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Abstract. The Unrelated Parallel Machine Scheduling Problem with
Setup Times (UPMSPST) is a problem that belongs to the N'P-Hard
class and it is frequently found in many practical situations, like in textile
and chemical industries. The objective in UPMSPST is to schedule jobs
in machines in order to achieve the maximum completion time, known
as makespan. In an attempt to solve this problem, it is proposed two al-
gorithms: the AIV and the HIVP. Both algorithms are based on Iterated
Local Search (ILS) and Variable Neighborhood Descent (VND). The dif-
ference between AIV and HIVP is that the first one generates a greedy
initial solution, while the second applies a partially greedy procedure to
construct the initial solution and it includes the Path Relinking (PR)
technique. Neighborhoods based on swaps and multiple insertions are
investigated in the developed algorithms. ATV and HIVP were tested on
benchmark test problems from literature and statistical analysis of the
computational results showed the superiority of them, outperforming the
previously best known solutions for UPMSPST.
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1 Introduction

This paper deals with the Unrelated Parallel Machine Scheduling Problem with
Setup Times (UPMSPST), which can be formally defined as follows. Let N =
{1,...,n} be a set of jobs and let M = {1,...,m} be a set of unrelated machines.
The UPMSPST consists of scheduling n jobs on m machines, satisfying the
following characteristics: (i) Each job j € N must be processed exactly once by
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only one machine k¥ € M. (ii) Each job j € N has a processing time p,; which
depends on the machine k € M where it will be allocated. (iii) There are setup
times Sjjk, between jobs, where k represents the machine on which jobs ¢ and
Jj are processed, in this order. (iv) There is a setup time to process the first
job, represented by Sp;i. The objective is to minimize the maximum completion
time of the schedule, the so-called makespan or also denoted by Ci,.x. Because
of such characteristics, UPMSPST is defined as Ras | Sijk | Cmax [1]- In this
representation, Ry represents the unrelated machines, S;; the setup times and
Chax the makespan.

Figure 1 illustrates a schedule for a test problem composed by two machines
and seven jobs. In Table 1 are presented the processing times of these jobs in
both machines. The setup times of these jobs in these machines are showed in
Table 2.

It can be observed that in machine M1 the jobs 2, 1 and 7 are allocated in
this order. In machine M2 the schedule of the jobs 5, 4, 6 and 3, in this order,
is also perceived by this figure. The cross-hatched areas of the figure represent
the setup times between jobs and the numbered areas the processing times. On
the line below the schedule there is the timeline, in which the times 120 and 130
represent the completion times of each machine.

Table 1. Processing times in machines M1 and M2.

M1 M2
120 4

2125 21
3128 14
4|17 32
5|43 38
619 23
7|58 52

Table 2. Setup times in machines M1 and M2

M1j1234567 M2(12345 6 7
110181396 1(|0465103 2
214073784 2110627 7 5
317302353 3126068 1 4
413830522 41(571012106
518379057 5179570 4 8
68812209 6193549 0 3
711452350 7132615 6 0
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Fig. 1. An example of a possible schedule.

As the job 6 is allocated to machine M2 its processing time pgo will be
23. Its predecessor and its successor are the jobs 4 and 3, respectively. So, in
this example, are computed the times S50 = 5 and Sgzz = 5. Thus, it can be
calculated the completion time of machine M1 as Sga1 + p21 + 5211 +p11 + S171 +
p71 = 120. Equivalently it is also calculated the completion time of machine M2
as Sos2 + Ps2 + Ssa2 + Daz + Sas2 + Pe2 + Sesz + p32 = 130. After the calculation
of the completion times of machines M1 and M2, it can be concluded that the
machine M2 is the bottleneck machine. In other words, M2 is the machine that
has the highest completion time, the makespan.

The UPMSPST appears in many practical situations, like in textile and chem-
ical industries [2]. On the other hand, the UPMSPST is in N'P-Hard class, as
it is a generalization of the Parallel Machine Scheduling Problem with Identical
Machines and without Setup Times [3, 4]. The theoretical and practical impor-
tance instigate the study of the UPMSPST. Under these circumstances, finding
the optimal solution for UPMSPST using exact methods can be computation-
ally infeasible for large-sized problems. Thus, metaheuristics and local search
heuristics are usually developed to find good near optimal solutions.

