable is the same whichever is used. The difference is that
the post-operator returns the original value before it changes the variable, while the
pre-operator changes the variable first and then returns the value.

X =75;y
X =055y

1] 1]
+ x
+ F
x +
Kol
~N O
~
ST

Comparison operators

The comparison operators compare two values and return either true or false. They are
mainly used to specify conditions, which are expressions that evaluate to either true or false.
boolean x = (2==3); // false // equal to

= (21=3); // true // not equal to

(2>3); // false // greater than

(2<3); // true // less than

(2>=3); // false // greater than or equal to
(2¢=3); // true // less than or equal to

X X X X X
1]

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

Logical operators

The logical operators are often used together with the comparison operators. Logical and
(8&) evaluates to true if both the left and right side are true, and logical or (| |) is true if
either the left or right side is true. For inverting a Boolean result there is the logical not (!)
operator. Note that for both “logical and” and “logical or” the right-hand side will not be
evaluated if the result is already determined by the left-hand side.

boolean x = (true &8 false); // false // logical and
x = (true || false); // true // logical or
x = I(true); // false // logical not

Bitwise operators

The bitwise operators can manipulate individual bits inside an integer. For example,
the right shift operator (>>) moves all bits except the sign bit to the right, whereas zero-fill
right shift (>>>) moves all bits right including the sign bit.

int x = 5 & 4; // 101 & 100 = 100 (4) // and
x=51]4; // 101 | 100 = 101 (5) // or
X =5"4; // 101 ~ 100 = 001 (1) // xor
X = 4 << 1;// 100 << 1 =1000 (8) // left shift
X =4 > 1;// 100 >> 1 = 10 (2) // right shift
X = 4 >>>1;// 100 »>>1 = 10 (2) // zero-fill
// right shift
X = ~4; // ~00000100 = 11111011 (-5) // invert

These bitwise operators have shorthand assignment operators, just like the
arithmetic operators.

int x = 5;

&= 5; // "and" and assign
X |=5; // or and assign

X "= 5; // xor and assign
X
X

x

<= 5; // left shift and assign
>>= 5; // right shift and assign
x>>>= 5; // right shift and assign (move sign bit)

Operator precedence

In Java, expressions are normally evaluated from left to right. However, when an
expression contains multiple operators, the precedence of those operators decides the
order that they are evaluated in. The order of precedence can be seen in the following
table. This same order also applies to many other languages, such as C++ and C#.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

Precedence Operator Precedence Operator
1 ++—=1~ 7 &

2 /% 8 A

3 +- 9 |

4 << >>>>> 10 &&

5 <<=>>= 11 I

6 === 12 =op=

For example, logical and (88&) binds weaker than relational operators, which in turn
binds weaker than arithmetic operators.

X = 243 > 1*4 && 5/5 == 1; // true
To avoid having to learn the precedents of all operators and to clarify the intent,
parentheses can be used to specify which part of the expression will be evaluated first.

Parentheses have the highest precedence of all operators.

x = ((243) > (1*4)) & ((5/5) == 1); // true

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

String

The String class in Java is a data type that can hold string literals. String is a reference
data type, as are all non-primitive data types. This means that the variable contains an
address to an object in the memory, and not the object itself. A String object is created in
the memory, and the address to the object is returned to the variable.

As seen below, string literals are delimited by double quotes. This is actually a shorthand
notation for the regular reference type initialization (creation) syntax, which uses the new
keyword.

String a
String b

"Hello";
new String(" World");

Combining strings

The plus sign is used to combine two strings. It is known as the concatenation operator
(+) in this context. The operator has an accompanying assignment operator (+=), which
appends one string to another and creates a new string.

String ¢ = a+b; // Hello World
a += b; // Hello World

Note that while a statement may be divided into multiple lines a string must be on
a single row, unless it is split up by using the concatenation operator.

String x
= "Hello " +
"World";

Escape characters

For adding new lines to the string itself, there is the escape character “\n”. This backslash
notation is used to write special characters, such as backslash or double-quote. Among
the special characters is also a Unicode character notation for writing any character. All of
the escape characters can be seen in the following table.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * STRING

Character Meaning Character Meaning

\n newline \f form feed

\t horizontal tab \ single quote
\b backspace \” double quote
\r carriage return \\ backslash
\uFFFF Unicode character

(4-digit hex number)

String compare

The way to compare two strings is by using the equals method of the String class. If the
equality operator (==) is used, the memory addresses will be compared instead.

boolean x = a.equals(b); // compares string
boolean y = (a == b); // compares address

Bear in mind that all strings in Java are String objects. Therefore, it is possible to call
methods directly on constant strings, just as on variables.

boolean z = "Hello".equals(a);

StringBuffer class

The String class has a large number of methods available, but it does not contain any
methods for manipulating strings. This is because strings in Java are immutable. Once

a String object has been created the contents cannot be changed, unless the whole string
is completely replaced. Since most strings are never modified this was done on purpose
to make the String class more efficient. For cases when you need a modifiable string you
can use the StringBuffer class, which is a mutable string object.

StringBuffer sb = new StringBuffer("Hello");

This class has several methods to manipulate strings, such as append, delete and
insert.

sb.append(" World"); // add to end of string
sb.delete(0, 5); // remove 5 first characters
sb.insert(o, "Hello"); // insert string at beginning

A StringBuffer object can be converted back into a regular string with the toString
method.

String s = sb.toString();

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Arrays

An array is a data structure used for storing a collection of values.

Array declaration

To declare an array, a set of square brackets is appended to the data type the array will
contain, followed by the array’s name. Alternatively, the brackets may be placed after the
array name. Arrays can be declared with any data type and all of its elements must then
be of that type.

int[] x;
int y[1;

Array allocation

The array is allocated with the new keyword, followed again by the data type and a set of
square brackets containing the length of the array. This is the fixed number of elements
that the array can contain. Once the array is created, the elements will automatically be
assigned to the default values for that data type.

int y[] = new int[3];

Array assignment

To fill the array elements they can be referenced one at a time, by placing the element’s
index inside the square brackets, and then assigning them values. Notice that the index
starts with zero.

y[o] = 1;
y[1] = 2;
y[2] = 3;

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * ARRAYS

Alternatively, the values can be assigned all at once by using a curly bracket notation.
The new keyword and data type may be optionally left out if the array is declared at the
same time.

int[] x = new int[] {1,2,3};
int[] x = {1,2,3};

Once the array elements are initialized, they can be accessed by referencing the
elements’ indexes inside the square brackets.

System.out.print(x[o] + x[1] + x[2]); // 6

Multi-dimensional arrays

Multi-dimensional arrays are declared, created and initialized much like one-dimensional
arrays, except that they have additional square brackets. They can have any number of
dimensions, and for each dimension another set of square brackets is added.

string[][] x = {{"00","01"},{"10","11"}};
String[][] y = new String[2][2];

y[o][o] = "00";
y[o][1] = "01";
y[1][o] = "10";
yl1][1] = "11";

System.out.print(x[o][0] + x[1][1]); // "o011"

ArrayList class

An important thing to keep in mind about arrays is that their length is fixed and there are
no methods available to change their size. In fact, the only array member that is regularly
used is length, to obtain the size of the array.

int x[] = new int[3];
int size = x.length; // 3

For cases when a resizable array is needed the ArraylList class can be used, which
islocated in the java.util package. Items in the ArraylList are stored as the generic

Object type. The ArraylList can therefore hold any data types, except for primitives.

// Create an Object ArraylList collection
java.util.Arraylist a = new java.util.Arraylist();

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © ARRAYS

The Arraylist class has several useful methods to change the array, including: add,
set and remove.

a.add("Hi"); // add an element
a.set(0, "Hello"); // change first element
a.remove(0); // remove first element

To retrieve an element from the ArraylList the get method is used. The element
then has to be explicitly cast back to its original type.

a.add("Hello World");
String s = (String)a.get(0); // Hello World

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Conditionals

Conditional statements are used to execute different code blocks based on different
conditions.

If statement

The if statement will only execute if the condition inside the parentheses is evaluated to
true. The condition can include any of the comparison and logical operators.

if (x < 1) {
System.out.print(x + " < 1");

}

To test for other conditions, the if statement can be extended by any number of else if
clauses. Each additional condition will only be tested if all previous conditions are false.

else if (x » 1) {
System.out.print(x + " > 1");

}

The if statement can have one else clause at the end, which will execute if all
previous conditions are false.

else {
System.out.print(x + " == 1");

}

As for the curly brackets, they can be left out if only a single statement needs to be
executed conditionally.

if (x < 1)

System.out.print(x + " < 1");
else if (x » 1)

System.out.print(x + " > 1");
else

System.out.print(x + " == 1");

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © CONDITIONALS

Switch statement

The switch statement checks for equality between an integer and a series of case labels.
It then executes the matching case. The statement can contain any number of cases and
may end with a default label for handling all other cases.

switch (y)

" is 0"); break;

is 1"); break;

is something else");

case 0: System.out.print(y +

case 1: System.out.print(y +

default:System.out.print(y +
}

Note that the statements after each case label are not surrounded by curly brackets.
Instead, the statements end with the break keyword. Without the break the execution will
fall through to the next case. This can be useful if several cases need to be evaluated in the
same way.

