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Abstract. This article shows the implementations of two metaheusdiased
on genetic algorithms for solving the Multi-Objective HygbrFlowshop

Scheduling Problem. The implemented metaheuristics a@ANSand SPEA2
and both are known as second generation methods of evaduyiomulti-objetive

algorithms. The uniform crossover was used for the two neetastics. In ad-

dition, four different mutation operators are used. Thelenpented algorithms
differ mainly by the mechanisms of evaluation and seleckonevaluation, the
hyper-volume and epsilon metrics are used. The found seshitiw the superior
behavior of NSGA-II over SPEA2.

1. Introduction

According to [Pinedo 2008], job scheduling is a decisioncpss that is widely used in
many industries and services. This issue deals with theatitmn of resources to jobs dur-
ing periods of time and involves the optimization of one orenabjective. The scheduling
problems can be described by a triplé/s|y. The fielda describes the machine environ-
ment and contains only one entry. The fi¢ldorovides details about the features and
processing restrictions and can contain no entry, a singly er multiple entries. The
field v describes the objective to be optimized, and can containglesentry or more
than one entry (multi-objective).

Multi-objective problems are characterized by involvimgptor more conflicting
objectives simultaneously. Thus, a single solution thdtnoiges all objectives at the
same time can not be found, that is, for this type of probleenctiallenge is to find a set
of efficient solutions, the so-called Pareto frontier. Acling to [Ticona 2003], usually
optimization problems encountered in the real world foltbwg characteristic.

In this article, a multi-objective scheduling problem inbid Flowshop (HFS)
environments is addressed. This problem is described ihoBe2. The instances we
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have used are the ones proposed by [Urlings 2010]. In thisi+olojlective problem, the
makespan minimization as well as the minimization of thegleed sum of tardiness are
considered. This important production problem suffersnfriie question: an optimal
solution for the makespan minimization single objectiveasy efficient from the point
of view of production, however it can be bad for the customleowxpects the service to
be delivered without delay.

The first study on scheduling in flowshop machine environsienterged in the
1950s from [Johnson 1954] and, since then, has attracted igiterest in the scientific
community. There are many studies about the schedulindgmrsh However, a gap be-
tween theory and practice always existed. On the other liharg is a recent tendency to
develop solution approaches to real problems [Ruiz et &I8RAccording to [Ruiz et al.
2008], little effort has been spent to develop complex meéai solving job scheduling
problems in which many realistic situations are considéoggther. In this sense, this
paper considers very common features in real problems,easnties of release for ma-
chines; the presence of unrelated parallel machines atstage; sequence-dependent
setup times; eligibility machines; and latency times (laglween operations.

As [Naderi et al. 2010], two important questions about HFS\dattention: the
determination of the sequence at each stage and the digirilmf jobs on the machines
at each stage. These same authors presented an algoritech drashe Iterated Local
Search (ILS) metaheuristic in order to minimize the makaspa

In [Urlings and Ruiz 2010] and [Zandieh et al. 2010] Genetlgdkithms are
proposed for solving this problem. The treated objectiva&s® the minimization of the
makespan. Another related work is [Defersha and Chen 20dlidye a computational
solution based on Genetic Algorithms is implemented in satjal and parallel platforms.
[Siqueira et al. 2013] proposed an algorithm based on Ewwlaty Strategies. This
work dealt with the HFS problem with many real charactarsstwith the objective of
minimizing the makespan.