In order to find these near optimal solutions for the UPMSPST, this paper
proposes two algorithms based on Iterated Local Search — ILS [5] and Variable
Neighborhood Descent — VND [6]. The first algorithm is called AIV, it starts
from an initial solution constructed on a greedy way by the Adaptive Shortest
Processing Time — ASPT rule. Then, this initial solution is refined by ILS,
using as local search the Random VND procedure. In this procedure, here called
RVND, there is no fixed sequence of neighborhoods, because they are sorted on
each application of the local search. In [7] the authors showed the effectiveness
of RVND over the conventional VND. The second algorithm named HIVP is
an endeavour to upgrade AIV, constructing the solution by a partially greedy
procedure and including the Path Relinking — PR technique.

Both algorithms were tested using benchmark instances from [8] and the
computational results showed that they are able to produce better solutions
than the ones found in literature, with lower variability and setting new upper
bounds for the majority of instances.

The rest of this paper is structured as follows. Firstly, works that inspired
the development of this paper are described. Then, the methodology used for the
deployment of this paper is presented. The computational results are shown on
sequence. Finally, this paper is concluded and possible proposals to be explored
are described.
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2 Literature Review

In literature are found several works that seek to address the UPMSPST and
similar problems. These approaches were inspirations for the development of this
paper.

[9] propose the development of seven heuristics with the objective of mini-
mizing the weighted mean completion time. In [10], a problem with common due
dates is addressed and four heuristics are implemented for minimizing the total
weighted tardiness. [11] aim to minimize the total weighted tardiness, consider-
ing dynamic releases of jobs and dynamic availability of machines and they used
four dispatching rules in order to generate initial solutions and a Tabu Search
as the basis for the development of six search algorithms. This problem is also
addressed in [2], where a Branch-and-Price algorithm is developed.

More recent references are found when dealing with the UPMSPST. [12] cre-
ated a Three-phase Partitioning Heuristic, called PH. In [13] it is proposed a
Metaheuristic for Randomized Priority Search (Meta-RaPS). [14] bet in Tabu
Search for solving the UPMSPST. [15] implement the Ant Colony Optimiza-
tion (ACO), considering its application to problems wherein the ratio of jobs
to machines is large. In [16] it is implemented a Restricted Simulated Annealing
(RSA), which aims to reduce the computational effort by only performing move-
ments that the algorithm consider effective. In [17] is defined and proved a set
of proprieties for the UPMSPST and also implemented an Genetic Algorithm
and a Simulated Annealing using these proprieties. A hybridization that joins
the Multistart algorithm, the VND and a mathematical programming model is
made in [18]. [19] solve the UPMSPST using Genetic Algorithms, with two sets
of parameters, yielding two algorithms, GA1 and GA2. In [19], the authors cre-
ated and provided test problems for the UPMSPST [8]. Also in [8] are presented
the best known solutions to the UPMSPST so far.

3 Methodology

3.1 Representation and Evaluation of a Solution

To represent a solution s it is used a vector v of m positions, with each position
representing a machine. In addition, each machine is associated with a list of
jobs allocated to it. The order of the jobs in this list represents the sequence of
execution.

The evaluation of a solution s is done by calculating the processing time of
the machine that will be the last to conclude the execution of its jobs. In other
words, the evaluation value is the makespan.

3.2 Proposed Algorithms

In this section two algorithms, ATV and HIVP, are proposed for solving UPM-
SPST. The details of operation of these algorithms are described below.
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The AIV Algorithm The first proposed algorithm, named AIV, combines the
heuristic procedures Iterated Local Search (ILS) and Random Variable Neighbor-
hood Descent (RVND). The main structure of AIV is based on ILS, using the
RVND procedure to perform the local searches.

The pseudo-code of AIV is presented in Algorithm 1.