The data types that can be used with a switch statement are: byte, short, int and
char. As of Java 7, String types are also permitted.

Ternary operator

In addition to the if and switch statements there is the ternary operator (? :). This operator
can replace a single if/else clause that assigns a value to a specific variable. The operator
takes three expressions. If the first one is evaluated to true then the second expression is
returned, and if it is false, the third one is evaluated and returned.

X = (x < 0.5) ?0: 1; // ternary operator (?:)

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Loops

There are four looping structures in Java. These are used to execute a specific code block
multiple times. Just as with the conditional if statement, the curly brackets for the loops
can be left out if there is only one statement in the code block.

While loop

The while loop runs through the code block only if the condition is true, and will continue
looping for as long as the condition remains true. The loop below will print out the
numbers 0 to 9.

int i = 0;
while (i < 10) { System.out.print(i++); }

Note that the condition for the loop is only checked at the start of each iteration (loop).

Do-while loop

The do-while loop works the same way as the while loop, except that it checks the condition
after the code block. It will therefore always run through the code block at least once.

int i = 0;
do { System.out.print(i++); } while (i < 10);

For loop

The for loop is used to go through a code block a specific number of times. It uses three
parameters. The first parameter initializes a counter and is always executed once, before
the loop. The second parameter holds the condition for the loop and is checked before
each iteration. The third parameter contains the increment of the counter and is executed
at the end of each iteration.

for (int i = 0; 1 < 10; i++)
{ System.out.print(i); }

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOOPS

The for loop has several variations. For instance, the first and third parameters can
be split into several statements by using the comma operator.

for (int k = 0, 1 = 10; k < 10; k++, 1--)
{ System.out.print(k + 1); }

There is also the option of leaving out one or more of the parameters. For example,
the third parameter can be moved into the body of the loop.

for (int k = 0, 1 = 10; k < 10;)
{ System.out.print(k + 1); k++, 1--; }

Foreach loop

The foreach loop gives an easy way to iterate through arrays. On each iteration the next
element in the array is assigned to the specified variable, and the loop continues to
execute until it has gone through the entire array.

int[] array = { 1,2,3 };
for (int element : array) { System.out.print(element); }

Break and continue

There are two special keywords that can be used inside loops - break and continue.
The break keyword ends the loop structure, and continue skips the rest of the current
iteration and continues at the beginning of the next iteration.

break; // end current loop
continue; // start next iteration

To break out of a loop above the current one, that loop must first be labeled by adding
a name followed by a colon before it. With this label in place it can now be used as an
argument to the break statement, telling it which loop to break out of. This also works
with the continue keyword in order to skip to the next iteration of the named loop.
Note that the continue statement in this example is unreachable because the previous
break statement always prevents continue from executing.

myLoop: for (int i = 0, j = 0; i < 10; it++)
while (++j < 10)

break myLoop; // end for
continue mylLoop; // start next for

}
}

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © LOOPS

Labeled block

A labeled block, also called a named block, is created by placing a label before an
anonymous code block. The break keyword can be used to break out of such a block, just
as in labeled loops. This could for example be useful when performing a validation, where
if one validation step fails the whole process must be aborted.

validation:

{
if(true)
break validation;

Labeled blocks can be useful for organizing a large method into sections. In most
cases though, splitting the method up is a better idea. However, if the new method would
require a lot of parameters, or if the method would only be used from a single location,
then one or more labeled blocks may be preferable.

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Methods

Methods are reusable code blocks that will only execute when called.

Defining methods

A method can be created by typing void followed by the method’s name, a set of
parentheses and a code block. The void keyword means that the method will not return
avalue. The naming convention for methods is the same as for variables - a descriptive
name with the first word in lowercase and any other words initially capitalized.

class MyApp
void myPrint()

System.out.print("Hello");
}
}

Calling methods

The method above will simply print out a text message. To invoke (call) it from the main
method an instance of the MyApp class must first be created. The dot operator is then used
after the instance’s name in order to access its members, which include the myPrint method.

public static void main(String[] args)

{
MyApp m = new MyApp();
m.myPrint(); // Hello

Method parameters

The parentheses that follow the method name are used to pass arguments to the method.
To do this the corresponding parameters must first be added to the method declaration
in the form of a comma separated list.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © METHODS

void myPrint(String s)
{
System.out.print(s);

}

A method can be defined to take any number of arguments and they can have
any data types, just ensure the method is called with the same types and number of
arguments.

public static void main(String[] args)

{
MyApp m = new MyApp();
m.myPrint("Hello"); // Hello

}

To be precise, parameters appear in method definitions, while arguments appear in
method calls. However, the two terms are sometimes used interchangeably.

Return statement

A method can return a value. The void keyword is then replaced with the data type
the method will return, and the return keyword is added to the method body with an
argument of the specified return type.

String getPrint()

return "Hello";

}

Return is a jump statement that causes the method to exit and return the specified
value to the place where the method was called. For example, the method above can be
passed as an argument to the getPrint method since the method evaluates to a string.

public static void main(String[] args)

{
MyApp m = new MyApp();
System.out.print(getPrint()); // Hello

}

The return statement may also be used in void methods to exit before the end block
isreached.

void myPrint(String s)

{
System.out.print(s);

}

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © METHODS

Method overloading

It is possible to declare multiple methods with the same name as long as the parameters
vary in type or number. This is called method overloading and can for example be seen in
the implementation of the System.out.print method. It is a powerful feature that allows
a method to handle a variety of arguments without the programmer needing to be aware
of using different methods.

void myPrint(String s)

System.out.print(s);
}

void myPrint(int i)

System.out.print(i);
}

Passing arguments

Java is different from many other languages in that all method parameters are passed by
value. In fact, they cannot be passed by reference. For value data types (primitive types)
this means that only a local copy of the variable is changed within the method, so the
change will not affect the original variable. For reference data types (classes, interfaces
and arrays) it means that only a copy of the memory address is passed to the method.
Therefore, if the entire object is replaced the change will not propagate back to the
caller, but changes to the object will affect the original since the copy points to the same
memory location.

public static void main(String[] args)

{
int x = 0; // value data type
m.set(x); // value is passed
System.out.print(x); /10
int[] y = {0}; // reference data type
m.set(y); // address is passed
System.out.print(y[0]); // 10

}

void set(int a) { a = 10; }
void set(int[] a) { a[o] = 10; }

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Class

A class is a template used to create objects. They are made up of members, the main two
of which are fields and methods. Fields are variables that hold the state of the object,
while methods define what the object can do.

class MyRectangle
{

int x, y;
int getArea() { return x * y; }

}

Object creation

To access a class’s fields and methods from outside the defining class, an object of the
class must first be created. This is done by using the new keyword, which will create a new
object in the system’s memory.

public class MyApp
{

public static void main(String[] args)

{
// Create an object of MyRectangle

MyRectangle r = new MyRectangle();

}
}

An object is also called an instance. The object will contain its own set of fields,
which can hold values that are different to those of other instances of the class.

Accessing object members

In addition to creating the object, the members of the class that are to be accessible
beyond their package need to be declared as public in the class definition.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 * CLASS

class MyRectangle

{
public int x, y;
public int getArea() { return x * y; }

}

The members of this object can now be reached by using the dot operator after the
instance name.

public static void main(String[] args)

{
MyRectangle r = new MyRectangle();
T.x = 10;
r.y =5;
int z = r.getArea() // 50 (5*10)
}

Constructor

The class can have a constructor. This is a special kind of method used to instantiate
(construct) the object. It always has the same name as the class and does not have a return
type, since it implicitly returns a new instance of the class. To be accessible from another
class not in its package it needs to be declared with the public access modifier. When a
new instance of the MyRectangle class is created, by using the new syntax, the constructor
method is called, which in the example below sets the fields to some default values.

class MyRectangle
{

int x, y;
public MyRectangle() { x = 10; y = 20; }

public static void main(String[] args)

{
MyRectangle r = new MyRectangle();

}
}

The constructor can have a parameter list, just as any other method. As seen below,
this can be used to make the fields’ initial values depend on the parameters passed when
the object is created.

class MyRectangle
{

int x, y;
public MyRectangle(int a, int b) { x = a; y = b; }

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CLASS

public static void main(String[] args)

{
MyRectangle r = new MyRectangle(20,15);

