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Abstract. This article shows the implementations of two metaheuristics based
on genetic algorithms for solving the Multi-Objective Hybrid Flowshop
Scheduling Problem. The implemented metaheuristics are NSGA-II and SPEA2
and both are known as second generation methods of evolutionary multi-objetive
algorithms. The uniform crossover was used for the two metaheuristics. In ad-
dition, four different mutation operators are used. The implemented algorithms
differ mainly by the mechanisms of evaluation and selection. For evaluation, the
hyper-volume and epsilon metrics are used. The found results show the superior
behavior of NSGA-II over SPEA2.

1. Introduction

According to [Pinedo 2008], job scheduling is a decision process that is widely used in
many industries and services. This issue deals with the allocation of resources to jobs dur-
ing periods of time and involves the optimization of one or more objective. The scheduling
problems can be described by a tripleα |β|γ. The fieldα describes the machine environ-
ment and contains only one entry. The fieldβ provides details about the features and
processing restrictions and can contain no entry, a single entry or multiple entries. The
field γ describes the objective to be optimized, and can contain a single entry or more
than one entry (multi-objective).

Multi-objective problems are characterized by involving two or more conflicting
objectives simultaneously. Thus, a single solution that optimizes all objectives at the
same time can not be found, that is, for this type of problem the challenge is to find a set
of efficient solutions, the so-called Pareto frontier. According to [Ticona 2003], usually
optimization problems encountered in the real world followthis characteristic.

In this article, a multi-objective scheduling problem in Hybrid Flowshop (HFS)
environments is addressed. This problem is described in Section 2. The instances we
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have used are the ones proposed by [Urlings 2010]. In this multi-objective problem, the
makespan minimization as well as the minimization of the weighted sum of tardiness are
considered. This important production problem suffers from the question: an optimal
solution for the makespan minimization single objective isvery efficient from the point
of view of production, however it can be bad for the customer who expects the service to
be delivered without delay.

The first study on scheduling in flowshop machine environments emerged in the
1950s from [Johnson 1954] and, since then, has attracted great interest in the scientific
community. There are many studies about the scheduling problems. However, a gap be-
tween theory and practice always existed. On the other hand,there is a recent tendency to
develop solution approaches to real problems [Ruiz et al. 2008]. According to [Ruiz et al.
2008], little effort has been spent to develop complex models for solving job scheduling
problems in which many realistic situations are consideredtogether. In this sense, this
paper considers very common features in real problems, as the times of release for ma-
chines; the presence of unrelated parallel machines at eachstage; sequence-dependent
setup times; eligibility machines; and latency times (lag)between operations.

As [Naderi et al. 2010], two important questions about HFS draw attention: the
determination of the sequence at each stage and the distribution of jobs on the machines
at each stage. These same authors presented an algorithm based on the Iterated Local
Search (ILS) metaheuristic in order to minimize the makespan.

In [Urlings and Ruiz 2010] and [Zandieh et al. 2010] Genetic Algorithms are
proposed for solving this problem. The treated objective isalso the minimization of the
makespan. Another related work is [Defersha and Chen 2011],where a computational
solution based on Genetic Algorithms is implemented in sequential and parallel platforms.
[Siqueira et al. 2013] proposed an algorithm based on Evolutionary Strategies. This
work dealt with the HFS problem with many real characteristics, with the objective of
minimizing the makespan.