Algorithm 1: ATV

input : timesLevel, executionTime
currentTime < 0;
Solution s, s’, bestSol;
s < ASPTQ) ; /* see subsection 3.3 */
s <— RVND(s) ; /* see subsection 3.6 x/
bestSol + s;
level + 1;
Update currentTime;
while currentTime < executionTime do
s’ < s;
times < 0;
maxPerturb < level + 1;
while times < timesLevel do
perturb < 0;
s’ < s;
while perturb < maxPerturb do
perturb ++;
s’ < perturbation(s’) ; /* see subsection 3.8 */
end
s’ < RVND(s’) ; /* see subsection 3.6 */
if f(s') < f(s) then
s < s’}
updateBest (s, bestSol);
times < O;
end
times ++;
Update currentTime;
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level ++;

if level > 4/ then
‘ level < 1;

end
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end
33 return bestSol;
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The Algorithm 1 has only two input parameters: 1) timesLevel, which rep-
resents the number of times in each level of perturbation; 2) executionTime, the
time in milliseconds that limits the execution of the algorithm.

First of all, AIV begins initializing the variable that controls the time limit,
currentTime (line 1). Next, it initializes three empty solutions: the current solu-
tion s, the modified solution s’ and the solution that will store the best solution
found bestSol (line 2).

In line 3 a new solution is created based on the Adaptive Shortest Processing
Time (ASPT) rule (see subsection 3.3). Then, this new solution passes through
local searches at line 4, using the RVND module (see subsection 3.6).

In the next step, the current best known solution, bestSol, is updated (line
5) and the level of perturbations is set to 1 (line 6).
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After all these steps, the execution time is recalculated in line 7.

The iterative process of ILS is situated in lines 8 to 32 and it finishes when
the time limit is exceeded. A copy of the current solution to the modified solution
is made in line 9.

In lines 10 and 11 the variable that controls the number of times in each
level of perturbation (times) is initialized, as well as the variable that limits
the maximum number of perturbations (maxPerturb). The following loop is
responsible to control the number of times in each level of perturbation (lines
12-27).

The next loop, lines 15 to 18, executes the perturbations (line 17) in the
modified solution (see subsection 3.8). The number of times this loop is executed
depends on the level of perturbation. With the perturbations accomplished, the
new solution obtained is evaluated and the RVND procedure is applied in this
new solution until a local optimum is reached, in relation to all neighborhoods
adopted in RVND.

In lines (20-24) it is verified if the changes made in the current solution were
good enough to continue the search from it. When the time is up, in bestSol will
be stored the best solution found by AIV.

Each module of ATV will be detailed afterwards.

The HIVP Algorithm The second proposed algorithm, HIVP, is an attempt
to improve the AIV algorithm, differing only by two procedures: the construction
of the initial solution and the incorporation of an intensification/diversification
technique, the Path Relinking — PR [20]. The Algorithm 2 presents the pseudo-
code of HIVP.

Since HIVP is an upgrade of AIV, only the different lines will be described
next. The elite set is initialized at line 3. At line 4 the solution s receives a
solution generated by the partially greedy procedure C PGy pss (see subsection
3.4). Following, s passes through local searches using the RVND procedure (see
subsection 3.6) and bestSol receives the resulting solution from RVND. This
solution is inserted in the elite set (line 7). In the iterative loop of HIVP, after
the application of the RVND in the modified solution (line 21) the elite set is
updated and a random real number between 0 and 1 is generated (lines 22 and
23). If this number is less than or equal to 0.05 and the elite set is full (with
5 solutions) it is performed an intensification/diversification of the search using
the PR technique - lines 23 to 27 (see subsection 3.7). The modified solution
and a random solution from the elite set are the input parameters of PR. If the
modified solution is considered an improvement (line 28), then the elite set is
updated at line 32.

3.3 ASPT: The Adaptive Shortest Processing Time Rule

The Adaptive Shortest Processing Time (ASPT) rule is an extension of the Short-
est Processing Time rule [21].