This keyword

Inside the constructor, as well as in other methods belonging to the object, a special
keyword called this can be used. This keyword is a reference to the current instance
of the class. If, for example, the constructor’s parameters have the same names as the
corresponding fields, then the fields could still be accessed by using the this keyword,
even though they are shadowed by the parameters.

class MyRectangle

{
int x, y;
public MyRectangle(int x, int y)
{
this.x = x; this.y = y;
}
}

Constructor overloading

To support different parameter lists the constructor can be overloaded. In the example
below, if the class is instantiated without any parameters the fields will be assigned default
values. With one parameter both fields will be set to that value, and with two parameters
each field will be assigned a separate value. Attempting to create an object with the wrong
number of arguments or with incorrect data types will result in a compile-time error, just
as with any other method.

class MyRectangle

{
int x, y;
public MyRectangle() { x=10; y=020;}
public MyRectangle(int a) {x=a y=a }
public MyRectangle(int a, int b) { x =a; y =b; }
}

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 * CLASS

Constructor chaining

The this keyword can also be used to call one constructor from another. This is known as
constructor chaining, and allows for greater code reuse. Note that the keyword appears as
amethod call, and that it must be on the first line in the constructor.

public MyRectangle() { this(10,20); }
public MyRectangle(int a) { this(a,a); }
public MyRectangle(int a, int b) { x = a; y = b;

Initial field values

If there are fields in the class that need to be assigned default values, such as in the
first constructor above, the fields can simply be assigned at the same time as they are
declared. These initial values will be assigned before the constructor is called.

class MyRectangle
{

int x = 10, y = 20;

}

Default constructor

It is possible to create a class even if no constructors are defined. This is because the
compiler will then automatically create a default parameterless constructor.

class MyClass

{
public static void main(String[] args)
{
// Default constructor used
MyClass c = new MyClass();
}
}

Null

The built-in constant null is used to represent an uninitialized object. It can only be
assigned to objects and not to variables of primitive types. The equal to operator (==) can
be used to test whether an object is null.

String s = null;
if (s == null) s = new String();

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © CLASS

Default values

The default value of an object is null. For primitive data types the default values are

as follows: numerical types become 0, a char has the Unicode character for zero (\0000)
and a boolean is false. Default values will be automatically assigned by the compiler,

but only for fields and not for local variables. However, explicitly specifying the default
value for fields is considered good programming since it makes the code easier to
understand. For local variables the default values will not be set by the compiler. Instead,
the compiler forces the programmer to assign values to any local variables that are used,
so as to avoid problems associated with using unassigned variables.

class MyApp
int x; // field is assigned default value 0
int dummy()
{

int x; // local variable must be assigned if used

}
}

Garbage collector

The Java runtime environment has a garbage collector that periodically releases the
memory used by objects when they are no longer needed. This frees the programmer
from the often tedious and error-prone task of memory management. An object will be
eligible for destruction when there are no more references to it. This occurs, for example,
when the object goes out of scope. An object can also be explicitly dropped by setting its
references to null.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Static

The static keyword is used to create fields and methods that can be accessed without
having to make an instance of the class. Static (class) members only exist in one copy, which
belongs to the class itself, whereas instance (non-static) members are created as new copies
for each new object. This means that static methods cannot use instance members since
these methods are not part of an instance. On the other hand, instance methods can use
both static and instance members.

class MyCircle

{

float r = 10; // instance field
static float pi = 3.14F; // static/class field

// Instance method
float getArea() { return newArea(r); }

// Static/class method
static float newArea(float a) { return pi*a*a; }

Accessing static members

To access a static member from outside the class, the class name is used followed by the
dot operator. This operator is the same as the one used to access instance members, but
to reach them an object reference is required. Trying to access a static member by using
an object reference (instead of the class name) will give a warning since this makes it
more difficult to see that a static member is being used.

public static void main(String[] args)

{
float f = MyCircle.pi;
MyCircle c = new MyCircle();
float g = c.1;

}

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = STATIC

Static methods

The advantage of static members is that they can be used by other classes without having
to create an instance of the class. Fields should therefore be declared static when only

a single instance of the variable is needed. Methods should be declared static if they
perform a generic function that is independent of any instance variables. A good example
of this is the Math class which contains only static methods and fields.

double pi = Math.PI;

Math is one of the classes that are included by default in every Java application.
The reason for this is because it belongs to the java.lang package, which is always
imported. This package contains classes fundamental to the Java language, such as:
String, Object and System.

Static fields

Static fields have the advantage that they persist throughout the life of the application.
They can therefore, for example, be used to record the number of times that a method has
been called across all instances of the class. The initial value for a static field will only be
set once, sometime before the class or field is ever used.

class MyCircle

{
static void dummy() { count++; }
static int count = 0;

}

Static initialization blocks

A static initialization block can be used if the initialization of static fields requires more
than one line, or some other logic. This block, in contrast to the constructor, will only be
run once, at the same time as the static fields are initialized.

static int[] array = new int[5];
static

{
int i = 0;
for(int element : array)
element = i++;

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = STATIC

Instance initialization blocks

An initialization block provides an alternative method for assigning instance fields.

This block is placed on the class level, just like the static initialization block, but without
the use of the static keyword. Any code placed between the brackets will be copied

to the start of every constructor by the compiler.

int[] array = new int[5];
{
int i = 0;
for(int element : array) element = i++;

}

A class can have multiple initialization and static initialization blocks.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Inheritance

Inheritance allows a class to acquire the members of another class. In the example below,
Apple inherits from Fruit. This is specified with the extends keyword. Fruit then becomes
the superclass of Apple, which in turn becomes a subclass of Fruit. In addition to its own
members, Apple gains all accessible members in Fruit, except for its constructors.

// Superclass (parent class)
class Fruit

{
public String flavor;

}

// Subclass (child class)
class Apple extends Fruit

{
public String variety;

}

Object

A class in Java may only inherit from one superclass, and if no class is specified it will
implicitly inherit from Object. Therefore, Object is the root class of all classes.

class Fruit extends Object {}

Upcasting

Conceptually, a subclass is a specialization of the superclass. This means that Apple is

a kind of Fruit, as well as an Object, and can therefore be used anywhere a Fruit or Object
is expected. For example, if an instance of Apple is created, it can be upcast to Fruit since
the subclass contains everything in the superclass.

Apple a = new Apple();
Fruit f = a;

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 INHERITANCE
The Apple is then seen as a Fruit, so only the Fruit members can be accessed.

f.flavor = "Sweet";

Downcasting

When the class is downcast back into an Apple, the fields that are specific to Apple will
have been preserved. This is because the Fruit only contained the Apple, it did not
convert it. The downcast has to be made explicit since downcasting an actual Fruit into
an Apple is not allowed.

Apple b = (Apple)f;

Instanceof operator

As a safety precaution, you can test to see whether an object can be cast to a specific class
by using the instanceof operator. This operator returns true if the left side object can be
cast into the right side type without causing an exception.

Apple ¢ = (f instanceof Apple) ? (Apple)f : null;

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Overriding

A member in a subclass can redefine a member in its superclass. This is most often done
to give instance methods new implementations.

Overriding members

In the example below, Rectangle’s getArea method is overridden in Triangle, by
redeclaring it there with the same method signature. The signature includes the name,
parameters and return type of the method. However, the access level may be changed to
allow for more access than the method being overridden.

class Rectangle

{

public int w = 10, h = 10;

public int getArea() { return w * h; }
}

class Triangle extends Rectangle

{
}

public int getArea() { return w * h / 2; }

Override annotation

In order to show that this override was intentional, the @verride annotation should be
placed before the method. This annotation was added in Java 5 to prevent accidental
overrides.

class Triangle extends Rectangle

{
@verride public int getArea()
{
return w * h / 2;
}
}

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * OVERRIDING

Invoking the getArea method from a Triangle instance will call Triangle’s version of
the method.

Triangle o = new Triangle();
o.getArea(); // (50) calls Triangle's version

If Triangle’s instance is upcast into Rectangle, then Triangle’s version of the method
will still get called because Rectangle’s version has been overridden.

Rectangle o = new Triangle();
o.getArea(); // (50) calls Triangle's version

Hiding members

This is only true for instance methods, and not for class methods. If a class method
called newArea is added to Rectangle, and redefined in Triangle, then Triangle’s version
of the method will only hide Rectangle’s implementation. Because of this the @0verride
annotation is not used.

class Rectangle

{
public int w = 10, h = 10;
public static int newArea(int a, int b) {
return a * b;
}

}

class Triangle extends Rectangle

{
public static int newArea(int a, int b) {
return a * b / 2;

}
}

Calling newArea from Triangle’s interface will, as expected, invoke Triangle’s version,
but calling the method from Rectangle’s interface will invoke Rectangle’s implementation.

