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Abstract
This article presents an Evolution Strategy (ES)-based algorithm, designed to self-adapt
its mutation operators, guiding the search into the solution space using a Self-Adaptive
Reduced Variable Neighborhood Search procedure. In view of the specific local search
operators for each individual, the proposed population-based approach also fits into the
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context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized
Adaptive Search Procedure with different greedy parameters for generating its initial
population, providing an interesting exploration-exploitation balance. To validate the
proposal, this framework is applied to solve three different NP-Hard combinatorial
optimization problems: an Open-Pit-Mining Operational Planning Problem with dy-
namic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with
Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Fore-
casting. Computational results point out the convergence of the proposed model and
highlight its ability in combining the application of move operations from distinct
neighborhood structures along the optimization. The results gathered and reported in
this article represent a collective evidence of the performance of the method in chal-
lenging combinatorial optimization problems from different application domains. The
proposed evolution strategy demonstrates an ability of adapting the strength of the
mutation disturbance during the generations of its evolution process. The effectiveness
of the proposal motivates the application of this novel evolutionary framework for
solving other combinatorial optimization problems.

Keywords

Evolution strategies, neighborhood structures, reduced variable neighborhood search,
memetic algorithms, open-pit mining operational planning, unrelated parallel machine
scheduling, short-term load forecasting.

1 Introduction

In this article, the class of Evolutionary Algorithms (EA) known as Evolution Strategies
(ES) (Beyer and Schwefel, 2002) is investigated and a new ES variant is proposed, being
able to solve challenging combinatorial optimization problems. We combine the diver-
sity of the population-based algorithms with the power of Reduced Variable Neighbor-
hood Search (RVNS) (Hansen and Mladenovi¢, 2001), a well-known trajectory search
algorithm. Moreover, we supply RVNS with adaptive rules, producing a new variant
that we call Adaptive RVNS (ARVNS). EA are search and optimization methods in-
spired by well-known evolutionary principles, such as random mutations and selective
pressure for evolution and adaptation of its population. On the other hand, VNS and
other trajectory-based approaches such as Tabu Search (TS) (Glover, 1996) and Iterated
Local Search (ILS) (Lourenco et al., 2003) take advantage of the flexibility in design-
ing and exploring different Neighborhood Structures (NS) of the problem, using the
simple fact that the local minimum with respect to one neighborhood structure is not
necessarily so with respect to another.

Biological evolution in nature is an inspiration for the ES, which is mainly guided
by operators: mutation and selection. This class of methods has often been applied for
solving continuous optimization problems (Kashan et al., 2015; Chaquet and Carmona,
2012; Andersen and Santos, 2012; Aler et al., 2012; Costa and Oliveira, 2001). While
EA have already been applied to solve several combinatorial optimization problems
(Prado et al., 2014; Qaurooni and Akbarzadeh-T, 2013; Freitas and Guimaraes, 2011),
only a few articles in the literature address combinatorial optimization problems using
ES (Cai and Thierauf, 1996; Rajasekaran, 2006; Kashan et al., 2015). Our current article
focuses on a mechanism for guiding the search in the solutions space, mainly based
on a weighting system for applying move operations from k,,, distinct neighborhoods.
The motivation to develop an ES for combinatorial optimization, combined with the
use of different NS, comes from the successful applications in both fields, numerical
and combinatorial optimization.

Adaptive local search techniques have been exploited by researchers (Dong et al.,
2015; Li et al., 2015; Schneider et al., 2014; Hosny and Mumford, 2010). This family of
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methods has the ability of exploring attraction basins with iterative moves, combining
it with smart strategies that, in general, check the success of previous steps done by
the methods. In this context, an ILS with self-adaptive shaking procedure was applied
for tackling a flow shop problem (Dong et al., 2015) and multi-depot Vehicle Routing
Problem (VRP) (Lietal., 2015). Following the same idea, Schneider et al. (2014) proposed
an adaptive mechanism for guiding the shaking step of a VNS applied on a VRP. Their
approach selected and favored route and vertex according to their success within the
search.

By Reduced VNS method a random point from the k-th neighborhood Ni(s) (k =
1, ..., knax) Of the current incumbent solution x is taken, and no descent from there is
made. RVNS has been shown to be useful in solving large instances, for which local
search is costly (Xiao et al., 2011; Hansen et al., 2009).

The adaptive variant of the RVNS designed in this article, the ARVNS, explores
specific parts of each N, playing with probabilities evolved through the ES evolutionary
process. Our proposal implicitly considers the problem-specific characteristics and the
success of a given N within the search. There is no need of mechanisms for analyzing
previous success of the Ny, since it is inherited through the genes, ES mutation operators,
from the parents to the offspring. The latter are generated after mutations over the
ARVNS application probabilities and are expected to survive if interesting changes
have occurred.

On the other hand, the proposed self-adaptive evolution strategy also fits the context
of Memetic Algorithms (MA) (Moscato and Cotta, 2003), comprising a population-based
method in which individuals possess specific, unique, or special searching operators. By
incorporating problem domain knowledge, such as heuristics, local search techniques,
individual learning strategies, or other stochastic search operators, MA evolve their
population through the generations. These techniques have shown a great potential for
solving N'P-Hard combinatorial and continuous optimization problems (Guimaraes
et al., 2007; Wanner et al., 2008; de Freitas et al., 2014).

We introduce an evolution strategy-based algorithm, abbreviated as GES, which
generates its initial population through a diversified and greedy procedure. Thus, we
suggest the use of the Greedy Randomized Adaptive Search Procedures (GRASP) (Re-
sende and Ribeiro, 2010). GRASP construction phase is responsible for filling the initial
population with individuals generated with different random greedy parameters. Other
versions with simpler solution generation procedures could also be used, such as gener-
ating solutions at random or initializing a homogeneous initial population. We kept the
ES mutation operator vectors as the main search operator in the solution space, however,
being guided by new data structures incorporated with each individual representation.
The proposed adaptive operators regulate the rate of moves application of different NS,
in a special case of an RVNS search. An optional intensification phase is also suggested
for some problems, in order to accelerate the convergence of the algorithm.

Problems already tackled by the authors of this article were used as case studies.
We took profit from the optimization framework OptFrame (see Coelho, Munhoz et al.,
2011), a computational framework for the development of efficient metaheuristic algo-
rithms for combinatorial optimization problems. Three different (and very challenging)
combinatorial optimization problems are considered in this work as case studies:

1. An Open-Pit-Mining Operational Planning (OPMOP) problem (Souza et al.,
2010);

2. An Unrelated Parallel Machine Scheduling Problem with Setup Times (UPMSP-
ST) (Al-Salem, 2004), implemented in a Java platform with OptFrame ideas;
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3. Calibration of a hybrid fuzzy model calibration for the Short-Term Load Fore-
casting Problem (STLFP) (Coelho et al., 2014a).