Multi-objective algorithms applied for solving flowshop problems are evaluated
in [Minella et al. 2008]. However, few studies in the literature have dealt with the hybrid
flowshop problem. [Behnamian et al. 2009] carried out a three-phase metaheuristic for
solving a Hybrid Flowshop problem with identical machines in each stages and consid-
ering the setup times. An interesting work is presented in [Dugardin et al. 2010], where
a new algorithm, called L-NSGA, is introduced. In this algorithm, the Pareto Domi-
nance is replaced by the Lorenz dominance. The authors compared the results with those
obtained by complete enumeration and adaptations of NSGA-II and SPEA2 algorithms.
The provided computational tests show that L-NSGA found better solutions than the other
methods. In [Ciavotta et al. 2013] a new algorithm is presented, called Restarted Iterated
Pareto Greedy (RIPG), applied to the Multi-objective Sequence Dependent Setup Times
Permutation Flowshop Problem. Another works related to thesame problem are [Li and
Li 2015], where a multi-objective local search algorithm-based decomposition is proposed
for treating it, and [Li and Ma 2016], where a multi-objective memetic search algorithm
is introduced. An application of the NSGA-II metaheuristicwith local search is proposed
in [Cunha Campos and Claudio Arroyo 2014] in order to solve a flowshop problem with
two objectives and three stages. The objectives dealt with in this work are the flowtime
minimization and the total tardiness minimization. A multi-objective hybrid approach us-
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ing NSGA-II and VNS metaheuristic is adopted in [Asefi et al. 2014] for makespan min-
imization and average tardiness minimization in a no-wait flexible flowshop scheduling
problem. On the other hand, an algorithm based on Iterated Pareto Greedy metaheuristic
is applied in [Ying et al. 2014] for solving the hybrid flowshop scheduling problem also
treating two objectives, i.e., makespan minimization and total tardiness minimization.

This article has aimed to adapt and compare two genetic algorithms to solve the
Multi-Objective Hybrid Flowshop Scheduling Problem. The first algorithm is an adap-
tation of the Non-dominated Sorting Genetic Algorithm version II (NSGA-II), proposed
in [Deb et al. 2002] as a new version of NSGA, which was introduced in [Srinivas and
Deb 1995]. The second algorithm is an adaptation of the Strength Pareto Evolutionary
Algorithm version II (SPEA2), showed in [Zitzler et al. 2002] as an improved version
of SPEA, proposed in [Zitzler and Thiele 1998]. The rest of the paper is organized as
follows: the dealt problem and their main characteristics are defined in Section 2. Sec-
tion 3 details the genetic multi-objective algorithms proposed to solve the problem. Sec-
tion 4 presents the results obtained by applying the proposed algorithms to the addressed
problem. Last section ends the article and some conclusionsand directions for future
researches are included.

2. Problem Formulation
Let N = {1, 2, 3, ..., n} be a set of jobs that must be performed in a set of stagesM =
{1, 2, 3, · · · , m}. For each stagei, there is a set of unrelated parallel machines. Some jobs
can skip stages and this is an important property of this problem. The processing of jobj
on stagei is called task. A common situation in practice is addressed,in which some tasks
can only be performed in certain specialized machines, which, in turn, can only perform
a certain task group. The main characteristics of the problem are:

• Fj: set of stages visited by jobj, 1 < Fj < m ;
• pilj: processing time of jobj in machinel and stagei;
• Eij: set of eligible machines for the jobj at stagei;
• dj: due date for jobj;
• wj: weight (importance) of the jobj;

The following objectives are treated:

• Makespan minimization (Cmax);
• Minimization of the weighted sum of Tardiness (

∑
wjTj).

The completion timeCj of a jobj is the instant in which the last task of this job is
completed. Thus, the makespanCmax is the completion time of the last system task, i.e.,
Cmax = maxj{Cj}. The tardinessTj of a job is a defined asmax(Cj − dj , 0). Each jobj
is associated with a weightwj according to its importance.

In order to exemplify the problem, consider an instance withfour jobs and two
stages, with two machines at each stage. Table 1 shows which machinesl are eligible for
each jobj in each stagei. From this table, we could verify, for example, that job 1 could
be performed on machines 1 and 2 at stage 1 and on machine 4 at stage 2. We could also
verify that jobs 1, 2 and 4 visit all stages, while job 3 skips stage 1.