In ASPT, firstly, it is created a set N = {1,...,n} containing all jobs and a
set M = {1,...,m} that contains all machines.
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Algorithm 2: HIVP

Input : timesLevel, executionTime
Output : bestSol

1 currentTime < 0O;

2 Solution s, s’, bestSol;

3 elite + {};

4 s+ CPGypssO ; /* see subsection 3.4 */
5 s < RVND(s) ; /* see subsection 3.6 */
6 bestSol < s;

7 elite < elite U {bestSol};

8 level + 1;

9 Update currentTime;

10 while currentTime < executionTime do

11 s’ < s;

12 times < 0;

13 maxPerturb < level + 1;

14 while times < timesLevel do

15 perturb < 0;

16 s’ s;

17 while perturb < maxPerturb do

18 perturb ++;

19 s’ < perturbation(s’) ; /* see subsection 3.8 */
20 end
21 s’ «+ RVND(s") ; /* see subsection 3.6 */
22 elite «— update(s’);
23 pr < random(0,1);
24 if pr < 0.05 e [elite] > 5 then
25 el < random(1,5);
26 s’ < PR(elite [el], s”) ; /* see subsection 3.7 */
27 end
28 if f(s') < f(s) then
29 s <+ s’;
30 times < 0;
31 updateBest (s, bestSol);
32 elite <+ update(s);
33 end
34 times ++;
35 Update currentTime;
36 end
37 level ++;
38 if level > 4 then
39 | level « 1;
40 end
41 end

»
N

return bestSol ;

From the set IV, the jobs are classified according to an evaluation function
gr- This function is responsible to obtain the completion time of the machine k.
Given a Candidate List (CL) of jobs, it is evaluated, based on the gy function,
the insertion of each of these jobs in all positions of all machines. The aim is to
obtain in which position of what machine that the candidate job will produce
the lowest completion time, that is, the gmin-

If the machine with the lowest completion time has not allocated any job
yet, its new completion time will be the sum of the processing time of the job
to be inserted with the initial setup time for such job.

If this machine has some job, its new completion time will be the previous
completion time plus the processing time of the job to be inserted and the setup
times involved, if it has sequenced jobs before or after.
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This allocation process ends when all jobs are assigned to some machine,
thus producing a feasible solution, s. This solution is returned by the heuristic.
The algorithm is said to be adaptive because the choice of a job to be inserted
depends on the preexisting allocation.

3.4 CPGgypss: The Partially Greedy Procedure

The CPGypss procedure is a partially greedy constructive method which also
uses the evaluation function gy to classify the jobs. The same Candidate List
(CL) created in ASPT is generated here. Notwithstanding, instead of deter-
ministically choosing the job that produces the gmin, the C PG gpss procedure
chooses a candidate in the CL based on the Heuristic-Biased Stochastic Sampling
(HBSS) [22]. The jobs in the CL are chosen according to a probability arising
from a bias function.

In Table 3 are presented the following bias functions: Random, Logarithmic,
Polynomial of degree 2, Polynomial of degree 3, Polynomial of degree 4 and
Exponential. The first column shows the index of the candidates. In each cell of
the table there is the probability of the candidate i be chosen using the respective
bias function. For example, if the bias function selected is the Exponential, the
fifth element of the CL will have 1.2% chance of being chosen.

Table 3. Table containing bias functions. Source: [22]

Rand Log Linear Poly® Poly® Poly® Exp
0.033 0.109 0.250 0.620 0.832 0.924 0.632
0.033 0.069 0.125 0.155 0.104 0.058 0.233
0.033 0.055 0.083 0.069 0.031 0.011 0.086
0.033 0.047 0.063 0.039 0.013 0.004 0.031
0.033 0.042 0.050 0.025 0.007 0.001 0.012
0.033 0.678 0.429 0.092 0.013 0.002 0.006

U W N~

@
o
S

The bias function chosen in this work was the Exponential, this choice was
made based on empirical tests. With the bias function selected, it can be ex-
plained how the CPG g pss procedure constructs a solution.

Initially, as in ASPT, all the jobs and machines are stored in the sets N and
M, respectively. Then, all jobs are inserted in the CL.

While there are jobs in the CL: firstly, jobs are classified according to the g
function (see subsection 3.3), analyzing their inclusion at the last position of a
machine and creating a list named Rank. Rank is composed by combinations
of (j, k), with j € LC and k € M, ordered according to the value calculated by
the g function.

A probability according to the Exponential bias function values, as presented
in Table 3, is associated to each pair in Rank. Secondly, the Wheel Selection
method is performed, in order to select which job will be inserted in the partial
solution. Then, the selected job is removed from LC' and all pairs containing this
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job are removed from Rank. This loop is executed until all jobs are inserted in
the solution, generating a feasible solution.