Since we are dealing with many N/P-Hard problems, exact solution methods have
restricted applicability. This fact motivates us to search for solutions by means of meta-
heuristic procedures.

The abstraction of the concepts involving the proposed discrete ES and its applica-
tion over the aforementioned problems was not found in the literature and shows up as
a novel evolutionary framework for combinatorial optimization problems. The major
contributions of the current work are to:

e Use and adapt a population-based algorithm for combinatorial optimization
problems, combining it with trajectory search techniques.

—Walk through the search space by using discrete moves, following a
trajectory provided by random moves in a Reduced Variable Neighborhood
Search;

—Combine neighborhood structures in order to guide the search for new
solutions using self-adaptive mutation operators;

e Introduce a flexible self-adaptive search framework implemented in the core
of the open-source optimization framework OptFrame;

e Apply the proposed methodology for solving different A"P-Hard combina-
torial optimization problems, including two large-scale real case problems
(OPMOP and HFVRPMT).

The remainder of this article is organized as follows. Section 2 details the pro-
posed self-adaptive ES. Section 3 describes an application for the OPMOP. Analogously,
Sections 4 and 5 describe mutation operators’ behavior of the proposed algorithm over
the STLFP and UPMSP-ST, respectively. Section 6 draws the final considerations and
future works.

2 Self-Adaptive Evolution Strategy

Evolution Strategies (ES) were developed in the 1960s and 1970s by P. Bienert, I. Rechen-
berg, and H.-P Schwefell at the Technical University of Berlin. The initial version
operated with single individuals, subjected to mutation and selection among their de-
scendants. Beyer and Schwefel (2002) provide a detailed description about ES in their
comprehensive introduction.

As mentioned by Meyer-Nieberg and Beyer (2007), self-adaptation can be seen as
state-of-the-art methods for adjusting the setting of control parameters. A study about
self-adaptation in EA applied for Combinatorial Optimization can be found in Smith
(2008).

ES uses natural problem-dependent representations according to each problem that
is being tackled. One advantage is its searching ability over the evolution process that
is guided, primarily, by mutation and selection. Here, we take advantage of the basic
principle, introducing the ARVNS, an RVNS guided by probabilities. A wide range
of genetic operators can be used in order to generate the offspring population. Novel
mechanisms are still being explored and developed in the literature (Chuangetal., 2015).
Mutation operators from ES usually can change all components of a parent vector at
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the same time, but with minor changes since it is assumed that in the real biological
evolution small mutations occur frequently but large ones only rarely.

In the 1990s, Cai and Thierauf (1996) proposed a general ES for solving discrete
optimization problems, suggesting that not all components of a parent vector should
be mutated, but only a few should be randomly changed every time. This strategy
was quite smart, since, in discrete sets, differences between any two adjacent values
are usually not small. This approach has been used/followed in different applications
(Hasancebi, 2007; Chen and Chen, 2009; Yao et al., 2011). Li et al. (2013) introduced
a Mixed Integer ES capable of handling parameters consisting of discrete and integer
variables.

Motivated by successful applications in the literature, it was felt that the ES could
deal with combinatorial optimization problems that Coelho, Souza et al. (2011) in part-
nership with a self-adaptive strategy based on moves generated from simple NSs, where
neighborhood structures guide the individuals through the solution space. Thus, a spe-
cial care in the design of the algorithm was given, exploring the RVNS ability of handling
random moves in Ni, k =1, ..., k.. The details will be discussed later in this article.
The use of NS is well known in the literature and has been widely applied for solving
NP-Hard problems (Johnson et al., 1988; Kirkpatrick, 1984; Glover, 1989; Mladenovi¢
and Hansen, 1997; Lourencgo et al., 2003; Lust and Teghem, 2010; Pisinger and Ropke,
2010).

In this sense, we provide a compact and efficient encoding for adapting NS use
and strength in connection with individual mutation operators, described in the next
section.

2.1 Mutation Operators

According to the problem that is being solved, a desired data structure, or representation,
is selected and a solution to the problem is defined as s. Here, each individual ind
is comprised of two additional mutation vectors, defined as P and A, presented in
Equations (1) and (2) respectively, embedded within the solution representation s.

Following this strategy, each individual of the population is defined as described
in Equation (3) as a triple formed by s, P, and A.

P:[p17p27‘~~spks'-~7pNSmaX] (1)
A=la,ay,...,0, . ..,4aNsmax] 2
ind = (s, P, A) 3)

The first mutation vector, P, represents the likelihood associated with the choice of
each NS in a set composed of N Smax neighborhood structures. This vector guides the
probability of applying each NS used to walk on the search space. Each position stores
the probability pi € [0, 1], px € R of the application of a given move m € N.

The second mutation vector, A, stores integer values for controlling the strength of
the disturbance, once an NS is selected to be applied and shake the solution s. Each
position a; € [0, napi], ax € N of this vector indicates the number of random moves
m € Nj tobe applied from neighborhood k, with nap; representing the maximum number
of applications of different moves in each mutation event.

Both vectors are adapted across the generations of the evolutionary process, ac-
cording to well-known probability distribution functions. The evolution of these two
mutation vectors will be discussed for each application described in this current study.
Other sets of parameters could also be included for adapting the distributions along
the generations.
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Algorithm 1: GES

Input: greedy parameter v, Function f(.), population size 1, offspring size A,
random individuals selected for local searching «

Input: N neighborhoods

Output: Population Pop

1 fori < 1toudo

Generate a random number « € [0, 1]

s + GRASP(v)

(P, A) + BuildMutationVectors(|N|)

ind < (s, P, A)

Pop; < ind

end

while stop criterion not satisfied do

fori < 1to Ado

ind < Random individual Pop, with z € [1,
ind’ < UpdateParameters(ind, o cal,
ind” <~ ARVNS(ind', N)

?ffsprings — ind"

© 0 NN S Ul e W N
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P n
Obinomial’% binomial’
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Pop
end
fori < 1toxdo

Generate a random number = € [1, )]
localSearchProcedure(Pop2f/*Prings) — (optional)
end

Pop = Selection (f, Pop, Pop°ffsprings)

end

return Pop
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2.2 Generic Evolution Strategy Pseudocode Guideline

The proposed self-adaptive evolution strategy algorithm pseudocode is outlined in
Algorithm 1. As emphasized by Lust and Teghem (2010), generating an initial popula-
tion diversified and with good potential is a very important feature for the convergence
of population-based algorithms. Thus, we suggest the GRASP procedure in partnership
with the proposed algorithm.