Table 2 shows the processing time (pilj) of each jobj at each machinel and at
each stagei. In this table, we conclude that the processing time of job 1 at machine 2 and
stage 1 is 8 units. The processing time of a job in a non-eligible machine is null.
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Table 1. Eligibility.
i 1 2

j 1 {1,2} {4}
2 {1,2} {3}
3 - {3,4}
4 {2} {3,4}

Table 2. Processing Time.
i 1 2
l 1 2 3 4

j 1 10 8 - 21
2 13 15 45 -
3 - - 15 22
4 - 31 17 12

Table 3 shows the due date (dj) and the weight (wj) of each jobj. From this table,
the due date of job 4 isd4 = 51 and the weight isw4 = 5.

Table 3. Due Date and weight.
dj wj

j 1 35 4
2 60 3
3 48 1
4 51 5

Figure 1 illustrates a possible sequence for this example. Note that the makespan
for this sequence is 65 units and the weighted sum of tardiness is equal to 75 units. In this
figure, the vertical axis shows the machines in operation andthe horizontal axis shows the
production time horizon.

3. Methodology
In this section two genetic multi-objective algorithms arepresented. The first algorithm
is an adaptation of the Non-dominated Sorting Genetic Algorithm version II (NSGA-II),
proposed in [Deb et al. 2002]. The second algorithm is an adaptation of the Strength
Pareto Evolutionary Algorithm version II (SPEA2), showed in [Zitzler et al. 2002]. This
section is organized as follows: Subsection 3.1 shows as a solution is represented. Sub-
section 3.2 shows how the mutation operators proposed are defined. Subsection 3.3 ex-
plains how to generate the initial population for the two algorithms, while Subsection
3.4 presents the uniform crossover operator used in this work. Subsection 3.5 details
the adapted NSGA-II algorithm and Subsection 3.6 details the adaptation of SPEA2 for
solving the problem.

3.1. Solution Representation

An individual (i.e., a solution)ind of the problem is represented by a list vector, where
each position of this vector is a machine and the list shows the sequence of jobs to be
performed in this machine, in the order in which they appear.
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Figure 1. GANTT Diagram. Cmax = 65 .
∑

wjTj = 75

Figure 2 shows a representation of a solution for the problem. The task sequence
of machine 1 in the first stage is 3, 1, 7, 10 and 4, while in machine 2 is 6, 5, 2 and 9. In
the second stage, the task sequences are 1, 3, 2 and 4, for machine 3; and 7, 5, 10, 8 and
9, for machine 4.

Figure 2. Representation of an individual.

3.2. Types of Mutation

Four types of mutation are used as search operators:

• Exchange in the sequence: this operation consists of performing, in a given ma-
chine, the position exchange between two jobs of the sequence;
• Reallocation in the sequence: this operation consists of choosing a job in a given

machine and reallocate it to a new position in the sequence;
• Swap of machine: this operation chooses two jobs of a given stage and swap the

machines that perform them;
• Reallocation of a machine: this operation consists of reallocating a job of a given

stage to a new machine.

3.3. Initial Solutions

The initial solutions are generated by a random method that operates as follows. First,
for each stagei, a jobj is randomly selected, without repetition, among the jobs that pass
through that stage, i.e.,i ∈ Fj . Following, a machinel is randomly selected among the
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eligible machines for the selected job, such thatl ∈ Eij . Thus, the jobj is allocated to
the next position of the sequence of machinel. These steps are repeated until all tasks are
allocated.

3.4. Uniform Crossover

At the uniform crossover, two parents (parent1 andparent2) are given to produce two
offsprings (offspring1 andoffspring2). Its operation is explained below and illustrated in
Figure 3. From a binary vector randomly generated, in the positions where the vector
element is equal to1, theoffspring1 inherits the genes fromparent1 and theoffspring2
inherits the genes fromparent2. The remaining job, that were not considered, are allo-
cated in the order in which they appear in theparent2 for offspring1 and in theparent1
for offspring2.

3 41071

6 925

1 423

7 98105

1

2

1

2

Parent1 Parent2

8

6

3 41021

6 957

1 723

6 89105
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8

4
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Figure 3. Uniform Crossover.