Triangle o = new Triangle();
o.newArea(10,10); // (50) calls Triangle's version

Rectangle r = o;
r.newArea(10,10); // (100) calls Rectangle's version

Redefined instance methods will always be overridden in Java and redefined class
methods will always be hidden. There is no way to change this behavior, as can be done
in for example C++ or C#.

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © OVERRIDING

Preventing method inheritance

To prevent an instance method from being overridden in subclasses, it can be declared
with the final method modifier.

public final int getArea() { return w * h; }

Bear in mind that the order of the method modifiers is not optional. The compiler
will point out when the modifiers appear in the wrong order.

Accessing overridden methods

An overridden method can still be accessed from inside the subclass’s instance methods
by using the super keyword. This keyword is a reference to the current instance of the
superclass.

@verride public int getArea()
{

}

return super.getArea() / 2;

Calling parent constructor

Another place where the super keyword can be used is on the first line of a constructor.
There it can perform a method call that invokes the superclass’s constructor.

public Triangle(int a, int b) { super(a,b); }
If the first line of a constructor is not a call to another constructor, the Java compiler
will automatically add a call to the superclass’s parameterless constructor. This ensures

that all ancestor classes are properly constructed.

public Triangle() { super(); }

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Packages and Import

Packages are used to avoid naming conflicts and to organize code files into different
directories. So far in this book the code file has been located at the root of the project’s
source directory. Therefore, it has belonged to the so called default package. In Java, the
directory a file belongs to, relative to the project’s source directory, corresponds to the
package name.

To assign a code file to a package, for example “mypackage’, it must be moved to a folder
by that name, under the project directory. Furthermore, the file must specify which package
it belongs to by using the package keyword followed by the package name (and path). There
may only be one package statement in each source file and it must be the first line of code,
except for any comments. Note that the naming convention for packages is all lowercase.

package mypackage; // this file belongs to mypackage

Packages may be any number of directory levels deep and the levels in the hierarchy
are separated by dots. For example, if the “mypackage” folder containing the code file is
placed in a project folder called “sub’; the package declaration would need to look like
this:

package sub.mypackage;

Say this file contains a public class called MyClass. To access MyClass from another
source file there are two options. The first is to type the fully qualified name.

sub.mypackage.MyClass m;

Import specific class

The second option is to shorten the fully qualified name by including the class with

the import keyword. An import statement must be located before all other members

in the code file, and it has no other purpose than to free the programmer from having to
type the fully qualified name.

import mypackage.sub.MyClass;
/...
MyClass m;

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 PACKAGES AND IMPORT

Import package

In addition to importing a specific class, all types inside of a package can be imported by
using an asterisk (*). Note that this does not import any of the subpackages.

import java.util.*;

Import static

A third variation of the import statement is the static import, which imports all static
members of a class. Once the static members are imported, they can be used without
having to specify the class name.

import static java.lang.Math.*;
/...
double pi = PI; // Math.PI

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Access Levels

There are four access levels available in Java. These are public, protected, private
and package-private. Package-private cannot be explicitly declared by using a keyword.
Instead, it is the default access level for every member in Java.

public int myPublic; // unrestricted access

protected int myProtected;// package or subclass access
int myPackage; // package access

private int myPrivate; // class access

Private access

The most restrictive access level is private. Members with this level can only be used
inside of the enclosing (containing) class.

package mypackage;
public class MyApp
{
public int myPublic;
protected int myProtected;
int myPackage;
private int myPrivate;

void test()

{
myPublic
myProtected
myPackage
myPrivate

}

; // allowed
; // allowed
5 // allowed
; // allowed

n n n
o O O O

}

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © ACCESS LEVELS

Package-private access

Package-private members can be accessed anywhere within the containing package, but
not from another package.

package mypackage;
public class MyClass

{
void test(MyApp m)

m.myPublic = 0; // allowed
m.myProtected = 0; // allowed
m.myPackage = 0; // allowed
m.myPrivate = 0; // inaccessible
}
}

Protected access

Protected members are accessible within subclasses and within the containing package.
Note that the meaning of protected in Java is different from other languages - such

as C++ and C# - where protected members are only accessible from subclasses and the
containing class.

package newpackage;
import mypackage.MyApp;

public class MyClass extends MyApp

{
void test()
{
myPublic = 0; // allowed
myProtected = 0; // allowed
myPackage = 0; // inaccessible
myPrivate = 0; // inaccessible
}
}

Public access

The public modifier gives unrestricted access from anywhere the member can be
referenced.

package newpackage;
import mypackage.MyApp;

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 © ACCESS LEVELS

public class MyClass

{
void test(MyApp m)
m.myPublic = 0; // allowed
m.myProtected = 0; // inaccessible
m.myPackage = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

Top-level access

Members declared directly in the package - top-level members - may only choose
between package-private and public access. For instance, a top-level class without an
access modifier will default to package-private. Such a class will only be accessible within
the containing package. On the other hand, a top-level class explicitly declared as public
can be reached from other packages as well.

// Accessible only from containing package
class PackagePrivateClass {}

// Accessible from any package
public class PublicClass {}

Nested class access

Java allows classes to be defined within other classes, so called nested classes. Such a class
can have any one of the four access levels. If a class is inaccessible, it cannot be instantiated
or inherited.

public class MyClass

{
// Only accessible within MyClass

private class PrivateNestedClass {}

}

Access level guideline

As a guideline, when choosing an access level it is generally best to use the most
restrictive level possible. This is because the more places a member can be accessed the
more places it can be accessed incorrectly, which makes the code harder to debug. Using
restrictive access levels will also make it easier to modify the class without breaking the
code for any other programmers using that class.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Constants

A variable in Java can be made into a constant by adding the final keyword before the
data type. This modifier means that the variable cannot be reassigned once it has been
set, and any attempts to do so will result in a compile-time error.

Local constants

A local constant must always be initialized at the same time as it is declared. The Java
naming convention for constants is to use all uppercase letters and to separate the words
with underscores.

final double PI = 3.14;

Constant fields

Class and instance variables can also be declared as final.
class MyClass

final double E = 2.72;
static final double C = 3e8;

}

In contrast to local constants, constant fields are not always assigned at declaration.
A constant instance field can optionally be assigned in a constructor, and a constant static
field may be assigned by using a static initialization block. These alternative assignments
can be useful if the constant’s value needs to be calculated and does not fit on a single
code line.

class MyClass

{
final double E;

static final double C;

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © CONSTANTS

public MyClass() { E = 2.72; }
static { C = 3e8; }
}

Constant method parameters

Another place where the final modifier may be applied is to method parameters to make
them unchangeable.

void f(final int A) {}

Compile-time and run-time constants

As in most other languages, Java has both compile-time and run-time constants. However,
only class constants can be compile-time constants in Java, and only if their value is known
at compilation. All other uses of final will create run-time constants. With compile-time
constants the compiler will replace the constant name everywhere in the code with its
value. They are therefore faster than run-time constants, which are not set until the program
is run. Run-time constants, however, can be assigned dynamic values that can change from
one program run to the next.

class MyClass
{
final double E = 2.72; // run-time constant

final static double C = 3e8; // compile-time constant

final static int RND = (new
java.util.Random()).nextInt(); // run-time constant

}

Constant guideline

In general, it is a good idea to always declare variables as final if they do not need to be
reassigned. This ensures that the variables will not be changed anywhere in the program
by mistake, which in turn helps to prevent bugs.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Interface

An interface is a type that decouples “interface” from implementation. It specifies a contract
between its implementors and objects that call its methods (and access its constants).

They are defined with the interface keyword followed by a name and a code block.