Multi-objective algorithms applied for solving flowshopomems are evaluated
in [Minella et al. 2008]. However, few studies in the litared have dealt with the hybrid
flowshop problem. [Behnamian et al. 2009] carried out a tpfegse metaheuristic for
solving a Hybrid Flowshop problem with identical machinessach stages and consid-
ering the setup times. An interesting work is presented ungi@din et al. 2010], where
a new algorithm, called L-NSGA, is introduced. In this aifan, the Pareto Domi-
nance is replaced by the Lorenz dominance. The authors geohfize results with those
obtained by complete enumeration and adaptations of NS@Ad SPEA2 algorithms.
The provided computational tests show that L-NSGA fountEbsblutions than the other
methods. In [Ciavotta et al. 2013] a new algorithm is preséntalled Restarted Iterated
Pareto Greedy (RIPG), applied to the Multi-objective SempeeDependent Setup Times
Permutation Flowshop Problem. Another works related tcstimae problem are [Li and
Li 2015], where a multi-objective local search algorithiesbd decomposition is proposed
for treating it, and [Li and Ma 2016], where a multi-obje&immemetic search algorithm
is introduced. An application of the NSGA-II metaheuristith local search is proposed
in [Cunha Campos and Claudio Arroyo 2014] in order to solveashop problem with
two objectives and three stages. The objectives dealt withis work are the flowtime
minimization and the total tardiness minimization. A mudbjective hybrid approach us-
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ing NSGA-II and VNS metaheuristic is adopted in [Asefi et £112] for makespan min-
imization and average tardiness minimization in a no-wakilile flowshop scheduling
problem. On the other hand, an algorithm based on Iteratextd@reedy metaheuristic
is applied in [Ying et al. 2014] for solving the hybrid flowghecheduling problem also
treating two objectives, i.e., makespan minimization adlttardiness minimization.

This article has aimed to adapt and compare two geneticidigms to solve the
Multi-Objective Hybrid Flowshop Scheduling Problem. Thestfialgorithm is an adap-
tation of the Non-dominated Sorting Genetic Algorithm vensll (NSGA-I1), proposed
in [Deb et al. 2002] as a new version of NSGA, which was intiatlin [Srinivas and
Deb 1995]. The second algorithm is an adaptation of the §tineRareto Evolutionary
Algorithm version Il (SPEA2), showed in [Zitzler et al. 2J0&s an improved version
of SPEA, proposed in [Zitzler and Thiele 1998]. The rest @& gaper is organized as
follows: the dealt problem and their main characteristiesdefined in Section 2. Sec-
tion 3 details the genetic multi-objective algorithms pyeed to solve the problem. Sec-
tion 4 presents the results obtained by applying the prapakmrithms to the addressed
problem. Last section ends the article and some conclusiodgdirections for future
researches are included.

2. Problem Formulation

Let N = {1,2,3,...,n} be a set of jobs that must be performed in a set of stages
{1,2,3,---,m}. For each stagg there is a set of unrelated parallel machines. Some jobs
can skip stages and this is an important property of thislprobThe processing of jop
on stage is called task. A common situation in practice is addresseghich some tasks
can only be performed in certain specialized machines, wliicturn, can only perform
a certain task group. The main characteristics of the prolalee:

F;: set of stages visited by joh 1 < F; < m;

pii;- processing time of job in machinel and stage;

E,;: set of eligible machines for the jobat stage;

d;: due date for joly;

w;: weight (importance) of the jol;

The following objectives are treated:

Makespan minimization({,,,.x);
¢ Minimization of the weighted sum of Tardiness (v,7;).

The completion tim&’; of a jobj is the instant in which the last task of this job is
completed. Thus, the makesp@h., is the completion time of the last system task, i.e.,
Cmax = max;{C;}. The tardines§’; of a job is a defined asiax(C; — d;,0). Each jobj
is associated with a weight; according to its importance.

In order to exemplify the problem, consider an instance \iotlr jobs and two
stages, with two machines at each stage. Table 1 shows wiachined are eligible for
each jobj in each stage. From this table, we could verify, for example, that job 1 icou
be performed on machines 1 and 2 at stage 1 and on machineagjatzst\We could also
verify that jobs 1, 2 and 4 visit all stages, while job 3 skifze 1.

Table 2 shows the processing timg;() of each jobj at each machinéand at
each stage In this table, we conclude that the processing time of jobri&chine 2 and
stage 1 is 8 units. The processing time of a job in a non-dégitachine is null.
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Table 1. Eligibility.