3.5. The adapted NSGA-II Algorithm

The adaptation of the NSGA-II proposed for solving the problem under analysis is showed
in Algorithm 1.

Firstly, the proposed algorithm (lines 1 to 3 of Algorithm 1)generates an initial
population withM individuals, built by the method described in Subsection 3.3.

After this first phase, the algorithm goes to an iterative phase (lines 4 to 13),
which consists in applying iteratively on the population ofindividuals the procedures
of crossover, mutation and selection until a stopping criterion is attained.

The crossover process is applied to the population in line 7 of Algorithm 1. In
this procedure,M offsprings are generated through the choice of two parents for each
offspring (linha 6). Every parent is chosen by binary tournament method. After the selec-
tion of parents, the crossover operator is applied to generate a offspring with a probability
probCross. The parent selection and the crossover application are repeated untilM off-
springs are generated.

The binary tournament is used to select parents for crossover procedure applied
in the algorithm NSGA-II. Initially, two individuals of thepopulation are selected. Then,
these individuals are compared each other. If both are part of the same front of domi-
nance, they are evaluated according to the crowding distance, being selected as parent the
individual with greater distance. If individuals are from different fronts, the individual
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Algorithm 1 Adapted NSGA-II
Input: M , probCross, probMut, stoppingCriterion

1: for w ← 1 toM do
2: Popw← generateRandomSolution();
3: end for
4: repeat
5: for w ← 1 to M do
6: [parent1, parent2]← selectParents(Pop)
7: Offspringw ← applyCrossover(parent1, parent2, probCross);
8: end for
9: for w ← 1 to M do

10: Offspringw ← applyMutation(Offspringw, probMut);
11: end for
12: Pop← Selection(Pop,Offspring)
13: until Stopping criterion be attained
Output: Pop;

belongs to the front more dominant, that is, the one that has greater fitness, is chosen as
parent. This procedure is performed twice for the selectionof two parents.

After the crossover, the generated offsprings are subjected to mutation procedure.
The mutation of individuals (line 10 of Algorithm 1) operates as follows. For each off-
spring, a random real number between0 and1 is generated, and checked if this number
satisfies the probability conditionprobMut. The choice of the stage, the machine and the
job involved in the procedure is random.

In line 12 the method of selection of individuals surviving to the next generation
is applied. Initially, a expanded population with2M individuals is created as a result of
the union of the population of parents and offsprings. All individuals of the expanded
population are evaluated based on sorting by non-dominant fronts. In the follow, the
individuals from the lower fronts will form the new population until a maximum ofM
individuals. This new population is initiated with individuals of the best non-dominated
front and continues with the solutions of the second, following with the third and so on.
As the population size is fixed, not all fronts will be presentin the file. Thus, when the
last front is considered to form the population, there may exist a number of individuals in
this front which exceeds the sizeM . If this happens, it is necessary to remove individuals
from the last front selected. This is done by eliminating individuals with less crowding
distance.

The crowding distance allows to quantify the space around anindividual. For this,
the perimeter of the hypercube formed by the neighbor solutions to the individual that are
located in the same dominance front must be calculated.

3.6. The adapted SPEA2 Algorithm

Algorithm 5 shows the pseudo-code of the adapted SPEA2 algorithm implemented in this
work. Regarding to the initial solution for this method, individuals are generated by the
same construction method used to generate the initial solution to the adapted NSGA-II
algorithm. This method was presented in Subsection 3.3. In lines 1 to 3 the construction
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Algorithm 2 Adapted SPEA2
Input: M , X, probCross, probMut, stoppingCriterion

1: for w ← 1 toM do
2: Popw← generateRandomSolution();
3: end for
4: File← ∅
5: repeat
6: Pop← Pop ∪ File
7: evaluateFitness(Pop)
8: File← updateFile(Pop)
9: for w ← 1 to M do

10: [pai1, pai2]← selectParents(File)
11: Offspringw ← applyCrossover(parent1, parent2, probCross);
12: end for
13: for w ← 1 to M do
14: Popw ← applyMutation(Offspringw, probMut);
15: end for
16: until Stopping criterion be attained
Output: File;

method is repeated to createM individuals to be included in the initial population.