The initial population (lines 1 to 7 of Algorithm 1) consists of generating a set of nt
individuals. Line 3 calls the GRASP procedure and generates each solution of the initial
population with different random greedy parameter y. Achieving a diversified initial
population is an important stage for the algorithm convergence, as can be verified in
Lust et al. (2011); therefore, different y parameters are used in order to control the size
of the candidates’ list. Thus, a random GRASP is designed here. In the second step
(line 4 of Algorithm 1), the self-adaptive mutation vectors P and A are built for each
individual. The procedure BuildMutationVectors (outlined in Algorithm 2) describes a
generic and simple idea for generating initial values for the mutation vectors. Line 5
merges the triple formed by a GRASP solution s and the mutation operators P and A. In
this sense, the following nomenclature is defined: let ind® be the solution s of the indi-
vidual ind; ind” be the probability parameter vector; ind” be the application parameter
vector.
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Algorithm 2: BuildMutationVectors

Input: number of neighborhoods mazx
Output: Mutation parameters vector P and A

1 P < Initialize Vector of Probabilities P for r neighborhoods
2 A < Initialize Vector of Applications A for r neighborhoods
3 for k < 1 to max do

4 Py, <+ Generate a random number € [0, 1]

5 Ay, < Generate a random number € [1, napy]

6 end
7 return PA

Algorithm 3: UpdateParameters

Input: Individual ind, Standard Deviation o,cq; € Thinomial, NUMber of
neighborhoods max
Output: Individual ind updated

1 for k < 1 to max do

2 | ind? + indf + N(0.0,0ca1)

3 indy} < indj} + B(0.0, 07 nomiat: Thinomial)

4 end

5 Check the limits of the operators ind”” and ind*
6 return ind

Algorithm 2 fills the probabilities vector, P, random numbers generated between the
interval [0, 1] and the same idea is applied for the vector of applications, A, respecting
the range [1, napi].

In line 11 of Algorithm 1, individual parameters are updated; the pseudocode of
the procedure “UpdateParameters” is described in Algorithm 3. Vectors of mutation
parameters A and P are updated and adapted according to a Normal or Binomial
Distribution, both centered at mean zero and standard deviation o,., and o). .
respectively. For the binomial distribution, an additional parameter oy, .., indicating
the number of trials is required. Parameter o}, ..., regulates the probability of successes
in a sequence of o}, independent yes/no experiments. Updates of the vectors ind”
and ind” can be viewed in lines 2 and 3, respectively, in Algorithm 3. Line 5 checks if
the limits of both mutation operators are respected after the mutation. As expected, the
maximum value assigned for the application probability, of each cell from vector ind”,
should be between 0% to 100%. Following a similar reasoning, the maximum number
of applications, for each cell k from vector ind”, should be napy and no less than 1.

Line 12 of Algorithm 1 calls the mutation procedure, a special case of the classical
RVNS, called ARVNS, illustrated in Algorithm 4. In line 2 of Algorithm 4, a random
number z € [0, 1] is generated and then line 3 checks if this number satisfies the proba-
bility ind/". In the positive case, the neighborhood structure Nj, allocated in the current
index k, is applied ind;* times. The neighborhood order of this parameter vector is cho-
sen at random. An optional mutation rate parameter can be added in each individual
representation in order to regulate the sequence in which the NS are applied.
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Algorithm 4: ARVNS
Input: Individual ind
Input: N neighborhoods
Output: Individual ind

1 for k < 1 to max do

2 Generate a random number z € [0, 1]
3 if z <indl then

4 fora + 1to mdg‘ do
5 s’ < MOV Ej(ind%)
6 indS + s

7 end

8 end

9 end

10 returns

Line 17 of Algorithm 1 opens the possibility of calling an optional intensification
phase, usually done by local search techniques, such as Variable Neighborhood Descent
(VND). When triggered, an intensification phase refines ¥ random solutions in the
offspring population. We emphasize this phase as optional since several variations
could be implemented here according to the combinatorial optimization problem that
is being tackled.

Finally, the selection procedure, line 19 of Algorithm 1, can be any desired selection
strategy, as long as it returns a population with cardinality u. We used two basic forms
of competition, both with the same notation of Beyer and Schwefel (2002). In the first
one, denoted by (u + 1), there is competition between parents and offspring. In this
strategy, i best individuals are selected among the union of parents and offspring. In
the second selection strategy, denoted by (i, 1), only the offspring compete for survival.
It is clear that using the strategy (i + A) as a way of selection, the population of the
next generation suffers a considerably higher selective pressure than using the strategy
(1, A).

3 Open-Pit-Mining Operational Planning Problem

The OPMOP involves the allocation of mining equipment to the pits, which may be of
ore or waste rocks, as well as determining the number of trips for each truck so that
both the production goals and the desired mineral composition of the ore are fulfilled.
The goal is to find a mining rate on every pit that minimizes deviations from production
goals, quality, and also the number of trucks required for the process. Dynamic truck
allocation is considered, which is the possibility to allocate the trips from a certain truck
to a different pit. This allocation system contributes to an increased fleet productivity
and, therefore, to reduce the number of trucks needed for the production process.
Figure 1 shows a graphical example of the OPMOP, composed of pits with different
mineral compositions, two shovels, and different trucks.

A brief literature review is described next.

Costa (2005) developed a heuristic algorithm based on GRASP and VNS using six
different types of movements to explore the solution space. A comparison was made
between the results obtained by this heuristic algorithm and those found by the solver
LINGO, version 7, applied to a mathematical programming model developed in Costa
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Figure 1: OPMOP example.

etal. (2004). Results showed that the heuristic algorithm was able to find better solutions
faster. Guimaraes et al. (2007) presented a computer simulation model to validate results
obtained by applying a mathematical programming model to determine the mining rate
in open-pit mines (e.g., occurrence of queues).

Souza et al. (2010) proposed an algorithm, called GGVNS, which combines the
metaheuristics General Variable Neighborhood Search (GVNS) (Hansen et al., 2008)
and GRASP procedure. The GVNS was chosen due to its simplicity, efficiency, and
capacity of its natural local search to deal with different neighborhoods. The authors
compared the results generated by GGVNS with those achieved by CPLEX optimizer
11.0.1, using eight test problems. Computational experiments showed that the algorithm
was competitive and, in most instances, capable of finding new optimal solutions—with
a gap < 1%—requiring a short computational time.