Their naming convention is the same as for classes, which is to have each word initially
capitalized. When an interface is not nested inside another type, its access level can be
either package-private or public, just as any other top-level member.

interface MyInterface {}

Interface members

The code block for an interface can first of all contain signatures for instance methods.
These methods cannot have any implementations. Instead, their bodies are replaced by
semicolons. Interface members must always be public, and since this is the default access
level in interfaces this modifier can be left out.

interface MyInterface {
int myMethod(); // method signature
}

The second member that an interface can contain is constants. Any field created in
an interface will implicitly be declared as static final, so these modifiers can also be
left out.

interface MyInterface {

int ¢ = 10; // constant

}

In addition to method signatures and constants, an interface can also contain nested
containing types, such as classes or other interfaces.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 INTERFACE

interface MyInterface

{
// Types

class Class {}
interface Interface {}
enum Enum {}

Interface example

The example below shows an interface called Comparable, which has a single method
named compare.

interface Comparable

{

int compare(Object o);

}

The class below implements this interface, by using the implements keyword after
the class name. By convention, the implements clause is placed after the extends clause,
if the class has one. Note that although a class can only inherit from one superclass it may
implement any number of interfaces, by specifying them in a comma separated list.

class Circle implements Comparable

{

public int r;

}

Because Circle implements Comparable it must define the compare method. For this
class the method will return the difference between the circle radiuses. The implemented
method must be public, in addition to having the same signature as the method defined
in the interface.

class Circle implements Comparable
{

public int r;

public int compare(Object o) {
return r - ((Circle)o).r;
}

}

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 INTERFACE

Functionality interface

Comparable demonstrates the first usage of interfaces, which is to define a specific
functionality that classes can share. It makes it possible to use the interface members without
having to know the actual type of a class. To illustrate, the example below shows a simple
method that takes two Comparable objects and returns the largest one. This method will
work for all classes that implement the Comparable interface regardless of their type, since
the method only uses the functionality exposed through that interface.

public static Object largest(Comparable a, Comparable b)
{

return (a.compare(b) > 0) ? a : b;

}

Class interface

A second way to use an interface is to provide an actual interface for a class, through
which the class can be used. The example below defines an interface for MyClass called
MyInterface. This interface only includes the functionality that programmers using
MyClass may need.

interface MyInterface

{

void exposed();

}

class MyClass implements MyInterface

{
public void exposed() {}

public void hidden() {}
}

The interface type is then used to hold the implementing class, so that the class is
only seen through this interface.

public static void main(String[] args)

{
MyInterface i = new MyClass();

}

This abstraction provides two benefits. First, it makes it easier for other programmers
to use the class since they now only have access to the methods that are relevant. Second,
it makes the class more flexible since its implementation can change, without being
noticeable by other programmers using the class, as long as the interface is followed.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 INTERFACE

Interface classes

As mentioned previously, an interface can contain nested types, such as classes. In contrast
to methods, these types are implemented inside the interface. This can, for example, be
used to provide a class that contains static methods useful for implementing classes. These
nested types are only visible to classes implementing the interface, and not to objects of
those classes.

interface MyInterface

{

class HelperClass {
public static void helperMethod() {}
}
}

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

Abstract

An abstract class provides a partial implementation that other classes can build upon.
When a class is declared as abstract it means that the class can contain incomplete
methods that must be implemented in subclasses, in addition to normal class members.
These methods are left unimplemented and only specify their signatures, while their
bodies are replaced by semicolons.

abstract class Shape

{
public int x = 100, y = 100;
public abstract int getArea();
}

Abstract class example

If a class called Rectangle inherits from the abstract class Shape, Rectangle is then
forced to override the abstract getArea method. The only exception is if Rectangle is also
declared abstract, in which case it does not have to implement any abstract methods.

class Rectangle extends Shape

{
@verride public int getArea()
{
return x * y;
}
}

An abstract class cannot be instantiated, but it can be used to hold instances of its
subclasses.

Shape s = new Rectangle();

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © ABSTRACT

Even though an abstract class cannot be instantiated it may have constructors, which
can be called from the subclass’s constructors by using the super keyword.

abstract class Shape

{
public int x = 100, y = 100;
public Shape(int a, int b) { x =a; y = b; }

}
class Rectangle extends Shape
{
public Rectangle(int a, int b) { super(a,b); }
}

Abstract classes and interfaces

Abstract classes are similar to interfaces in many ways. They can both define method
signatures that subclasses must implement, and neither one of them can be instantiated.
The key differences are first that the abstract class can contain non-abstract members,
while the interface cannot. And second, that a class can implement any number of
interfaces but only inherit from one class, abstract or not. Note that an abstract class

can, just as a non-abstract class, extend one superclass and implement any number of
interfaces. An interface, however, cannot inherit from a class. Although it can extend
another interface, which effectively combines the two interfaces into one.

Abstract class and interface guideline

An interface is either used to define a specific functionality that a class can have, or to
provide an interface for other programmers using a class. An abstract class on the other
hand is used to provide a partial class implementation, leaving it up to subclasses to
complete it. This is useful when subclasses have a lot of functionality in common, but also
have some functionality that must be implemented differently for each subclass.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Enum

An enumeration is a type that consists of a fixed list of named constants. To create one,
the enum keyword is used followed by a name and a code block, containing a comma
separated list of constant elements. The access level for an enumeration is the same as for
a class. Package-private by default, but it can also be set to public if it is declared in a file
of the same name. Just as with classes, an enumeration can be contained within a class,
where it can then be set to any access level.

enum Speed

{
STOP, SLOW, NORMAL, FAST

}

An object of the enum type above can hold any one of the four defined constants.
The enum constants are accessed as if they were static fields of a class.

Speed s = Speed.SLOW;

Enum example

The switch statement provides a good example of when an enumeration can be useful.
Compared to using ordinary constants, an enumeration has the advantage of allowing the
programmer to clearly specify what constant values are allowed. This provides compile-time
type safety. Note that when using an enum in a switch statement, the case labels are not
qualified with the name of the enum.

switch(s) { case SLOW: break; }

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © ENUM

Enum class

In Java, the enum type is more powerful than its counterparts in other languages, such as
C++ or C#. It is essentially a special kind of class, and can include anything that a class can
include. To add a class member the list of constants must be terminated with a semicolon,
and the member must be declared after the constants. In the example below, an integer is
added to the enum, which will hold the actual speed that the elements represent.

enum Speed

{
STOP, SLOW, NORMAL, FAST;
public int speed;

}

To set this field, a constructor needs to be added as well. A constructor in an
enumeration must have either private or package-private access and is not called in the
same way as for a regular class. Instead, the parameters to the constructor are given after
the constant elements, as seen below. For example, if a Speed enum object is assigned
the constant SLOW, then the argument 5 will be passed to the constructor for that enum
instance.

enum Speed

STOP(0), SLOW(5), NORMAL(10), FAST(20);
public int speed;

Speed(int s) { speed = s; }

Another difference that enum types have when compared to regular classes, is that they
implicitly extend from the java.lang.Enum class. In addition to the members inherited from
this class, the compiler will also automatically add two static methods to the enumeration,
namely values and valueof. The values method returns an array of the constant elements
declared in the enum, and valueof returns the enum constant of the specified enum name.

Speed.values();

Speed[] a =
= Speed.valueOf(a[0].toString()); // Speed.STOP

Speed s

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Exception Handling

Exception handling allows programmers to deal with unexpected situations that may
occur in their programs. As an example, the FileReader class in the java.io package

is used to open a file. Creating an instance of this class will cause Netbeans to give a
reminder that the class’s constructor may throw a FileNotFoundException. Attempting to
run the program will also cause the compiler to point this out.

import java.io.*;
/...
FileReader in = new FileReader("Missing.file"); // error

Try-catch

To get rid of this compile-time error the exception must be caught by using a try-catch
statement. This statement consists of a try block containing the code that may cause
the exceptions, and one or more catch clauses. If the try block executes successfully the
program will continue running after the try-catch statement, but if an exception occurs,
execution will then be passed to the first catch block able to handle that exception type.

import java.io.*;
/1l ...
try {
FileReader in = new FileReader("Missing.file");

}

catch(FileNotFoundException e) {}

Catch block

In the example above, the catch block is only set to handle the FileNotFoundException.
If the code in the try block could throw more kinds of exceptions, and all of them should
be handled in the same way, a more general exception can be caught instead, such as the
Exception class itself. This catch clause would then be able to handle all the exceptions
that inherit from this class, including the FileNotFoundException. Bear in mind thata
more general exception needs to be caught after a more specific exception. The catch
clause must always define an exception object. This object can be used to obtain more

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 * EXCEPTION HANDLING

information about the exception, such as a description of the exception by using the
getMessage method.

catch(FileNotFoundException e) {
System.out.print(e.getMessage());

}

catch(Exception e) {
System.out.print(e.getMessage());

}

Finally block

As the last clause in a try-catch statement, a finally block can be added. This block is used
to clean up resources allocated in the try block and will always execute whether or not
there is an exception. In this example, the file opened in the try block should be closed,
but only if it was successfully opened. To be able to access the FileReader object from the
finally clause it must be declared outside of the try block. Additionally, because the close
method can also throw an exception it needs to be surrounded with another try-catch
block. Keep in mind that if you forget to close a file Java’s garbage collector will eventually
do it for you, but it is a good programming practice to do it yourself.

import java.io.*;
/...
FileReader in = null;
try {
in = new FileReader("Missing.file");

catch(FileNotFoundException e) {
System.out.print(e.getMessage());
}
finally {
if (in !'= null) {
try { in.close(); }
catch(IOException e) {}
}
}

Throwing exceptions

When a situation occurs that a method cannot recover from, it can generate its own
exception to signal to the caller that the method has failed. This is done by using the
throw keyword followed by a new instance of a Throwable type.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 © EXCEPTION HANDLING

static void MakeException()

{
throw new Throwable("My Throwable");

}

Checked and unchecked exceptions

Exceptions in Java are grouped into two categories - checked and unchecked - depending
on whether or not they need to be specified. A method that throws a checked exception,
for example IOException, will not compile unless it is specified by using a throws

clause after the method’s parameter list and the calling method catches the exception.
Unchecked exceptions on the other hand, such as the ArithmeticException, do not have
to be caught or specified. Note that to specify multiple exceptions the exception types are
separated by a comma.

import java.io.*;

/1 ...

static void MakeException() throws IOException,
ArithmeticException

{

throw new IOException("My IO exception");
/1 ...
throw new ArithmeticException("Division by zero");

}

Exception hierarchy

Exceptions, like most everything else in Java, are classes that exist in a hierarchy. At the root
of this hierarchy (below Object) is the Throwable class, and all descendants of this class can
be both thrown and caught. Inheriting from Throwable there are the Exror and Exception
classes. Classes descending from Error are used to indicate non-recoverable exceptions,
such as the OutOfMemoryError. These are unchecked because once they have occurred it is
unlikely that the programmer can do anything about them even if they are caught.