) 1 2
J |1 ({12 {4}
2| {12} | {3}
3 - {3,4}
4| {2} | {34

Table 2. Processing Time.

1 1 2
[1112]|3]| 4
j 1]10] 8| - |21
2113|15|45| -
3| - | -1]15|22
4| - | 31|17 12

Table 3 shows the due dai ) and the weight);) of each job;. From this table,
the due date of job 4 i¢, = 51 and the weight isv, = 5.

Table 3. Due Date and weight.

dj | w;
T1(35] 4
2160 3
3(48| 1
4|51 5

Figure 1 illustrates a possible sequence for this exampdée Mhat the makespan
for this sequence is 65 units and the weighted sum of targlisesqjual to 75 units. In this
figure, the vertical axis shows the machines in operatiortlamtiorizontal axis shows the
production time horizon.

3. Methodology

In this section two genetic multi-objective algorithms @resented. The first algorithm
is an adaptation of the Non-dominated Sorting Genetic Alilgor version I (NSGA-II),
proposed in [Deb et al. 2002]. The second algorithm is an tatiap of the Strength
Pareto Evolutionary Algorithm version Il (SPEA2), showedZitzler et al. 2002]. This
section is organized as follows: Subsection 3.1 shows atutiagvis represented. Sub-
section 3.2 shows how the mutation operators proposed &irede Subsection 3.3 ex-
plains how to generate the initial population for the twoaaithms, while Subsection
3.4 presents the uniform crossover operator used in thik.wBubsection 3.5 details
the adapted NSGA-II algorithm and Subsection 3.6 detadsatiaptation of SPEA2 for
solving the problem.

3.1. Solution Representation

An individual (i.e., a solution)nd of the problem is represented by a list vector, where
each position of this vector is a machine and the list showsst#guence of jobs to be
performed in this machine, in the order in which they appear.
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Figure 1. GANTT Diagram. Cpyqz =65 . w;T; =75

Figure 2 shows a representation of a solution for the problEme task sequence
of machine 1 in the first stage is 3, 1, 7, 10 and 4, while in maRiis 6, 5, 2 and 9. In
the second stage, the task sequences are 1, 3, 2 and 4, fanemnachnd 7, 5, 10, 8 and
9, for machine 4.

113
6

Figure 2. Representation of an individual.

3.2. Types of Mutation
Four types of mutation are used as search operators:

e Exchange in the sequence: this operation consists of peirigy in a given ma-
chine, the position exchange between two jobs of the seguenc

e Reallocation in the sequence: this operation consistsadsihg a job in a given
machine and reallocate it to a new position in the sequence;

e Swap of machine: this operation chooses two jobs of a givaegesand swap the
machines that perform them;

¢ Reallocation of a machine: this operation consists of oealing a job of a given
stage to a new machine.

3.3. Initial Solutions

The initial solutions are generated by a random method thatates as follows. First,
for each stage a jobj is randomly selected, without repetition, among the jolas lass
through that stage, i.e.,c F}. Following, a machiné is randomly selected among the
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eligible machines for the selected job, such that E;;. Thus, the joly is allocated to
the next position of the sequence of machin€hese steps are repeated until all tasks are
allocated.

3.4. Uniform Crossover

At the uniform crossover, two parentgarenti and paren) are given to produce two
offsprings offspringl andoffsprin@). Its operation is explained below and illustrated in
Figure 3. From a binary vector randomly generated, in thétipas where the vector
element is equal ta, the offspringl inherits the genes frorparentt and theoffspring
inherits the genes frorparen. The remaining job, that were not considered, are allo-
cated in the order in which they appear in fherene for offspringl and in theparent

for offspring.
31 7] 1111 s NS o |
2|6 B 2l7 8 |

-

Parent1 Parent2
1/0(0(1]1
1131 111]|3]
2|67 8| 2l 6 B
Offspring1 Offspring2

Figure 3. Uniform Crossover.