Coelho et al. (2012) developed the first multi-objective application to the OPMOP.
Three multi-objective heuristic algorithms were validated based on Two-phase Pareto
Local Search with VNS (2PPLS-VNS), proposed by Lust and Teghem (2010), Multi-
objective Variable Neighborhood Search (MOVNS), presented by Geiger (2004), and
Non-dominated Sorting Genetic Algorithm IT (NSGA-II) developed by Deb et al. (2002).
Approximations of Pareto sets generated by the developed algorithms were compared
considering the hypervolume and spacing metrics. Computational experiments have
shown the superiority of the algorithms based on VNS methods, which were able to
find better sets of nondominated solutions, more diversified and with an improved
convergence.

3.1 Representation and Evaluation of a Solution

Given a set of mining pits F, a set of trucks T, and a set of shovels K, a solution for
OPMOP is represented by a matrix R = [V|N], where Y is a matrix |F| x 1 and N a
matrix |F| x |T|. Each cell y; of the matrix Y|px1 represents shovel k € K allocated to
the pit i € F. If there aren’t trips made to the pit 7, the shovel k associated with this
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Table 1: Representation of a solution.

Shovel Truck,  Truck, ... Trucky
Fy  (Shovely, 1) 8 X . X
F,  (Available, 0) 0 0 .. 0
F3  (Shovelg, 0) 0 0 0
Fr  (Shovels, 1) 0 9 3

pit is considered inactive and it is not penalized for a production below the minimum
limit.

In the matrix N|r|x|r|, each cell n; represents the number of trips performed by the
truck / € T to the piti € F. The value 0 (zero) means no trip to that truck. The value X
means that the truck is incompatible with the shovel allocated to the pit.

In Table 1, there is an example of a possible solution to the OPMOP. At the column
Shovel, line Fy, the pair (Shovel;, 1), indicates that the loading equipment Shovel; is
allocated to the pit F; and the number 1 means that it is operating. At the column Shovel,
line F3, the pair (Shovels, 0) indicates that the loading equipment Shovelg is allocated to
the pit F3, but it is not operative. Finally, in line F;, the value (Available, 0) means that
there is no loading equipment allocated to the pit F, and, therefore, this pit is available.
The other columns represent the number of trips from the truck to the corresponding
pit, considering the compatibility between the truck and loading equipment allocated
to the front. Cells with values X indicate incompatibility between a truck and its loading
equipment.

3.2 Mathematical Model and Solution Evaluation

In the considered formulation of the OPMOP, extracted from Souza et al. (2010), the
mono-objective function is given by Equation (4):

min fP"(s) =Y "A7d; + Y atdf +o Dy +at D}
jeT jeT

+ B Dy + DY+ > wU (4)

leT

Equation (4) seeks to minimize the positive and negative deviations from the goals
of each control parameter j of the mixture, d; and d;, respectively, as well as the positive
and negative deviations from the production goals of ore and waste rocks, represented,
in this order, by decision variables D},, D,,, Dy, and Dy,. This function also considers
the minimization of the number of used trucks, represented by the binary variable U],
which is 1 if the truck [ is used and 0, otherwise.

The constants Y k;r, a ,at, B, Bt, and w; are weights that reflect the importance
of each component of the objective function.

Since the movements generated by the used neighborhood structures can lead to
infeasible results, a solution is evaluated by a function f to be minimized, composed
of two parts. The first one is the actual objective function, f*™, given by Equation (4),
and the second one consists of functions that penalize the occurrence of infeasibility in
the solution. Thus, the function f, given by Equation (5), measures the deviation of the
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goals and penalizes any violation of the constraints in the problem.

FO) = M)+ £P6) + Y )+ YA+ ) ), ()

jeT lev keC

where:

fPM(s) is a function that evaluates s with regard to the production goals and the
quality of the final mixture;

fP(s) penalizes s if the limits for the production of ore and waste rocks are not
respected;

f ;’ (s) penalizes s if the limits for the j-th control parameter of the mixture are not
respected;

f1(s) penalizes s if the maximum utilization rate for the I-th truck is exceeded;

[ (s), penalizes s if the productivity limits for the shovel k are not respected.

3.3 Neighborhood Structures

In order to explore the solution space, as described in Section 2, eight neighborhood
structures, introduced by Souza et al. (2010), are used to analyze the convergence of
the proposed GES. As detailed in Algorithm 3, the NS are polarized during the GES
algorithm execution and may, by chance, “generate/create” new structures. With this
new proposed mechanism it is possible to create new ways to shake a given solution,
since a solution s’, generated from s, is a combination of [0, nap;] random moves from
all Ni(s), as described in Algorithm 4.

A short description of the movements that will guide the GES walk through the
solutions space are described next:

Movement number of trips—NSN T (s5): This move increases or decreases in one
unit the number of trips a truck / performs to a pit i, in which there is a compatible
load equipment. Thus, in this movement a cell n;; of matrix N has its value increased or
decreased by one.

Movement load—NS""(s): It consists of swapping two distinct cells y; and y; of
matrix Y, that is, swapping the load equipments allocated to pits 7 and j, if both pits
have an allocated loading equipment. When there is an allocated load equipment on
only one of the pits, this movement will relocate the load equipment to the available
pit. To maintain compatibility between shovels and trucks, the trips made to the pits
are relocated along with the load equipments.

Movement relocate trip from a truck—NS"* (s): In this movement, two cells 1
and ny of matrix N are selected and one unit of n; is transferred to 1. Thus, the truck
I does one trip less to pit i and it does one trip more to pit k. Compatibility between
equipments are observed, with relocation of the trip only if there is a match between
them.

Movement relocate trip from a pit—NSTP (s): Two cells n;; and n of matrix N are
selected and one unit of n; is relocated to n;. This move relocates one trip that the truck
I performs to pit i for the truck k. Compatibility between equipment restrictions are
respected and there is a relocation only when there is a match between them.

Movement pit operation—NS"“(s): This operation consists of removing the load
equipment that is operating in pit i. The procedure removes all trips made to the
pit i, leaving the shovel equipment allocated to it inactive. The equipment returns to
operation only once a new route is associated to the pit.

Movement truck operation—NS’“(s): Consists of removing from operation one
truck / that is related to a pit i. Thus, the cell n; of matrix N has its value set to zero.

SLD

STT
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Table 2: GES proposed variants for the OPMOP.

Acronym W A Selection VND

GES1 30 160 (u,A)
GES2 30 160 (u+1)
GES3 100 600 (i, A)
GES4 100 600 (u+A)

GESI-VND 30 160 (.2
GES2-VND 30 160 (u+A)

L

Movement swap trips—NS*’ (s): Two cells of the matrix N are selected and one
unit of a cell is transferred to another one, which means the journey of a truck made to
a pit is forwarded to another truck on another pit.