The algorithm has a repeating loop between the lines 5 to 16, where, in each
iteration, which we call generation, the search space is explored by means of crossover,
mutation and selection operators.

Before crossover, mutation and selection procedures, the population is attached to
the file, forming a new population. The file starts empty and has a maximum size ofX.
A fitness value is assigned to each individual of the new population, after being evaluated
(line 7). To calculate the fitness value, a force is given to the individualind. This force is
determined by the amount of individuals in the population that ind dominates, i. e., more
individuals are dominated byind, the greater is its force. The fitness of an individual is
calculated by summing the forces of all their dominators, added to a density measurement.

In this work, we have used, as density measure, the expression:

d =
1

σk + 2

wherek =
√
M +X andσk is the distance, in the objectives space, from the individual

to itskth nearest neighbor.

After the individuals being evaluated the bestX are placed on file (line 8). Thus,
the algorithm proceeds to crossover procedure, whereM offsprings are generated by
choosing two parents for each offspring (line 10). Every parent is chosen by binary tour-
nament method. After selecting the parents, the crossover procedure is applied to generate
a offspring with a probabilityprobCross. The selection of parents and the application of
the crossover procedure are repeated untilM offsprings are generated.

The binary tournament applied here is different from that applied to the NSGA-
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Table 4. Algorithm parameters
Algorithm M X probCross probMut
NSGA-II 500 - 80% 10%
SPEA2 500 50 80% 10%

II. Initially, two individuals in the population are selected. Then, these two ones are
compared to each other, and the one that has lower fitness is chosen as parent. This
procedure is performed twice for the selection of two parents.

After the crossover procedure, the generated offsprings are subjected to mutation
procedure. Mutation of individuals (line 14 of Algorithm 2)operates in the same man-
ner as in NSGA-II, however, in the SPEA2, the population is completely replaced by
offsprings.

4. Computational Results and Evaluations
The two versions of the proposed algorithms were implemented in C++, using the IDE
Netbeans 6. The tests were performed on an Intel Core i7 computer, 2.00GHz with 16GB
of RAM under Linux Ubuntu 64-bit operating system.

The set of instances used in the experiments were introducedby [Urlings 2010]
and is available in [SOA 2016]. It is composed by 432 instances. These instances are sub-
divided by the number of jobs (n), machines (m) and stages per machine (mi), according
to the following settings:n = {5, 7, 9, 11, 13, 15},m = {2, 3} emi = {3}. Each possible
combination of these settings consists of 32 instances.

Table 4 shows the values of the parameters used by the NSGA-IIand SPEA2
algorithms, developed in this work. The values of these parameters were determined
empirically. The runtime was stopping criteria used in the experiments, defined by the
following equation:25 × n × mi × m milliseconds, wheren is the number of jobs and
mi is the number of stages per machine.

Every instance was evaluated 10 times for each algorithm. The results were com-
piled, normalized and compared using hypervolume andepsilonmetrics. The hyper-
volume metricH(Qalg, R0) [Zitzler and Thiele 1998] measures the volume between the
Pareto frontQalg achieved by the algorithm and a point of referenceR0. An area with
higher volume indicates both a greater scattering of the solutions as increased conver-
gence of the same. Thus, a high value of hypervolume is desired. The point of reference
R0 was set for each instance as the highest value of makespan andtardiness contained
in the set formed by union of all solutions found after all theexperiments performed in
this work. Already theepsilon, Ie(Qalg, Qref) indicator [Zitzler et al. 2003] determines a
minimume factor, if multiplied by each point of the setQref , makes weakly dominated by
Qalg the set of approximations resultant. SinceQref is the Pareto optimal frontier, hence,
the lower the value ofe, the higher the algorithm convergence. As the Pareto optimal fron-
tier of each instance is not known in this work,Qref is defined as non-dominated points
of the set formed by union of all executions performed for each tested instance. Both
metrics were calculated using the EMOA package of statistical computing software R.