3.5. The adapted NSGA-II Algorithm

The adaptation of the NSGA-II proposed for solving the peablinder analysis is showed
in Algorithm 1.

Firstly, the proposed algorithm (lines 1 to 3 of Algorithmdgnerates an initial
population withA/ individuals, built by the method described in Subsectidh 3.

After this first phase, the algorithm goes to an iterativesghéines 4 to 13),
which consists in applying iteratively on the populationindividuals the procedures
of crossover, mutation and selection until a stopping ddteis attained.

The crossover process is applied to the population in liné Algorithm 1. In
this procedure M offsprings are generated through the choice of two paremtgdch
offspring (linha 6). Every parent is chosen by binary touneat method. After the selec-
tion of parents, the crossover operator is applied to gémaraffspring with a probability
probCross The parent selection and the crossover application aesateg until)M/ off-
springs are generated.

The binary tournament is used to select parents for crosgweeedure applied
in the algorithm NSGA-II. Initially, two individuals of thpopulation are selected. Then,
these individuals are compared each other. If both are paheosame front of domi-
nance, they are evaluated according to the crowding distdr@ing selected as parent the
individual with greater distance. If individuals are froniferent fronts, the individual
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Algorithm 1 Adapted NSGA-II
Input: M, probCross, probMut, stoppingCriterion
1: for w < 1to M do
2. Pop, + generateRandomSolution();
3: end for
4: repeat
5. forw+ 1toM do
6: [parentl, parent2] + selectParent${op)
7
8
9

Offspring, <« applyCrossovéparent, paren®, probCros$;
end for
. for w<« 1toM do
10: Offspring, < applyMutationQffspring,, probMut);
11:  end for
12:  Pop <+ Selection(Pop, Offspring
13: until Stopping criterion be attained
Output: Pop;

belongs to the front more dominant, that is, the one that hester fithess, is chosen as
parent. This procedure is performed twice for the seleatfdwo parents.

After the crossover, the generated offsprings are sulgjéotenutation procedure.
The mutation of individuals (line 10 of Algorithm 1) operatas follows. For each off-
spring, a random real number betwdeand1 is generated, and checked if this number
satisfies the probability conditign-obM ut. The choice of the stage, the machine and the
job involved in the procedure is random.

In line 12 the method of selection of individuals survivirggthe next generation
is applied. Initially, a expanded population w2/ individuals is created as a result of
the union of the population of parents and offsprings. Atliuiduals of the expanded
population are evaluated based on sorting by non-domimants. In the follow, the
individuals from the lower fronts will form the new populati until a maximum of\/
individuals. This new population is initiated with individls of the best non-dominated
front and continues with the solutions of the second, folhmwvith the third and so on.
As the population size is fixed, not all fronts will be presemthe file. Thus, when the
last front is considered to form the population, there magtexnumber of individuals in
this front which exceeds the siad. If this happens, it is necessary to remove individuals
from the last front selected. This is done by eliminatingviduals with less crowding
distance.

The crowding distance allows to quantify the space arouriddinidual. For this,
the perimeter of the hypercube formed by the neighbor swistio the individual that are
located in the same dominance front must be calculated.

3.6. The adapted SPEA2 Algorithm

Algorithm 5 shows the pseudo-code of the adapted SPEA2itigoimplemented in this
work. Regarding to the initial solution for this method, imduals are generated by the
same construction method used to generate the initialisoltd the adapted NSGA-II
algorithm. This method was presented in Subsection 3.3nés 1 to 3 the construction
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Algorithm 2 Adapted SPEA2
Input: M, X, probCrossprobMut stoppingCriterion
1: for w < 1to M do
2. Pop, < generateRandomSolution();
3: end for
4: File < 0
5: repeat
6: Pop <+ PopUFile
7.
8
9

evaluateFitnes${op)
File < updateFilePop)
. for w+ 1to M do
10: [pail, pai2] < selectParent&{le)
11: Offspring, < applyCrossoveparent, paren, probCros$;
12:  end for
13: for w+«+ 1to M do
14: Pop,, < applyMutationQffspring,, probMu;
15:  end for
16: until Stopping criterion be attained
Output: File;

method is repeated to creaté individuals to be included in the initial population.