Movement swap shovels—NS**(s): Two distinct cells y; and yx matrix Y have their
values exchanged, that is, the load equipments operating on pits 7 and k are exchanged.
Similar to the neighborhood structure NS'P, the load equipments are exchanged, but
the trips made to the pits are not. To maintain compatibility between shovels and trucks,
the incompatible trips made to the pit are removed.

3.4 Computational Experiments and Analysis

Computational experiments were carried out on a Pentium Core 2 Quad (Q6600) with
8 GB of RAM, and operating system Ubuntu 14.04.

A first batch of experiments, discussed in Section 3.4.1, seeks to find good parame-
ters of population size and selection strategy rates for the OPMOP. Time-to-Target plots
(TTTplots) were used in order to find a set of parameters able to find good targeted solu-
tions. This approach was used since we are only trying to demonstrate the convergence
of the GES and, if possible, achieve comparable solution with the GGVNS algorithm of
Souza et al. (2010). Thus, the main focus of the experiments section is to demonstrate
the ability of the proposed algorithm to self-adapt its parameters during the evolution
process. This feature is discussed in Section 3.4.2. In addition, the proposed hybrid
self-adaptive GES is tested on a set of standard benchmark problem instances from the
literature.! These test problems were the same used in Souza et al. (2010) to validate the
GGVNS algorithm.

3.4.1 GES Calibration Using Time-to-Target Plots

Six variants with different sets of parameters are analyzed here; Table 2 shows the
parameters of these GES variants. The variants GES1-VND and GES2-VND include
VND as the local search procedure for refining some solutions. In these two variants,
a portion of ¥ = 3 individuals from the offspring population are chosen for the local
search procedure (as suggested in Line 17 of Algorithm 1). Only a small group of those
NS described in Section 3.3 is used, namely: NS'P, NSNT  NSTT and NS™P. The expensive
computational cost of the local search justifies this restriction. The maximum number
of application was set as napy = 15 foreachk =1, ..., 8.

Two TTTplots experiments were performed for checking the efficiency of the pro-
posed variants in achieving targeted solutions. Runtime distributions or TTTplots

I Available at http:/ /www.decom.ufop.br/prof/marcone/projects/mining.html
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Figure 2: Superimposed empirical distribution.

display, on the ordinate axis, the probability that an algorithm will find a solution
at least as good as a given target value within a given running time, shown on the
abscissa axis. These plots were first used in Feo et al. (1994). Runtime distributions have
been advocated also in Ribeiro and Resende (2011) as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

Aiex et al. (2007) described a Perl program to create TTTplots for measuring times
that are assumed to fit a shifted exponential distribution, closely following Aiex et al.
(2002). Such plots are very useful to compare different algorithms or strategies for
solving a given problem and have been widely used as a tool for algorithm design and
comparison.

For a better comparison among the variants, their empirical probability curves were
superimposed. On the first experiment, the algorithms were applied to the test problem
opml; the target was set at 230.00 (2% of optimal value), as shown in Figure 2a. In
the second one, the algorithms were applied to the instance opm§; the target was set at
164,024.00 (0.0033% of optimal value), as shown in Figure 2b. A battery of 100 executions
was made and the performance ended only when the algorithm had found the target
value. These times were then sorted in ascending order, and for each algorithm, were

associated with the i-th largest running time #;, a probability piT TTplots — (; —1/2)/N and
. TTTplots
the points plotted z; = (i, p

are shown in Figures 2a and 2b.

Analyzing the empirical probability curves, it is possible to see that the variants
that used the selection strategy (i + A) prevailed over the versions that used the se-
lection (u, A). This fact shows that the competition between parents and offspring
made those individuals with a good optimality potential persist for more genera-
tions. This result is consistent with the report of Beyer and Schwefel (2002) and Herdy
(1992), recommending the use of the (u + 1) selection in discrete finite size search
spaces.

In Figure 2a there is a total supremacy of the GES4, achieved by its selection strategy
(n + A) combined with population size u = 100 and A = 600. Since the initial instants
of the search, the variant GES4 was able to generate better solutions than the other
algorithms proposed. However, analyzing the curves of Figure 2b, one can notice that
from 60 seconds and on, GES4 lost its performance, being surpassed by the variant

), foreachi =1, ..., N.Theresults of the experiments

Evolutionary Computation ~ Volume 24, Number 4 649



V. N. Coelho et al.

Table 3: Convergence of the estimation of Pr(X; < X;).

GES1 GES2 GES3 GES4  GES1-VND  GES2-VND

GES1 48.23%  42.74%  32.17% 66.34% 63.13%
GES2 50.16% 43.77%  34.19% 65.58% 62.65%
GES3 56.05%  53.94% 37.68% 72.52% 69.91%
GES4 65.68% 61.72%  59.25% 80.28% 78.68%
GES1-VND  33.52% 34.15% 27.28% 19.36% 45.85%

GES2-VND  36.83% 37.27%  30.02%  21.20% 54.15%

GES2-VND, which continues to progress systematically, being the first to reach the
desired target with a probability of approximately 100%.

In order to deal with the situation shown in Figure 2b, a probability experiment
according to Ribeiro and Rosseti (2009) is presented. Let A1l and A2 be two stochastic
search algorithms applied to the same problem and let X1 and X2 be the continuous
random variables represeting the time required for algorithms Al and A2, respectively,
to find a solution as good as the given target. Ribeiro and Rosseti (2009) developed a
numerical tool to calculate the probability of the runtime of the algorithm A1l being
less than or equal to the runtime of the algorithm A2, that is, Pr(X; < X»). This tool
approximates the absolute error in the integration, by selecting the appropriate value of
€. The latter optimizes the resulting approximation errors, called A(¢), in order to make
it sufficiently small. Using this tool to validate the analysis of the empirical experiment
in Figure 2b, Table 3 was generated.

Analyzing Table 3, it appears that even though the variant GES2-VND has a greater
probability of finding the target starting from 60 seconds of execution, the variant
GES4 has a probability of 78.68% to have the runtime less than or equal to the variant
GES2-VND. In addition, it’s clear that the variant GES4 outperforms all other variants.

This first set of experiments allows us to define, at least, a first set of parameters for
the hybrid self-adaptive GES able to converge in a similar computational time than the
one used by the literature. From now on, the variant GES4 will simply be named GES.

3.4.2 Evolution Strategy Self-Adaptive Mechanism

In order to verify the effect of the maximum number of application for each NS of the
OPMOP, a first batch of experiments composed of 1,800 executions, 225 for each of
the eight instances, was performed with different limits napy (as presented in Section
2.1). Objective functions were normalized for each instance and an Analysis of Variance
(ANOVA) test (Shapiro and Wilk, 1964) was done for analyzing the differences between
the limits napy. Figure 3 shows an effect plot with limits nap, = 1, napy, = 15, nap; = 100,
nap, = 1000,fork =1, ..., 8. As can be noticed, the only significant difference detected,
with 95% confidence level, was the worse performance of the GES with strict limits
napy, = 1. We believe that the model could be free to adapt the NS application naturally;
thus, we might have left it with a large number nap;, = 1000. However, in order to keep
the disturbances slighter, we decided to keep the maximum number of application for
each napy as 15.