3.5 Neighborhood Structures

Three neighborhood structures are used to explore the solution space. These
structures are based on swap and multiple insertion movements of the jobs.

Multiple Insertion The Multiple Insertion (MI) movement consists in real-
locating a job from a position and inserting it on any position of the entire
schedule, including the machine that it was previously allocated. The MI move-
ment belongs to the NI (.) neighborhood. To exemplify this movement, Figure
2 illustrates the transfer of the job 4 from the second position of machine M2
to the second position of machine M1.

ma ([ 2 [
wz ([ ] 1
Time 1

o 20 40 60 80 100 120 130 140

e ([
we [
|

Time | 1 | | || | 1
0 20 a0 60 80 90 100 120 139 140

Fig. 2. Example of a Multiple Insertion movement

Swap in the Same Machine The Swap in the Same Machine (SSM) move-
ment, as the name suggests, is done by swapping the positions of two jobs
presented in the same machine. The SSM movement belongs to the N5 (.)
neighborhood. Figure 3 shows the swap of jobs 5 and 6 in machine M 2.

Swap Between Different Machines The Swap Between Different Machines
(SDM), which belongs to the NP () neighborhood, consists in swapping two
jobs that are allocated in different machines. This movement can be better exem-
plified by Figure 4, where the swap of the jobs 7 (M1) and 5 (M2) is perceived.

3.6 RVND: The Random Variable Neighborhood Descent Procedure

The Random Variable Neighborhood Descent — RVND procedure [7, 23] is a
variant of the VND procedure [6].

Each neighborhood of the set { NM! N9SM NSDM1 described in section 3.5
defines one local search. Unlike VND, the RVND explores the solution space
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Fig. 3. Example of a Swap in the Same Machine movement
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Fig. 4. Example of a Swap Between Different Machines movement

using these three neighborhoods in a random order each time the procedure
is triggered. The RVND is finished when it is found on a local optimum with
relation to the three considered neighborhoods.

Following are described the local searches procedures used in RVND.

FI}VH: Local Search with Multiple Insertion The first local search uses
multiple insertions movements (N*Z(.) neighborhood) with the First Improve-
ment strategy. In this search, each job of each machine is inserted in all positions
of all machines.

The selection of the jobs to be removed respects the allocation order in the
machines. That is, initially, the first job is selected to be removed, then the second
job until all jobs from a machine are chosen. The machines that will have their
jobs removed are selected based on their completion times. The search starts
with machines with higher completion times to machines with lower completion
times.

By contrast, the insertions are made from machines with lower completion
times to machines with higher completion times. The jobs are inserted starting
from the first position and stopping at the last position.
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The movement is accepted if the completion times of the machines involved
are reduced. If the completion time of a machine is reduced and the completion
time of another machine is added, the movement is also accepted. However, in
this case, it is only accepted if the value of reduced time is greater than the value
of time increased.

It is noteworthy that even in the absence of improvement in the value of
makespan, the movement can be accepted. Upon such acceptance of a movement,
the search is restarted and only ends when it is found a local optimum, that is,
when there is no movement that can be accepted in the neighborhood of multiple
insertion.

FIgyp: Local Search with Swaps Between Different Machines The
second local search makes swap movements between different machines, exploring
the N9MP () neighborhood. For each pair of existing machines every possible
swap of jobs between them are analyzed.

Exchanges are made from machines that have higher completion times to
machines with lower completion times. The acceptance criteria are the same as
those applied in the first local search. If there are reductions in completion times
on two machines involved, then the movement is accepted. If the reduced value
of the completion time of a machine is larger than the completion time plus
another machine, the movement is also accepted. Once a movement is accepted,
the search stops.

Blgsns: Local Search with Swaps on the Same Machine The third
local search examines the NSM(.) neighborhood and uses the strategy Best
Improvement.

The machines are ordered from the machine that has the highest value of
completion time to the machine that has the lowest value of completion time.

For each machine, starting from the first, all possible swaps involving pairs
of jobs are investigated. The best movement is accepted if the completion time
of the machine is reduced and, in this case, the local search is repeated from this
solution; otherwise, the next machine is analyzed.