Table 5 shows the averages (± standard deviation) of the hypervolume and epsilon
metrics grouped by combinations of the number of jobsn, number of machinesm and
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Table 5. Results for hypervolume and epsilon metrics

Group HYPERVOLUME EPSILON

NSGA-II SPEA2 NSGA-II SPEA2

5x3x3 33.35± 3.01 30.46± 2.96 0.44± 0.29 0.48± 0.03
5x3x3 99.94± 0.08 98.68± 1.55 0.91± 0.65 1.51± 1.29
7x2x3 99.90± 0.22 98.94± 0.64 0.89± 0.77 1.49± 0.81
7x3x3 99.96± 0.05 95.36± 2.87 0.27± 0.46 3.15± 1.85
9x2x3 99.89± 0.30 97.19± 1.51 0.50± 2.96 0.13± 0.65
9x3x3 99.90± 0.11 96.92± 1.48 0.52± 0.66 2.44± 1.40
11x2x3 99.97± 0.03 93.99± 1.93 0.06± 0.24 7.32± 4.10
11x3x3 99.81± 0.54 90.32± 3.03 0.63± 1.03 6.14± 2.27
13x2x3 99.87± 0.10 90.60± 3.26 0.76± 0.99 6.27± 2.74
13x3x3 99.87± 0.11 85.56± 3.91 0.74± 1.19 8.64± 2.70
15x2x3 99.89± 0.09 92.45± 3.31 0.78± 1.05 4.93± 2.34
15x3x3 99.88± 0.13 91.62± 3.80 0.87± 1.14 6.16± 2.86

stages by machinemi. The first column represents the groups of instance, the second
and third columns show the value of hypervolume metric for the NSGA-II and SPEA2
algorithms respectively. The fourth and fifth columns show the values obtained for the
indicatorepsilon. Note that, for the set of instances of smaller dimension (5 and 7 jobs),
both algorithms have reached very similar values in both hypervolume metric as in the
epsilon indicator. As the dimensionality of the instances grows (11, 13, 15 jobs), clearly
verifies a gap in the performance of the algorithms. In these instances, the NSGA-II has
better convergence than SPEA2, fact indicated by the low value ofepsilon indicator and
the high value of hypervolume metric. The latter metric alsoindicates that there is a better
spread of solutions by the NSGA-II.

5. Conclusions and Future Works

This article studied the multi-objective hybrid flowshop problem. The considered objec-
tives were to minimize the makespan and the weighted sum of tardiness. The evolutionary
algorithms NSGA-II and SPEA2 were used for solving it.

In both algorithms, the initial population is composed of individuals randomly
constructed. These algorithms explore the solution space through crossover, mutation
and selection operators. Four different types of mutationswere implemented and each of
them is applied with a certain probability. The mutation is performed in both algorithms
considering all four of these types of mutation. The uniformcrossover was implemented
for both algorithms. The algorithms differ primarily by theselection mechanisms. In
NSGA-II, the dominance front and the crowding distance are used to evaluate and se-
lect individuals, while in SPEA2 there is a fitness calculation based on the amount of
dominated solutions and density of the solution. Furthermore, SPEA2 based algorithm
maintains a file with the best individuals and the selection operator acts only on these
individuals.

Two metrics were used to compare the algorithms: hypervolume andepsilon. For
the set of test problems with smaller dimensions, the algorithms showed similar perfor-
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mance. For the set of test problems with larger dimensions, however, NSGA-II showed
better convergence and better scattering of the solutions.

For future work, it is proposed to implement other algorithms for generation of
initial solutions, the development of other types of mutation and crossover operators as
well as the insertion of local search techniques for refinement of the solutions.
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