Instance opm1 was now solved and the mean values of the mutation vectors of
typically 120 seconds execution are reported. The mutation operators were able to adapt
its application probability during the evolutionary process, as can be seen in Figure 4.
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Figure 4: Mutation operators evolution—OPMOP.

A special relationship was detected between some NS; thus, two other plots (see
Figures 5a and 5b), were generated focusing only on the specific ability of combining
NS. As described in Section 3.3, the neighborhood NS“”(s) is able to swap shovels from
different active pits. Due to the different ore composition among pits, it is interesting
to reallocate trips for improving the final quality of the mixture after a swap done by
NS P(s). The GES was able to increase the number of moves from the neighborhood
NS"”(s) at the same time that the probability of applying swaps from NS*”(s) increased.
This was an interesting fact, since we verified that improvements on the trip allocation
had to be performed and NS””(s) was able to attend to these changes respecting the
other pits, shovels, and trucks.
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Figure 5: Mutation operators evolution.

Another interesting behavior of the mutation operators was detected between the
neighborhood NS”?(s), able to remove a pit from operation, and the neighborhoods
that deal with trucks’ trips NS™"(s) and NS™7(s). Again, GES was able to take profit
of free trips from the trucks now free due to the higher probability of using NS”°(s)
moves.

3.4.3 Benchmark Results

Finally, in this section, the GES performance is verified against two algorithms already
applied for the OPMOP solution. A batch of 30 executions was done and objective
functions values were calculated for comparing the performance of the proposed model
over each of the eight test problems. Both algorithms from the literature, used for
comparison, are based on VNS methods. The GGVNS algorithm is a trajectory search—
based algorithm and its best results and average objective function in 30 executions
were also previously reported. The second one is a multi-objective algorithm, so-called
G2PPLS-VNS, for which only the best results were reported.

In Table 4, the column Instance indicates the test problems used. The column inp?
refers to the relative average percentage values gain of the GES algorithm against the
GGVNS; that is:

., JGGVNS _ 3GES
imp; = IJFGTNSI (6)

The column imp® exhibits the percentage of improvement afforded by the GES

algorithm regarding the value of best solution found by the GGVNS algorithm.

*GGVNS *GES
oy i —f
imp] =

[XGGVNS : @)

According to Table 4, we could verify that the proposed GES algorithm was able
to generate good quality solutions with low variability, being competitive with the
GGVNS algorithm. It was noticed that GES was able to slightly improve the quality of
final solutions up to 0.87% and reduce the variability of these solutions up to 0.70%.
Furthermore, the GES algorithm was able to find a better solution than the best one
known by the literature, for instance, opm5. A similar behavior happened in the batch of
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Table 4: Experimental results: GES applied in the OPMOP.

GGVNS G2PPLS GES
Instance  Average Best Best Average Best impt  imp*
opml 230.12 230.12 228.12 228.50 228.12 0.87 0.70
opm2 256.56 256.37 256.37 256.43 256.37 0.00 0.05

opm3 164064.68 164039.12 164046.32 164044.68 164031.28 0(0.00 0.01
opm4 164153.92  164099.66 164074.32 164097.61 164057.04 0.03 0.03
opmb 228.09 228.09 227.04 227.21 226.66 0.63 0.39
opmé6 237.97 236.58 236.35 237.07 236.58 0.00 0.38
opm?7 164021.89 164021.38 164018.81 164020.24 164018.22 0.00 0.00
opms3 164027.29 164023.73 164022.63 164022.38 164020.26 0.00  0.00

experiments performed in Section 5.3.1. Thus, even though the proposal uses the same
NS of both algorithms in analysis, individuals reached, guided by GES self-adaptive
strategy, different solutions result in the search space.

4 Short-Term Load Forecasting Problem

The importance of load forecasting has been increasing lately and improving the use of
energy resources remains a great challenge to the emerging Smart Grid (SG) systems.
Energy consumption forecasting in the context of economic development of a country
was highlighted by Lee and Tong (2011). SG are considered the future of power grids,
able to manage production, transmission, and electricity distribution. The task of opti-
mizing the SGs has been done mainly by using an Artificial Intelligence (AI) technique
(Raza and Khosravi, 2015; Olivares et al., 2014; Rigo-Mariani et al., 2014).

In this sense, improving the calibration of a forecasting model through the aid of
an evolutionary algorithm seems reasonable. Here, we verify the ability of the GES
in calibrating the Hybrid Forecasting Model (HFM) proposed by Coelho et al. (2014a;
2014b; 2016). In its previous version, the model’s fuzzy rules were being calibrated by
a trajectory search-based algorithm and a classic evolution strategy using a mutation
matrix fulfilled with standard deviations.

We will use this problem as a didactic case of study that combines the use of
nine different NS. An acceptable convergence of the model is checked and verified in
Section 4.3.2.

4.1 Representation and Evaluation of a Solution

A solution to the HFM is represented as a matrix of continuous values indicating fuzzy
rules intervals and respective weights. An example of a solution representation s with
three columns can be seen in Figure 6. For the batch of experiments analyzing the
mutation operators, we are going to use a solution with several different inputs and
approximately 1,000 columns to be calibrated.

The evaluating process is simple; the solution depicted in Figure 6 is evaluated by
its ability in forecasting a given validation historical load time series. The rules of the
matrix are applied considering previously measured data. Results of the combination of
all rules and its weights give the next point forecast. These are very similar to artificial
neural network-based models (Drezga and Rahman, 1999) and fuzzy time series (Song
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Figure 6: Metaheuristic fuzzy model solution, adapted from Coelho et al. (2014b).

and Chissom, 1993). Errors between each forecast and the real measured point from the
validation set are calculated using quality indicators (Goodwin and Lawton, 1999).

4.2 Neighborhood Structures

We designed a new didactic NS able to change each cell of the fuzzy matrix s with a
disturbance X. The NS will be called N5“?*(s) and is described next:

Movement add X—NS5“/ (s)—This move increases or decreases the value of a
random cell of the rules and weights matrix of a solution s.

From this proposed NS, we generated nine different structures with different distur-

bances parameters X : N§“/1(s), NS (s), NS % (s), NS4 (s), N. 5ty (5), NS™du (s),

NS (5), NS4 (5), and NS““#¥ (s). Some of them use the average values of the his-
torical load time series, namely M, as disturbance value. The special character B in
NS§“5m (5) indicates a big value multiplied by the average M.