This local search only ends when no improvements is found in 30% of the
machines.

3.7 Path Relinking

The Path Relinking — PR [20] technique makes a balance between intensification
and diversification of the search. Its objective is to explore existing paths between
high quality solutions. These high quality solutions are stored in an elite set.

In order to a solution s’ enter in this elite set, one of the following conditions
must be satisfied: i) be better than the best solution of the elite set, in terms of
the makespan value; ii) be better (lower makespan) than the worst solution of
the elite set and differentiate itself from all solutions of the elite set at least by
10%. The diversity criterion, when comparing two solutions, is the percentage
of jobs allocated in different positions.
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The Backward Path Relinking (BKPR) strategy is used. According [20] BkPR
usually outperforms forward path relinking. Thus, a path is constructed from a
base solution to a guide solution, being the best solution as the base solution and
the worst solution as the guide solution. In this work, this strategy is applied
over the following solutions: 1) a solution chosen randomly in the elite set; 2)
the solution returned by the RVND local searches.

The attribute chosen for building the path is the position of a job. Initially,
the jobs positions of the guide solution are inserted in a list named &. In each
iteration is analyzed the insertion, in the base solution, of an attribute that be-
longs to the guide solution. Following, the other copy of this job is removed from
the base solution. Moreover, if the machine that receives this job has another
different job at the same position, then this job is relocated to another position
that has not set its attribute from the guide solution yet.

With all attributes from guide solution analyzed, it is included to base so-
lution the attribute which produces the lower cost. This cost is given by the
sum of all completion times of all machines in base solution. After the insertion
of an attribute, to this new base solution is applied the FI3,; local search, de-
fined next. It is important to highlight that once an attribute is inserted in base
solution, this attribute can not be changed.

Following, the selected attribute is removed from @. These steps are repeated
until @ is empty. At the end of the algorithm the base solution will have the
same scheduling as the guide solution and the best solution found during this
procedure is returned.

FI%,,: Local Search with Multiple Insertion As the local search FI},,,
the local search FI%,; also explores the NM!(.) neighborhood with the First
Improvement strategy. But it differs by two characteristics: i) the only acceptance
criterion is the improvement of the makespan; ii) when an improvement occurs,
the method is stopped and the new solution is returned.

3.8 Perturbations

A perturbation is characterized by applying an insertion movement in a local
optimum, but this movement differs when inserting the job in another machine.
The job will be inserted into its best position, that is, in the position that
will produce the lowest completion time. Doing so, sub parts of the problem are
optimized after each perturbation. The machines and the job involved are chosen
randomly.

In both AIV and HIVP, the number of perturbations applied to a solution is
controlled by the level of perturbation. A level [ of perturbation consists in the
application of [ + 1 insertion movements. The maximum level allowed for the
perturbations is set to 3.

If timeslevel perturbed solutions are generated without an improvement in
the current solution the perturbation level is increased. If an improvement of
the current solution is found, the level of perturbation is set to its lowest level

(1=1).
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3.9 Efficient Evaluation of the Objective Function

The evaluation of an entire solution after every movement, multiple insertion
or swap, demands a large computational effort. Aiming to avoid this situation,
it was created a procedure that evaluates only the processing and setup times
involved in the movements. In this way, in order to obtain the new completion
time of each machine it is necessary few additions and subtractions.

Taking the example of the multiple insertion movement illustrated in Figure
2, the new completion time of machine M2 is obtained by subtracting from its
previous value the processing time of job 4 pss and also subtracting the setup
times involved, Ss42 and Syg2. The setup time Ssg2 also needs to be added to the
completion time of machine M2. In machine M1, the processing time of job 4
p4q1 and the setup times So41 and Sy17 are included in the new completion time.
Then, the new completion time of machine M1 is M1 = 120—4+3+17+3 = 139
and the new completion time of machine M2 is M2 =130—-7—-32—-5+4 = 90.
Although the given example is for the multiple insertion movement, it is trivial
to apply the same procedure for a swap movement.

4 Computational Results

Using a set of 360 test problems from [8] the computational tests were performed.
This set of test problems involves combinations of 50, 100 and 150 jobs with 10,
15 and 20 machines. There are 40 instances for each combination of jobs and
machines. The best known solutions for each of these test problems are also
provided in [8].