Descending from Exception are the RuntimeExceptions, which are also unchecked.
These are exceptions that can occur in almost any code, and it would therefore be
cumbersome to catch and specify them. For example, a division by zero will throw an
ArithmeticException, however surrounding every division operation with a try-catch
would be bothersome. There is also an overhead associated with checking for exceptions
and the cost of checking for these exceptions outweighs the benefit of catching them.
The other Exception descendants, those that do not inherit from RuntimeExceptions,
are all checked. These are exceptions that can be recovered from and that must be both
caught and specified.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Boxing and Unboxing

Placing a primitive variable in an object is known as boxing. This allows the primitive
to be used where objects are required. For this purpose Java provides wrapper classes
for each primitive - namely: Byte, Short, Integer, Long, Float, Double, Character and
Boolean. An Integer object, for example, can hold a variable of the type int.

int iPrimitive = 5;
Integer iWrapper = new Integer(iPrimitive); // boxing

The opposite of boxing is unboxing. This converts the object type back into its
primitive type.

iPrimitive = iWrapper.intValue(); // unboxing

The wrapper classes belong to the java.lang package, which is always imported.
In contrast to primitives, wrapper objects are immutable (unchangeable). To change
their value, a new instance must be created. Another difference between primitives and
wrapper objects is how they are checked for equality. Primitives use the equal to operator
(==), whereas objects of any type use the equals method, extending from Object. Also
bear in mind that objects can be set to null whereas primitives cannot.

Autoboxing and autounboxing

Java 5 introduced autoboxing and autounboxing. These features allow for automatic
conversion between primitives and their wrapper objects.

Integer iWrapper = iPrimitive; // autoboxing
iPrimitive = iWrapper; // autounboxing

Note that this is only syntactic sugar designed to make the code easier to read.
The compiler will add the necessary code to box and unbox the primitives for you - using
the valueOf and intValue methods.
Integer iWrapper = Integer.valueOf(iPrimitive);

iPrimitive = iWrapper.intValue()

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 © BOXING AND UNBOXING

Primitive and wrapper guideline

Primitive types should be used when there is no need for objects. This is because primitives
are generally faster and more memory efficient than objects. Conversely, wrappers are useful
when numerical values are needed, but objects are required. For example, to store numerical
values in a collection class, such as ArraylList, the wrapper classes are needed.

java.util.Arraylist a = new java.util.Arraylist();
a.add(Integer.value0f(5)); // boxing
a.add(10); // autoboxing

Bear in mind that conversions between primitives and wrapper objects should be

kept low if speed is important. There is an inherit performance penalty associated with
any boxing and unboxing operation.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

Generics

Generics refer to the use of type parameters, which provide a way to define methods,
classes and interfaces that can operate with different data types. The benefits of generics
is that they provide compile-time type safety, and that they eliminate the need for most
type conversions.

Generic classes

Generic classes allow class members to use type parameters. Such a class is defined by
adding a type parameter section after the class name, which contains a type parameter
enclosed between angle brackets. The naming convention for type parameters is that
they should consist of a single uppercase letter. Typically, the letter T for type is used.

The example below defines a generic container class that can hold a single element of the

generic type.

// Generic container class
class MyBox<T> { public T box; }

When an object of this generic class is instantiated, the type parameter must be
replaced with an actual data type, such as Integer.

MyBox<Integer> iBox = new MyBox<Integer>();

Alternatively, as of Java 7, a generic class can be instantiated with an empty set of
type parameters. This type of instantiation is possible as long as the compiler can infer
(determine) the type parameters from the context.

MyBox<Integer> iBox = new MyBox<>();

When an instance of MyBox is created, each type parameter in the class definition
is replaced with the passed in type argument. The object therefore behaves as a regular
object, with a single field of the Integer type.
iBox.box = 5;

Integer i = iBox.box;

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 GENERICS

Notice that no casting is required when the stored value is set or retrieved from
the box field. Furthermore, if the generic field is mistakenly assigned to or set to an
incompatible type, the compiler will point this out.

iBox.box = "Hello World"; // compile-time error
String s = iBox.box; // compile-time error

Generic methods

A method can be made generic by declaring it with a type parameter section before the
method’s return type. The type parameter can be used as any other type inside of the method.
It can also be used for the method’s return type, in the throws clause and for its parameter
types. The example below shows a generic class method that accepts a generic array
parameter, the content of which is printed out.

class MyClass

{
public static <T> void printArray(T[] array)
{
for (T element : array)
System.out.print(element + " ");
}
}

Methods can be declared as generic, independently of whether or not the enclosing
class or interface is generic. The same is true for constructors.

Calling generic methods

A generic method is typically invoked just as a regular (non-generic) method, without
specifying the type argument.

Integer[] iArray = { 1, 2, 3 };
MyClass.printArray(iArray);

In most cases, the Java compiler can infer the type argument of a generic method
call, and so it does not have to be included. However, if this is not the case the type

argument will then need to be explicitly specified.

MyClass.<Integer>printArray(iArray);

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © GENERICS

Generic interfaces

Interfaces that are declared with type parameters become generic interfaces. Generic
interfaces have the same two purposes as regular interfaces. They are either created

to expose members of a class that will be used by other classes, or to force a class to
implement a specific functionality. When a generic interface is implemented, the type
argument must be specified. The generic interface can be implemented by both generic
and non-generic classes.

// Generic functionality interface
interface IGenericCollection<T>

public void store(T t);
}

// Non-generic class implementing generic interface
class Box implements IGenericCollection<Integer>
{

public Integer myBox;

public void store(Integer i) { myBox = i; }

}

// Generic class implementing generic interface
class GenericBox<T> implements IGenericCollection<T>

{

public T myBox;

public void store(T t) { myBox = t; }
}

Generic type parameters

The passed in type argument for a generic can either be a class type, interface type or
another type parameter. It cannot, however, be a primitive type. Generics can have

more than one type parameter defined, just by adding more of them between the angle
brackets in a comma-separated list. Bear in mind that each parameter within the brackets
must be unique.

class MyClass<T, U> {}

If a generic has multiple type parameters defined, the same number of type
arguments need to be specified when the generic is used.

MyClass<Integer, Float> myClass = new MyClass<Integer,
Float>();

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 GENERICS

Generic variable usages

Generics are only a compile-time construct in Java. After the compiler has checked that
the types used with generic variables are correct, it will then erase all type parameter and
argument information from the generic code and insert the appropriate casts instead.
This means that generics do not give any performance benefits over non-generic code,
because of removed run-time casts, as they do in for example C#. It also means that
generic types cannot be used for anything that requires run-time information - such

as creating new instances of generic types or using the instanceof operator with type
parameters. Operations that are allowed include: declaring variables of the generic type,
assigning null to generic variables and calling Object methods.

class MyClass<T>

{
public void myMethod(Object o)
{
T t1, // allowed
t1 = null; // allowed
System.out.print(t1.toString()); // allowed
if (o instanceof T) {} // invalid
T t2 = new T(); // invalid
}
}

The process of removing type information from generic code is known as type
erasure. For example, MyBox<Integer> would be reduced to MyBox, which is called the
raw type. This step is performed in order to maintain backwards compatibility with code
written before generics became part of the language in Java 5.

Bounded type parameters

It is possible to apply compile-time enforced restrictions on the kinds of type parameters
that a generic may be used with. These restrictions are called bounds, and they are
specified within the type parameter section by using the extends keyword. Type
parameters can be bounded by either superclass or interface. For example, the class B
below may only be instantiated with a type argument that either is of the type A, or has
that class as a superclass.