4.3 Computational Experiments and Analysis

Computational experiments were carried out on an Intel Core i7-3537U CPU (2.00 GHz),
with 4 GB of RAM, on the operating system Ubuntu 14.04. For simplicity, the configu-
ration achieved after the OPMOP TTTplots calibration (Section 3.4.1) and confirmed in
literature instances is used here.

The dataset used to check the mutation operators was kindly provided by Liu
et al. (2014). It is composed of microgrid user data from a small residential area with
maximum load of 273 KW. The dataset is composed of 1,368 hourly samples for training
and 672 samples used as blind validation. Section 4.3.2 reports obtained Mean Absolute
Percentage Error (MAPE) for the validation set, as a way of certifying the success of the
GES in calibrating the metaheuristic fuzzy model.

43.1 Evolution Strategy Self-Adaptive Mechanism

A first batch of two-minutes training, typical for online microgrids load forecasting,
was performed and the behavior of the mutation operators are discussed in Figures 7,
8a, and 8b.

Figure 7 plots the vector of probability multiplied by the current number of ap-
plications of each NS; average values for the population are presented for each gen-
eration. The ability of the GES mutation mechanism to regulate the probability of the
NS regarding its power of disturbance is highlighted. Moves that slightly change the
solution matrix s are the most likely to be applied, as is the case of NG@ddo (s), N. gadd (s),

and NS““# (s). On the other hand, NS (s) was adapted and adjusted, through the
generations, to be rarely applied.
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Figures 8b and 8a show groups of NS aggregated regarding the impact they have
in mutating the solutions.

The stem plot (see Figure 8b) shows the higher number of moves that are applied
for some NS and differences between application probabilities.

Another batch with two-hour training was performed. Figure 9a shows the average
values with napy =15 V k=1,...,8 and Figure 9b presents the results for a larger
nap limit of 1,000. We highlight that the operators seldom present slopes with higher
probabilities and more moves applications. Specially, for the neighborhood NS“/## (s)
it happened in both cases, but a few generations later it converged to a steady state,
returning the average values of the population to low values of application probability.
Even after generation 3000, Figure 9b, we believe that the number of applications would
follow the same decrease after some generations.

4.3.2 GES Convergence

A batch of 30 executions for the aforementioned dataset was executed and average
MAPE errors of 9.5%, 8.5%, 9.8%, and 8.2% were obtained for the 1st, 2nd, 3rd, and 4th
weeks, respectively. Thus, as described by Liu et al. (2014), it is known that when the
MAPE is less than 10%, the applicability of the forecast model over microgrids becomes
interesting and does not increase its cost sharply. The obtained results indicate, again,
the ability of the GES in calibrating the matrix of weights and rules and achieving useful
forecasting models.
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Figure 9: Two-hour training results.

5 Unrelated Parallel Machine Scheduling Problem with Setup Times

The UPMSP-ST tackled here has as the main goal the makespan minimization. This
problem has great practical and theoretical importance. It belongs to the A’P-hard
class, since it can be seen as a generalization of Parallel Machine Scheduling Problem
with Identical Machines and without Setup Times (Garey and Johnson, 1979). The
UPMSP-ST is found in different industry sectors, such as textile, chemicals, painting,
semiconductors, and paper production (Rabadi et al., 2006).

In the UPMSP-ST there is a set of N jobs and a set of M machines, with the fol-
lowing features: (i) each job must be allocated to only one machine; (ii) each job j has a
different processing time p;; for each machine i € M; (iii) there is also a setup time S;j
for calibrating the machine i after processing job j and before processing job k; (iv) there
is a calibration time S;o; for processing the first job of a given machine i € M.

Different approaches were used for solving the UPMSP-ST; initially, in Al-Salem
(2004), the authors developed a heuristic procedure called Partitioning Heuristic and
introduced the UPMSP-ST. Rabadi et al. (2006) proposed a metaheuristic for ran-
dom prioritized search and described a mathematical formulation for the problem.
In Ying et al. (2012), a Simulated Annealing algorithm was implemented with a smart
strategy for eliminating unpromising jobs. Vallada and Ruiz (2011) analyzed two ge-
netic algorithms and published a benchmark set of instances at the SOA website:
http:/ /soa.iti.es/problem-instances. In the works of Haddad et al. (2014), Cota, Had-
dad, Souza, and Coelho (2014), Cota, Haddad, Souza, and Martins (2014), and Haddad
et al. (2015), the authors proposed several trajectory search-based algorithms, named
ALV, AIRP, AIA, and HIVDP, respectively. These methods were designed based on the ILS
and VND, which obtained better results than Vallada and Ruiz (2011), and among them,
AIRP had the best performance. The AIRP combines a greedy constructive procedure
with the ILS and RIV (described in Section 5.2.1) metaheuristics. Also, periodically, the
search is intensified and diversified by a Path Relinking (Glover, 1996) procedure. In this
sense, comparing the proposed evolutionary framework against the AIRP (see Section
5.3) is reasonable.

5.1 Representation and Evaluation of a Solution

A solution s for the UPMSP-ST is represented as a vector of integers with m positions,
where each position represents one machine. Each active machine is associated with a
list containing all jobs allocated to it.

Figure 10a shows an example of a possible scheduling for an instance with two
machines and six jobs. In this example, machine M; will process jobs 3,5, and 1, in
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Figure 11: Example of operators (Haddad et al., 2015).

this order; and machine M,, in turn, will process 4, 2, and 6, following this order. The
conclusion time of machine M; is calculated by the expression Cy, =1+ 28 +3 + 38 +
8 41 =79, while machine M, conclusion time is givenby Cy, =2+ 174+7+21+2 +
48 =97.

Figure 10b illustrates the solution representation of the example given in Figure
10a. Jobs 3, 5, and 1 are scheduled to machine M; while the rest are scheduled to M.

In this single objective optimization, solution s is evaluated by the makespan, in
other words, by the processing time of the last machine to finish its jobs.

5.2 Neighborhood Structures

Three well-known NS are tested in this application and they are described as follows:

Movement swap in the same machine—NS**(5): The movement of swapping
jobs in the same machine originates an N55¥(s) neighborhood. It consists of changing
the positions of two jobs that belong to the same machine.

Figure 11a illustrates the swap of jobs 5 and 6 in machine M,.

Movement swap between different machines—NS3¥?(): Similar to the NS55(s),
but swapping one job from one machine with another job that belongs to a different
machine.

Multiple insertion—N™/(.): It consists of relocating one job from one machine to
any position of all machines.

