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Abstract

Brain activity can be seen as a time series, in particular, electroencephalogram
(EEG) can measure it over a specific time period. In this regard, brain fingerprinting
can be subjected to be learned by machine learning techniques. These models
have been advocated as EEG-based biometric systems. In this study, we apply
a recent Hybrid Focasting Model, which calibrates its if-then fuzzy rules with a
hybrid GVNS metaheuristic algorithm, in order to learn those patterns. Due to
the stochasticity of the VNS procedure, models with different characteristics can be
generated for each individual. Some EEG recordings from 109 volunteers, measured
using a 64-channels EEGs, with 160 HZ of sampling rate, are used as cases of
study. Different forecasting models are calibrated with the GVNS and used for the
classification purpose. New rules for classifying the individuals using forecasting
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models are introduced. Computational results indicate that the proposed strategy
can be improved and embedded in the future biometric systems.

Keywords: Electroencephalogram, Brain fingerprinting, Biometrics, Variable
Neighborhood Search, Forecasting and Time series.

1 Introduction

“Every living organism on our planet is surrounded with an energy in form
of the signal environment” [8]. This statement reinforces that signals are
everywhere. Recently, brain activity for biometric systems has been the focus
of different researches [3]. In particular, with the rise of big time series data,
novel machine learning techniques are being developed. Those generated with
Electroencephalography (EEG) are generally measured with high sampling
rate (usually from 100Hz to more than 1KHz).

One advantage of understanding brain signals using EEG and Magnetoen-
cephalography (MEG) is that those techniques are a noninvasive way to look
into our brains. As described by Farwell et al. [2], the term “brain finger-
printing” arises from an analogy to fingerprints that has several facets. In
particular, they highlighted this term in order to match information from
the crime scene with information stored in the brain of the subject. This
and other works in the literature have been investigating the concealed in-
formation test or guilty knowledge test, usually, used for detecting concealed
information since Lykken [9], around the fifties. This present study uses the
term Brain Fingerprinting as a way to characterize individual patterns that
might be learned through machine learning techniques, coming up with what
has been called EEG-Based Biometric systems [3].

We propose the use of a novel Hybrid Forecasting Model (HFM), recently
introduced by Coelho et al. [1], in order to learn EEG patterns from the
electrodes signals of each volunteer. A hybrid metaheuristic calibration al-
gorithm generates model’s if-then fuzzy rules and weights, using the General
Variable Neighborhood Search (GVNS) procedure [5]. In particular, different
models are generated using an automatic learning framework that uses an ex-
pert input selection strategy. The latter is done by the use of Neighborhood
Structures (NS) that change model’s input during the learning phase.

1 The authors acknowledge Brazilian institutes, foundations, universities and citizens, as
well a great vibration of the universe, for supporting the development of this research.
2 Email:vncoelho@gmail.com

V.N. Coelho et al. / Electronic Notes in Discrete Mathematics 58 (2017) 79–8680



The proposed strategy aims at checking the forecasting models potential
for classifying individuals only by looking at its raw EEG time series. As
mentioned by Varner et al. [10], evidences are starting to point out that EEG
signals carry individual specific traits that might be induced due to genetic
factors. The dataset used here is public and freely available by PhysioNet [4],
composed of 109 volunteers originally acquired using the 64 channels BCI2000
system.

2 EEG learning, forecasting and classification strategy

Let us consider a target EEG time series tsEEG = y1, y2, ..., yt, comprising a
set of t observations from a single electrode. The goal is to train the HFM
with sections of this time series and check its performance regarding previous
unseen information, known as testing set. The most intuitive case seen in the
literature is the one where parts of the training phase are also used in the
classification phase. Despite having few practical applications, this case can
be an useful strategy for verifying the consistence of the classification rules.

Here, we adapt the use of forecasting models, using their forecasting ca-
pability for classification purpose. A given HFM can be applied to learn and
generate k steps-ahead, with k indicating the number of steps ahead to be
predicted, namely Forecasting Horizon (FH). One-step ahead (k = 1) is usu-
ally the most precise type of forecasting, returning the lowest training errors.
However, they might not learn special characteristics of the time series.

The core of our strategy is to apply the forecasting model for learning a
tstrainingEEG and testing it with another one, defined as tsvalEEG. Regarding
this topic, several Data Splitting techniques can be used for sampling parts of
a given time series and generate those training, validation and testing sets (or
even sets of them).