// T must be or inherit from superclass A
class B<T extends A> {}
class A {}
The second example specifies an interface as the bound. This will restrict the type

parameter to only those types that implement the specified interface, or are of the
interface type itself.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 © GENERICS

// T must be or implement interface I
class (<T extends I> {}
interface I {}

Multiple bounds can be applied to a type parameter by specifying them in a list
separated by ampersands.

class D<T extends A & I> {}

The ampersand acts as the separator instead of a comma since comma is already
used for separating type parameters.

class E<T extends A & I, U extends A & I> {}

Aside from restricting the use of a generic to only certain parameter types, another
reason for applying bounds is to increase the number of permitted method calls
supported by the bounded type. An unbounded type may only call the Object methods.
However, by applying a superclass or interface bound, the accessible members of that
type will also become available.

class Fruit

{

public String name;

}

class FruitBox<T extends Fruit>
{
private T box;
public void FruitBox(T t) { box = t; }
public String getFruitName()
{
// Use of Fruit member allowed since T extends Fruit
return box.name;
}
}

Generics and Object

Before generics were introduced in Java 5, the Object type was used to create container
classes that could store any type of objects. Now that generics are available, this use of
the Object type as a universal container should be avoided. This is because the compiler
helps ensure that generics are type safe at compile-time, which cannot be done when
using the Object type.

The collection classes in the Java library, among them Arraylist, have all been
replaced with generic versions. Even so, any generic class can still be used as if it was not
generic, simply by leaving out the type argument section. The default Object type will

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 GENERICS

then be used as the type argument. This is the reason why the non-generic version of
Arraylist is still allowed. Consider the following use of a non-generic ArraylList.

import java.util.Arraylist;

/...

// Object Arraylist

Arraylist a = new ArraylList();

a.add("Hello World");

/...

Integer b = (Integer)a.get(0); // run-time error

This String to Integer conversion will fail at run-time by throwing a
ClassCastException. Had a generic ArrayList been used instead, the mistaken
conversion would have been detected upon compilation, or immediately in an IDE such
as Netbeans.

import java.util.Arraylist;

/...

// Generic ArraylList (recommended)
Arraylist<String> a = new ArrayList<String>();
a.add("Hello World");

/...

Integer b = (Integer)a.get(0); // compile-time error

With the generic alternative only the specified type argument will be allowed into the
Arraylist collection. Additionally, values obtained from the collection do not have to be
cast to the correct type since the compiler takes care of that.

72

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

abstract, 57

Access levels, 47
Anonymous block, 8
Array(s), 15

ArraylList, 16

assignment operator (=), 6,9

B

boolean, 7
Bounds, 70
Boxing, 65
break, 22
byte, 6

C

catch, 61

char, 7

class, 29

class member, 35

code block, 2

comma operator (,), 6, 22
Comments, 4

compile, 3
concatenation operator (+), 13
Conditionals, 19
constant, 51

Constructor, 30
continue, 22

D

Data types, 5
declare, 5
decrement operator (), 10

default constructor, 32
define, 6

dot operator (.), 2, 30
double, 7

do-while, 21
downcast, 40

E

enclosing class, 47
enum, 59

Escape characters, 13
Exception handling, 61
Exception hierarchy, 63
extends, 39, 70

F

false, 10
field, 29
final, 43, 51
finally, 62
float, 7

for, 21
foreach, 22

G

Garbage collector, 33
Generics, 67

H

Hello world, 1

IDE, 1
if, 19

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

import, 45

increment operator (++), 10
Inheritance, 39
Initialization block, 37
initialize, 6

Instance, 29

Instance member, 35
instanceof operator, 40
instantiate, 30

int, 6

Interface, 53

invoke, 25

iteration, 21

J, K
java.lang, 36
JDK, 1

L

Labeled block, 23
logical and (&&), 11
logical not (1), 11
logical or (||), 11
long, 6

loops, 21

Main method, 2

Method(s), 25

Method overloading, 27
modulus operator (%), 9
Multi-dimensional arrays, 16

N

nested class, 49
new, 29
null, 32

(0

Object, 29, 39
Operators, 9
@Override, 41
Overriding, 41

4

PQ

Package, 45
Package-private, 48
Primitives, 5

print, 2

private, 47
protected, 48
public, 48

R

return, 26

S

Scope, 8
semicolon (;), 2
short, 6
signature, 41
static, 35
String, 13
StringBuffer, 14
super, 43
switch, 20

T

ternary operator (?2:), 20
this, 31

throw, 62

Top-level member, 49
true, 10

try, 61

U

Unboxing, 65
Upcast, 39

Vv

Variables, 5
void, 25

W XYZ
while, 21
Wrapper classes, 65

www.it-ebooks.info

http://www.it-ebooks.info/

Java Quick Syntax
Reference

Mikael Olsson

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Java Quick Syntax Reference
Copyright © 2013 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6286-2
ISBN-13 (electronic): 978-1-4302-6287-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Technical Reviewer: Jeff Friesen

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea

Copy Editor: xxx

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.it-ebooks.info/

Contents

About the Authorcccovrmmnnenas

Introduction.........cccccevremmeinrennens

Chapter 1: Hello World............

Installing......ccccceeeeeeveercercercennne
Creating a project.........c.ccoevrerune
Hello worldcococienenicnnennne
Code hintscccoeverreneriernnennens

Chapter 2: Compile and Run...

Running from the IDE
Running from a console window
Comments........ccoeveeverersernnnennens

Chapter 3: Variablesuuuu.

Data typescccoceverevrerrerrersennnns
Declaring variables.....................
Assigning variables..............co.e...
Using variables.........cccceevrerrennee.
Integer typescccccevvevcercercennene
Floating-point typesccce....
Char type....cccccvveverrererersernesennens

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

B0O0IEAN TYPEeevererer s 7
Variable SCOPE.....cccvirerere st sa e sr e sn e sn e 8
ANONYMOUS DIOCK.......coceeirceererre e 8
Chapter 4: Operatorscccueemmmmsssennmmmsssssnmmssssssssessssssssesssssssssssssnns 9
Arithmetic OpPeratorscccccvvvverir i 9
Assignment OPeratorscocceeeerererere s s 9
Combined assignment 0Peratorscccoveeenrerenessesnsesesessessssessesessens 9
Increment and decrement Operators..........cccceceeeeerereeseesessesessseseesennns 10
Comparison OPErators........cccoceeeeereresesessesse e sse e e e e ssesaesnessessenes 10
Logical OPErators........ceceverereresese e sse e sse s sas s saesae s s s 11
BitwiSe OPEratorsc.ccvcvverrersersrs s 11
Operator PreCedENCE.........ccoerererrerrerre e nesaesnesrere s 11
Chapter 5: Sringcccccmrnimmmmssnmmsssssmsssssmssssssssssesssssesssssesssnssssnnns 13
Combining StriNgGScccceeeerererere e nrer s 13
ESCAPE CharaClers.......ccccvverrierrierreerseerrse s e s ses s e s e e s ssesssessseessnessnnnnns 13
StriNG COMPATE......coeererrrererrr e r e 14
StriNGBUFTEr ClaSS.....ccceeeereeceerir e nens 14
Chapter 6: Arraysccocscussesmssssssssssssssssssssssnsesssnsesssnsesssnsesssnnessnnns 15
Array declaration.........occoeeeeerererere e 15
Array allocationcocvversersensenser s 15
Array asSignMeNtcccoceeeeeeererere s e sre e resre e saesresnennennan 15
Multi-dimensional rrayscccoveernnmresnssessess s 16
ArrayList Class........ccuvvvrvrnennnsirses s e 16

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Conditionalsccccunuemmmmssssnnnmsssssssnmsssssssnssssssssssssssnns 19
If StatemMEeNt ... ——————— 19
Switch statement ... ————— 20
Ternary OpPerator.........cccuceeeicererse s 20
Chapter 8: LOOPS.....cuuuseemmmssssnnnmmssssnsnssssssnnnssssssnnnssssssnnnssssssnnnssssnnns 21
L L LTIN[0 o SRS 21
DO-WIlE [00P ...eererceirerctr et s 21
0 (10 o RSOSSN 21
FOreach l00P......c.ceveiieerirsre e 22
Break and CONtiNUE ... 22
Labeled DIOCK ..o 23
Chapter 9: Methodsccuuseemrmnsssmnnmmssssnsnnsssssssnssssssssnssssssssssssssnns 25
Defining MEthodsc.coeeeeeceeecerece s 25
Calling MEthodscccceeererererere e 25
Method parameters..........cccvevrrcersensensesses s 25
Return statement ... 26
Method overloading..........ccucvverrerrenrnsirsenser s 27
Passing arguments.........ccccucvevrrsersessesses s 27
Chapter 10: Classuuvseeeemsmmmmmmmmssssssssssnmssssssssssssssssssssssssssnnnnsssssnss 29
Object Creationccccveerccrccrcr e ———— 29
Accessing object members..........coeeeerecerece e ————- 29
(00 LY 1T (0] T 30
LT ETE 3 A0 (o 31
Constructor overloading........cccoeeeeerereresrese e 31
(7010 533 01T (0] g0 1 P T 1 SRS 32
Initial field ValUES ..o 32