The algorithm has a repeating loop between the lines 5 to b&ray in each
iteration, which we call generation, the search space ifoexg by means of crossover,
mutation and selection operators.

Before crossover, mutation and selection procedures,dpelation is attached to
the file, forming a new population. The file starts empty ansl danaximum size ok.
A fitness value is assigned to each individual of the new patjr, after being evaluated
(line 7). To calculate the fitness value, a force is given itidividualind. This force is
determined by the amount of individuals in the populaticat thd dominates, i. e., more
individuals are dominated bind, the greater is its force. The fitness of an individual is
calculated by summing the forces of all their dominatordgatto a density measurement.

In this work, we have used, as density measure, the expressio

1
o+ 2

wherek = /M + X andoy is the distance, in the objectives space, from the individua
to its kth nearest neighbor.

After the individuals being evaluated the béstare placed on file (line 8). Thus,
the algorithm proceeds to crossover procedure, whéreffsprings are generated by
choosing two parents for each offspring (line 10). Everyepars chosen by binary tour-
nament method. After selecting the parents, the crossoweegure is applied to generate
a offspring with a probabilityrobC'ross. The selection of parents and the application of
the crossover procedure are repeated Witbffsprings are generated.

The binary tournament applied here is different from thatliagd to the NSGA-
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Table 4. Algorithm parameters
Algorithm | M | X | probCross| probMut
NSGA-Il | 500| - 80% 10%
SPEA2 | 500 50 80% 10%

. Initially, two individuals in the population are select. Then, these two ones are
compared to each other, and the one that has lower fitnesoserhas parent. This
procedure is performed twice for the selection of two parent

After the crossover procedure, the generated offspringsajected to mutation
procedure. Mutation of individuals (line 14 of Algorithm 8perates in the same man-
ner as in NSGA-II, however, in the SPEA2, the population imptetely replaced by
offsprings.

4. Computational Results and Evaluations

The two versions of the proposed algorithms were implenteimeC++, using the IDE
Netbeans 6. The tests were performed on an Intel Core i7 cem@u00GHz with 16GB
of RAM under Linux Ubuntu 64-bit operating system.

The set of instances used in the experiments were introdugedUrlings 2010]
and is available in [SOA 2016]. It is composed by 432 instandéese instances are sub-
divided by the number of jobs:§, machines:{:) and stages per machine), according
to the following settingsn = {5,7,9,11,13,15},m = {2,3} em; = {3}. Each possible
combination of these settings consists of 32 instances.

Table 4 shows the values of the parameters used by the NS@AdIISPEA2
algorithms, developed in this work. The values of these rpatars were determined
empirically. The runtime was stopping criteria used in tkpeziments, defined by the
following equation:25 x n x m; x m milliseconds, where: is the number of jobs and
m; is the number of stages per machine.

Every instance was evaluated 10 times for each algorithra.résults were com-
piled, normalized and compared using hypervolume @psilonmetrics. The hyper-
volume metricH (Qqy, Ro) [Zitzler and Thiele 1998] measures the volume between the
Pareto front),,, achieved by the algorithm and a point of referedte An area with
higher volume indicates both a greater scattering of thetienls as increased conver-
gence of the same. Thus, a high value of hypervolume is deslitee point of reference
R, was set for each instance as the highest value of makespataranuess contained
in the set formed by union of all solutions found after all th@eriments performed in
this work. Already the:psilon, I.(Qau,, Q..r) indicator [Zitzler et al. 2003] determines a
minimume factor, if multiplied by each point of the s€}.. ;, makes weakly dominated by
Qa, the set of approximations resultant. Sirigg , is the Pareto optimal frontier, hence,
the lower the value of, the higher the algorithm convergence. As the Pareto optrona
tier of each instance is not known in this worg,. ; is defined as non-dominated points
of the set formed by union of all executions performed forhetested instance. Both
metrics were calculated using the EMOA package of stasisticmputing software R.