ATV was developed in C++ language and HIVP was developed in Java lan-
guage. All experiments were executed in a computer with Intel Core i5 3.0 GHz
processor, 8 GB of RAM memory and in Ubuntu 12.04 operational system.

The parameters used in both AIV and HIVP are: i) the number of iterations
on each level of perturbation: timeslevel = 15; ii) the stop criterion: Timemax,
which is the maximum time of execution, in milliseconds, obtained by Eq. 1. In
this equation, m represents the number of machines, n the number of jobs and
t is a parameter that was tested with three values for each instance: 10, 30 and
50. It is observed that the stop criterion, with these values of ¢, was the same
adopted in [19].

Timemax =1 X (M/2) Xt ms (1)

With the objective to verify the variability of final solutions produced by the
algorithms it was used the metric given by Eq. 2. This metric is used to compare
algorithms. For each algorithm Alg applied to a test problem 7 is calculated the

Relative Percentage Deviation RPD; of the solution found fiAlg in relation to
the best known solution f;*.
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In this paper, the algorithms AIV and HIVP were executed 30 times, for
each instance and for each value of ¢, calculating the Average Relative Percent-
age Deviation RPD{"? of the RPD; values found. In [19] the algorithms were
executed 5 times for each instance and for each value of t.

RPD; = =t i 2)

In Table 4 are presented, for each set of instances, the RPD;"? values ob-
tained for each value of t = 10, 30, 50 by ATV and HIVP, and also it contains the
RPD{" values obtained by GA2, a genetic algorithm developed in [19]. To our
knowledge, the results reported in the literature for this set of test problems are
only presented in [19] and the best algorithm tested by the authors was GA2.

There are three values of RPD{"? separated by a ’/’ for each set of instances
in the table. Each separation represents test results with different values of ¢,
10/30/50. If a negative value is found, it means that the reached result outper-
formed the best value found in [19] on their experiments.

Table 4. Average Relative Percentage Deviation of the algorithms AIV, HIVP and
GA2 with ¢ = 10/30/50.

Set of Instances AIV? HIVP! GA2?
50 x 10 3.69/1.83/1.30 2.27/0.25/-0.44 7479/6.92/6.49
50 x 15 1.52/-0.77/-1.33  -0.6/-2.78/-3.47 12.25/8.92/9.20
50 x 20 5.26/2.01/1.65 —2.14/—4.06/—4.68 11.08/8.04/9.57
100 x 10 5.06/2.93/2.00 4.45/2.04/1.23 15.72/6.76/5.54

100 x 15 1.80/-0.40/-1.29 2.17/-0.64/-1.78 22.15/8.36/7.32
100 x 20 0.52/-1.64/-2.89 0.58/-2.44/-3.92 22.02/9.79/8.59
150 x 10 3.77/1.99/1.07  4.21/2.15/0.98 18.40/5.75/5.28
150 x 15 |1.83/-0.24/-1.04  3.37/0.42/-0.44 24.89/8.09/6.80
150 x 20 -1.04/-3.10/-4.00 1.22/-2.19/-3.39 22.63/9.53/7.40
RPD™ 2.49/0.29/-0.50  1.72/-0.8/-1.77 17.44/8.02/7.35
'Executed on Intel Core i5 3.0 GHz, 8 GB of RAM, 30 runs for each instance
2Executed on Intel Core 2 Duo 2.4 GHz, 2 GB of RAM, 5 runs for each instance

The best values of RPD*"Y are highlighted in bold. It is remarkable that
HIVP is the algorithm that found the best results. Not only it improved the ma-
jority of best known solutions, but also it won in 63% of the sets of instances. The
algorithm AIV found the best results in 37% of the remainder sets of instances.

A table with all results found by both algorithms and also the previous best
known values for the UPMSPST can be found in http://www.decom.ufop.br/
prof/marcone/projects/upmsp/Experiments_UPMSPST_AIV_HIVP.ods.

The box plot, Figure 5, contains all RPD*9 values for each algorithm. It
is notable that 100% of the RPD values encountered by both AIV and HIVP
outperformed the ones obtained by GA2 algorithm. By the way, it is observed
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that 75% of solutions found by the developed algorithms are near the best known
solutions. Besides, more than 50% of solutions found by the HIVP algorithm are
better than the best known so far. With ATV this percentage drops to 25%.