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Default CONSLIUCTON..........ccoicrerrcrr s 32
NUIL s n e s n e s 32
Default ValUES.........ccoeiierrireire s 33
Garbage COIIECIONcceeeeereererre e e 33
Chapter 11: Static......ccccnmnnnemmmmnnesnnnnsssnssss s ———— 35
Accessing static MEMDErS..........cccceeeererere e 35
Static Methodsccvceercercrrcre e 36
B3] 2 e 1] o PR 36
Static initialization bIOCKSccoccorvernnircnnscrse s 36
Initialization DIOCKSc.coveerermrererscrersese e 37
Chapter 12: Inheritance........cccoummemmemmmnmmmmmmsssssssssnmmesssssssssssnns 39
00T o RSSO 39
UPCASEING ...cveeeceerereerrc e sse e sre s e snesnesnssn e n e sn e snesnssnesn e nnennanne s 39
DOWNCASTING......ccocerereririr e 40
10153 2 1 [61=T0) 0] 011 1 (0] 40
Chapter 13: Overridingcccuuunssssmsssmnmmsssssssssssssssssssssssssssssssssnnes 41
Overriding MEMDEIS.......cccceverererere e sa e sa e ne s 41
Override annotation...........ccccervccrmrsscnnnsese s 41
Hiding MEeMDEIS......cccvcerrrrer s 42
Preventing method inheritance............cocvvrvrvrvrcrrrsenrr e 43
Accessing overridden Methods..........ccoeeeeeeereresesese e seeeas 43
Calling parent CONSTIUCEOTccoveirererieresrre e 43
Chapter 14: Packages and Import..........cccccnnsmmmnssmnmsssessssssssnssnns 45
IMPOrt SPECIfiC ClASSccceeeerererere e 45
IMPOIt PACKAGEccevreeeirrecir et n e ne s 46
IMPOrt StALICcoeceeeeee e 46
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 15: Access LeVels.......ccuummmmmmmsnmmmmmmssssnnmsssssssnmsssssssssssssnns 47
Privale @CCESSveerereereree e 47
Package-private aCCESScrurrerrerrersersersersessessssssssssssssssssssssssssssssssnnes 48
Protected @CCESS.......coceruereerrerreree e 48
PUDBIIC @CCESSccerererirciscrini s 48
TOP-1EVEI @CCESS......cocererererir st 49
NEeSted ClasS ACCESS.......ccrerrereerrerrerrererrsesse s ses s ses e sessessessssnes 49
Access level guIdeling.........cccoceveerverrerreensersee s ene s 49
Chapter 16: Constants.........ccccinnmmmmmmmsssnnmmnsssssnmmsssssssssssssssssssnnns 51
Local constants ... 51
Constant fields ... 51
Constant method parameters........cccccvvvverirre s 52
Compile-time and run-time constantsccceevvevresriernsesesnsesensennes 52
Constant gUIdelingcccoeeeeerecere s 52
Chapter 17: Interface.......ccussemmrmsssnnnnmsssnnnssssssnnsssssssssnssssssssssssssnns 53
Interface MembErs ... 53
INterface EXAMPIEocceecevieererree e s sn e s n e s neene s 54
Functionality interface..........ccccoversrsrsssss s 55
Class INTEITACEcocvvererersiresire s 55
INtErface ClaSSES ... s 56
Chapter 18: Abstractcccciniemmmnnnsennmmnsssnmmnsssnmssssnm——. 57
Abstract class eXamMPIEcccevverrerrveerrerree e s s e ssee s e e e essaessneenes 57
Abstract classes and interfaces..........coovvrrvrnnniennsessssesseseenns 58
Abstract class and interface guideling.........cccooeeeeevececececececeeceee, 58

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 19: ENUMcccciiiisemmmmnsssssnmmssssssnmsssssssssssssssssssssssnsnssssnnns 59
ENUM @XAMPIE......ooceereecereecer e 59
ENUM CIASS......coiirirnt e 60
Chapter 20: Exception Handlingcoccmmmnnsssnnnsmssssnsssssssssssssssnns 61
TrY=CatCN ... 61
(0721 (6 110 o OSSR 61
FINallY DIOCK ..o 62
Throwing eXCepLtionscccvvrrerrersrresser s 62
Checked and unchecked exCeptions.........ccocevereererrerrenressessessessessensenns 63
Exception hierarchy.........c.ccconninninnnnnss e 63
Chapter 21: Boxing and UnBOXiNgc.ccusssesmsssssssssnsssssnsssssasssssanss 65
Autoboxing and autounboXing.........ccecvvrrirrnninse e ——— 65
Primitive and wrapper guidelingc.ccocvvvcrercrcssesss e 66
Chapter 22: GENEriCS ...cuurrrsssssnrrssssnnsssssssnnsssssssnnsssssssnnnssssssnnnsssssans 67
GENEIIC CIASSESvvucreerrueresrrrese st 67
Generic MEthods ..o s 68
Calling generic Methods...........ccoceererernicrnsnie e 68
GENeriC INtErfaCeSccccrirrerre s 69
Generic type parameters. ... 69
Generic variable USAgESc.ccccverrrrernicre s 70
Bounded type parameters.........cccvvrvrvrrnnnsn s 70
Generics and ODJECTccccvererere s 7
INA@X.uueerisannsssannsssansssssnnssssnnssssnnssssnnnsssannsssanssssansnssansssssnnssssnnnnssnnnsss 73

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and author. He works
for an R&D company in Finland where he specializes in software development. In his
spare time he writes books and creates websites that summarize various fields of
interest. The books he writes are focused on teaching their subject in the most efficient
way possible, by explaining only what is relevant and practical without any unnecessary
repetition or theory.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Hello World
	Installing
	Creating a project
	Hello world
	Code hints

	Chapter 2: Compile and Run
	Running from the IDE
	Running from a console window
	Comments

	Chapter 3: Variables
	Data types
	Declaring variables
	Assigning variables
	Using variables
	Integer types
	Floating-point types
	Char type
	Boolean type
	Variable scope
	Anonymous block

	Chapter 4: Operators
	Arithmetic operators
	Assignment operators
	Combined assignment operators
	Increment and decrement operators
	Comparison operators
	Logical operators
	Bitwise operators
	Operator precedence

	Chapter 5: String
	Combining strings
	Escape characters
	String compare
	StringBuffer class

	Chapter 6: Arrays
	Array declaration
	Array allocation
	Array assignment
	Multi-dimensional arrays
	ArrayList class

	Chapter 7: Conditionals
	If statement
	Switch statement
	Ternary operator

	Chapter 8: Loops
	While loop
	Do-while loop
	For loop
	Foreach loop
	Break and continue
	Labeled block

	Chapter 9: Methods
	Defining methods
	Calling methods
	Method parameters
	Return statement
	Method overloading
	Passing arguments

	Chapter 10: Class
	Object creation
	Accessing object members
	Constructor
	This keyword
	Constructor overloading
	Constructor chaining
	Initial field values
	Default constructor
	Null
	Default values
	Garbage collector

	Chapter 11: Static
	Accessing static members
	Static methods
	Static fields
	Static initialization blocks
	Instance initialization blocks

	Chapter 12: Inheritance
	Object
	Upcasting
	Downcasting
	Instanceof operator

	Chapter 13: Overriding
	Overriding members
	Override annotation
	Hiding members
	Preventing method inheritance
	Accessing overridden methods
	Calling parent constructor

	Chapter 14: Packages and Import
	Import specific class
	Import package
	Import static

	Chapter 15: Access Levels
	Private access
	Package-private access
	Protected access
	Public access
	Top-level access
	Nested class access
	Access level guideline

	Chapter 16: Constants
	Local constants
	Constant fields
	Constant method parameters
	Compile-time and run-time constants
	Constant guideline

	Chapter 17: Interface
	Interface members
	Interface example
	Functionality interface
	Class interface
	Interface classes

	Chapter 18: Abstract
	Abstract class example
	Abstract classes and interfaces
	Abstract class and interface guideline

	Chapter 19: Enum
	Enum example
	Enum class

	Chapter 20: Exception Handling
	Try -catch
	Catch block
	Finally block
	Throwing exceptions
	Checked and unchecked exceptions
	Exception hierarchy

	Chapter 21: Boxing and Unboxing
	Autoboxing and autounboxing
	Primitive and wrapper guideline

	Chapter 22: Generics
	Generic classes
	Generic methods
	Calling generic methods
	Generic interfaces
	Generic type parameters
	Generic variable usages
	Bounded type parameters
	Generics and Object

	Index