Table 5 shows the averageis §tandard deviation) of the hypervolume and epsilon
metrics grouped by combinations of the number of jabsiumber of machines: and
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Table 5. Results for hypervolume and epsilon metrics

Group HYPERVOLUME EPSILON
NSGA-II SPEA?2 NSGA-II SPEA?2

5x3x3  33.35+3.01 30.46+2.96 0.44+-0.29 0.48+0.03
5x3x3  99.94+0.08 98.68+ 1.55 0.91+0.65 1.51+1.29
7X2x3  99.90+ 0.22 98.94: 0.64 0.89+0.77 1.49+0.81
7x3x3  99.96+ 0.05 95.36t2.87 0.27+£0.46 3.15+1.85
Ix2x3  99.8%+ 0.30 97.1H1.51 0.50+2.96 0.13+0.65
Ox3x3  99.90+ 0.11 96.92+1.48 0.52+-0.66 2.44+1.40
11x2x3 99.974 0.03 93.9% 1.93 0.06t0.24 7.32+4.10
11x3x3 99.814-0.54 90.32+ 3.03 0.63+1.03 6.14+ 2.27
13x2x3 99.8A4-0.10 90.60+ 3.26 0.76+0.99 6.27+2.74
13x3x3 99.840.11 85.56:3.91 0.74t£1.19 8.64+2.70
15x2x3 99.8%+ 0.09 92.45+-3.31 0.78t£1.05 4.93+2.34
15x3x3 99.88+ 0.13 91.62+3.80 0.87+1.14 6.16+ 2.86

stages by machine:;. The first column represents the groups of instance, thenseco
and third columns show the value of hypervolume metric fer N6GA-Il and SPEA2
algorithms respectively. The fourth and fifth columns shbe values obtained for the
indicatorepsilon. Note that, for the set of instances of smaller dimensiom¢bajobs),
both algorithms have reached very similar values in bothehyglume metric as in the
epsilon indicator. As the dimensionality of the instances grows (13, 15 jobs), clearly
verifies a gap in the performance of the algorithms. In thes&nces, the NSGA-Il has
better convergence than SPEA2, fact indicated by the lowevafepsilon indicator and
the high value of hypervolume metric. The latter metric afgbicates that there is a better
spread of solutions by the NSGA-II.

5. Conclusions and Future Works

This article studied the multi-objective hybrid flowshomblem. The considered objec-
tives were to minimize the makespan and the weighted sumdifess. The evolutionary
algorithms NSGA-II and SPEA2 were used for solving it.

In both algorithms, the initial population is composed ddiuiduals randomly
constructed. These algorithms explore the solution spa@aigh crossover, mutation
and selection operators. Four different types of mutatwee implemented and each of
them is applied with a certain probability. The mutationésfprmed in both algorithms
considering all four of these types of mutation. The unifammssover was implemented
for both algorithms. The algorithms differ primarily by tiselection mechanisms. In
NSGA-II, the dominance front and the crowding distance aeduto evaluate and se-
lect individuals, while in SPEA2 there is a fitness calcwiatbased on the amount of
dominated solutions and density of the solution. Furtheen8PEA2 based algorithm
maintains a file with the best individuals and the selectiparator acts only on these
individuals.

Two metrics were used to compare the algorithms: hypervelantepsilon. For
the set of test problems with smaller dimensions, the algms showed similar perfor-
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mance. For the set of test problems with larger dimensioowetier, NSGA-II showed
better convergence and better scattering of the solutions.

For future work, it is proposed to implement other algorighfar generation of
initial solutions, the development of other types of mutatand crossover operators as
well as the insertion of local search techniques for refingroéthe solutions.
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