Figure 11b shows how N™!(.) works; job 4 from machine M, is transferred to
machine M, just before job 1.
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Table 5: GES proposed variants for the UPMSP-ST.

Acronym  pu A Selection RVI

GES; 50 150  (u4+r)
GES, 20 60  (u+r)
GES; 50 150 (w, ) J
GES, 20 60 (w2 J
GESs 100 600 (u+1)
GESs 100 600 (u,2) J
GES; 100 600  (u+A)

GESs 100 600 (. 2)

52.1 RIV as an Optional Local Search Intensification Phase

The optional local search phase of the GES, Line 17 of the Algorithm 1, activates the
proposal of Cota, Haddad, Souza, and Coelho (2014), namely RIV. The latter is inspired
by the ILS with a Random VND.

The RIV uses the neighborhoods N™/(.) and N. S55M (5) with first and best improve-
ments strategies, respectively, and explores, sporadically, the NS**”(.) neighborhood
for perturbing the solutions.

5.3 Computational Experiments and Analysis

The proposed algorithm for the UPMSP-ST was implemented in JAVA using the Net-
beans 8.0.2 IDE. Computational experiments were carried out on a Core i7 (1.9 GHz)
with 6 GB of RAM and Windows 7.

The method was re-implemented, following OptFrame first version in C++, and
the ideas introduced in Section 2. This seems to be a good opportunity for analyzing
and ensuring the convergence of the proposal in a different environment, considering
new codes programmed in a similar language.

5.3.1 Benchmark Results

Eight different configurations of the GES algorithm were designed, as described in
Table 5. Six, among these variants, were allowed to activate RIV local search in x =3
individuals from the offspring population, picked at random (see Section 3.4.1). The
other two variants, with the same population size as the ones used for the previous case
studies were analyzed without the RIV intensification phase.

The stopping criterion adopted was the processing time, given by executionTime =
n x (m/2) x t milliseconds, with n the total number of jobs, m the total number of
machines, and three different values for t (10, 30, and 50). These values adopted for ¢
were the same ones by Cota, Haddad, Souza, and Coelho (2014).

A batch of 30 executions was performed using 36 SOA instances. These instances
involve combinations of 50, 100, and 150 jobs with 10, 15, and 20 machines. The average
values of each instance were calculated and the deviations between the best results for
each instance were measured. Due to the stochastic character of the search, the different
GES configurations were executed 30 times for each instance and for each t value, as
has been done already for the AIRP.

Figure 12 shows a box plot graph with average objective function values.
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Figure 12: Box plot of the algorithms AIRP, GES1, GES,, GES3, GES4, GESs, GESg, GESy7,
and GESs.

It is noteworthy that the selection strategy (1 4+ A) was again able to direct the
evolutionary process to better performance. We were able to obtain better solutions
(10% better) than the ones found by the AIRP. This fact shows the potential of the
proposal to combine NS and to find new solutions in the search space.

It should be noticed that the two variants with the intensification procedure RIV
achieved better average objective function values. This fact induces that the RIV pro-
cedure was well designed by Cota, Haddad, Souza, and Coelho (2014), being able to
collaborate within the search as an intensification phase. Furthermore, it gives a brief
motivation for using other smart strategies, based on metaheuristic procedures, in part-
nership with the proposed GES.

5.3.2 Evolution Strategy Self-Adaptive Mechanism

Three different sizes of instances (large, medium, and small size) were used for analyz-
ing the mutation operators. Parameters 1 = 100 and A = 600 were kept for this analysis.
We aim now at two variants, verifying the convergence with and without the RIV in-
tensification phase. For the sake of clarity, the best results among the two independent
runs (using different seeds) are depicted in Figures 13, 14, and 15.

In these figures, the lower bounds (some are optimum values) were plotted for
enhancing bounds comprehension of the mutation operators’ behavior. The evaluation
of the best known solution can be followed across the generations, exhibited with blue
lines. Values were normalized for each of the three instances by dividing them by the
maximum makespan found in the first generation.

The convergence of the variant using RVI was close to the lower bound in all
executions. Figure 13 shows how operators keep trying to escape from local optimum,
considerably improving the best known solution until generation 150.

Figure 14 depicts an execution applied for solving a medium size instance, in which
the population was guided only by the ARVNS. Analyzing Figure 14b, it can be verified
that the mutation operators suffered an intensive change after generation 50. This fact
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Figure 14: Average mutation operators’ values evolution on a Medium instance of the
UPMSP-ST without using RVI.

might have happened because of a local trap, which the population was able to escape
near generation 600 (see Figure 14a). Four other improvements were also achieved from
generation 600 to 1,000.

Beyond a shadow of a doubt, it can be noted that the mutation operators became
more randomized after finding local traps. For the cases shown in Figures 15a and
15b, both variants were able to reach the global optimum after generations 30 and 20,
respectively.
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Figure 15: Average mutation operators’ values evolution on a Small instance of the
UPMSP-ST.

6 Conclusions and Extensions

A new hybrid self-adaptive algorithm based on the concepts of evolution strategies
was introduced in this article. Three different combinatorial optimization problems
were used as cases of study. For each of them, algorithm convergence and mutation
operators’ behavior were analyzed.

The results have shown that the proposed evolutionary method is able to achieve
competitive solutions. For the OPMOP, the proposed GES algorithm was compared
with two other algorithms from the literature. Computational experiments emphasized
the competitiveness of the GES algorithm, since it was able to improve the solutions’
quality and reduce their variability.

Even though the average performance of the GES, applied to the UPMSP-5T, was
not considerably better than the literature, it was able to enhance the quality of the
solutions in 10% of the analyzed problems.

The ability of adapting the probabilities of application was also verified in each of
the three analyzed problems. The operators handled different NS and its application
across different phases of the evolution process. The flexibility of the proposal makes
it suitable for a wide area of practical applications, such as in mining, scheduling, and
electric load forecasting.

As could be verified in this article, the self-adaptive ES was able to adapt the muta-
tion operators in such a way that there is a balance between exploration and exploitation
throughout the generations of the evolutionary process, being able to escape from local
optima attraction basins. This ability is related to the issue of performing small changes
in the solution for finding local optima, and, on the other hand, enhancing the prob-
ability and strength of the mutation operators reflected in increasing the shaking and
hence escaping from local traps. This fact promoted a self-adaptive balance between
exploiting an attraction basin and jumping out of it.

Further experiments should focus on how close the solutions are from local optima.
Thus, future work might investigate the fitness landscape of the problems discussed
here. Improving and designing novel self-adaptive mechanisms is another possible
extension, as well as parameter calibration. Finally, we suggest implementing a parallel
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version of the GES algorithm in order to take advantage of the multicore technology
available in current devices.
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