20
1

9
15

10

=
1=

T T
AlV GA2 HIVP

RPD_av(

—

Algorithms

Fig. 5. Box plot showing the RPD*"Y of the algorithms.

The results were submitted to the Shapiro-Wilk test [24] to verify if the
sample satisfies the normality test, so that it can be decided which test to use
for analyzing statistical differences between all algorithms. The Shapiro-Wilk
returned, with significance level of 5%, W = 0.9261 and p = 0.2692. As p =
0.2692 > 0.05 then it can be concluded with 95% of confidence level that the
sample are taken from a normal distribution.

Thus, in order to verify if exist statistical differences between the RPD val-
ues, it was applied an analysis of variance (ANOVA) [25]. This analysis returned,
with 95% of confidence level and threshold = 0.05, that p = 2 x 10716, As
p < threshold, it is possible to ensure that exist statistical differences between
the RPD values.

A Tukey HSD test, with 95% of confidence level and threshold = 0.05, was
used for checking where are these differences. Table 5 contains the differences in
the average values of RPD (diff), the lower end point (lwr), the upper end point
(upr) and the p-value (p) for each pair of algorithms.

Table 5. Results from Tukey HSD test.

Algorithms diff Iwr upr P

GA2-AIV |10.077407 7.495481 12.659333 0.0000000
HIVP-AIV | -1.041481 -3.623408 1.540445 0.6018344
HIVP-GA2|-11.118889 -13.700815 -8.536963 0.0000000
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The p-value shows that when comparing ATV to GA2 there is a statistical
difference between them, because it was less than the threshold. The same con-
clusion can be achieved when comparing HIVP to GA2. However, when AIV is
compared to HIVP they are not statistically different from each other, since the
p-value was greater than the threshold.

By plotting the results from the Tukey HSD test (Fig. 6) it is more noticeable
that HIVP and AIV are statistically different from GA2, as their graphs do not
pass through zero. Comparing algorithms HIVP and AIV it can be perceived that
they are not statistically different from each other, because the graph passes
through zero. Thus, with a statistical basis it can be concluded, within the
considered instances, that AIV and HIVP are the best algorithms on obtaining
solutions for UPMSPST.

95% family-wise confidence level

f ]

GA2-AIV

HIVP‘AAIV
T
1

T T T T
-10 -5 0 5 10

HIVP-GA2

Differences in mean levels of algoritmos

Fig. 6. Graphical results from Tukey HSD test.

5 Conclusions

This paper studied the Unrelated Parallel Machine Scheduling Problem with
Setup Times (UPMSPST), aiming to the minimization of the maximum com-
pletion time of the schedule, the makespan.

In order to solve the UPMSPST it was proposed two algorithms based on
Iterated Local Search (ILS) and Variable Neighborhood Descent (VND). The first
algorithm was named AIV and it implements the Adaptive Shortest Processing
Time (ASPT) rule to create an initial solution. The Random Variable Neigh-
borhood Descent (RVND) procedure was used to perform the local searches,
randomly exploring the solution space with insertions and swap movements. A
perturbation in AIV is an application of an insertion movement. The second al-
gorithm, called HIVP, is an attempt to upgrade AIV, constructing the solution
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using a partially greedy procedure and incorporating the Path Relinking (PR)
technique in order to intensify and diversify the search.

The two developed algorithms were applied to instances taken from literature
and the results were compared the genetic algorithm GA2, developed in [19].
Statistical analysis of the computational results showed that ATV and HIVP are
able to produce 100% of better solutions than GA2. HIVP and AIV were also
able to generate new upper bounds for these test problems. Although HIVP
seems to be better than ATV, statistically this was not proved. Nevertheless, it
can be concluded that both AIV and HIVP are two efficient algorithms when
dealing with the UPMSPST.

For future works it is proposed the application of both algorithms on the
entire set of test problems available in [8]. An improvement that will be studied
is an incorporation of a Mixed Integer Programming (MIP) model to AIV or
HIVP for solving related sub problems.
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