Considering data from a specific electrode, in our case, the time series is
split into only two parts, training and testing. Thus, the forecasting models
can applied for learning the first tr samples of a given EEG band tsEEG,
tstrainingEEG = y1, ..., ytr, with tr < t. The remaining val = t− tr samples can
be used to check the accuracy of the model regarding unseen data. Thus, a
finite sequence tsvalEEG = {ŷtr+1, ..., ŷt} is the one that should be predicted.

According to a given forecast accuracy [6], the forecasting errors are calcu-
lated. Let consider a set of models SM = {HFMm

v1
, ..., HFMm

vi
, ..., HFMm

vn},
composed ofmmodels trained only with data regarding an individual/volunteer
vi, with i = [1, n]. In the proposed classification rule, after training, each
model HFMm

v can be applied for forecasting unseen data from all different
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volunteers. The model with the lowest error is assigned and labeled to the
unseen time series. For simplicity, the classification rule will be explained
considering a single model for each volunteer (m = 1).

Following this reasoning, the forecasting model HFMvi can be applied to
learn different parts from the EEG electrodes of vi. Later on, the unseen
parts of the data are applied to be predicted using all SM available models.
However, it is expected that a model HFMvj from an individual j applied
to learn unseen parts of vi (with vj �= vi) will return higher forecasting er-
rors than HFMvi. This is confirmed by this study and happens because the
model HFMvj was not trained to forecast patterns from individual vi. Thus,
the HFMvj might obtain worse results and, consequently, higher forecasting
errors.

The objective of our analysis is to check if the time series from vi was
better learned, providing lower errors, when predicted using the forecasting
model HFMvi.

3 HFM metaheuristic training algorithm

A HFM solution comprises different fuzzy rules and can be represented as a
matrix s = [Y ], being Y a matrix 4× |L|, where L = {l1, l2, ..., lz} is the lags
vector, containing the inputs used by the forecasting model. Each column of
matrix Y , which is a respective index of vector L, contains two different fuzzy
rules and its respective weights. A solution example can be seen in Figure 2.

Initial values for the fuzzy rules are generated using the procedure de-
scribed in Coelho et al. [1]. The strategy consists in calculating the EEG
time series mean values and applying a normal distribution for generating
each rule and weight. In this study, model’s inputs are pick at random, being
the oldest input limited to 3% of the available samples for each time series
that is being learned.

Quick training phases are studied in this current paper, up to 5 seconds
per model. The GVNS procedure proceeds with the refinement phase, re-
specting this time limit. The basic idea of the GVNS is depicted in Figure 1,
exemplifying a minimization problem with several NS. The procedure started
refining a solution with the Variable Neighborhood Descent, in our case, by
combining two Random Descent methods. When the procedure finishes, it
may have found a local optimum and a shaking procedure usually jumps to a
worse solution and the search with VND starts all over again.
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Fig. 1. VNS multi-neighborhood searching strategy

3.1 Neighborhood structures

For exploring the solution space of the problem and train each forecasting
model, two basic neighborhood structures (NSaddX(·) and NSchangeLags(·))
are used. These NS were also used as a perturbation strategy, being this
mechanism a key strategy to diversify the search in the solution space.

Neighborhood NSaddX(s, r, c, x) increment or decrement, with magnitude
x ∈ R, a rule or weight at position at row r and column c of a given solution
s. Figure 2a exemplifies the use of the NSaddX(·) moves in a solution s,
generating neighbors s′ and s′′. The move increments the weight of vector V ,
from the lag operator K − 2, in ten units.

Neighborhood structure NSchangeLags(s, l) has the property of increment
or decrement, in one unit, the input lag of a given lag operator of the vector
L ∈ s. Examples are given in Figure 2b.

Fig. 2. NS examples

NSaddX(s, i = 2, j = 2, x = 10) ⇒

s′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(K − 1) z(K − 2) z(K − 24)

A 87 95 103

V 70
−→
80→ 90 95

B 100 90 110

W 110 50 80

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) Application example of NSaddX(·)
move

NSaddX(s, l = 2, x = 1)

s′ =

⎡
⎣ z(K − 1)

−−−−−−→
z(K − 2)→ z(K − 1)

...

⎤
⎦

NSaddX(s, l = 1, x = −1)

s′′ =

⎡
⎣

−−−−−−→
z(K − 1)→ z(K − 2) z(K − 2)

...

⎤
⎦

(b) Application example of
NSchangeLag(·) move
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4 Computational experiments

The HFM, trained with the GGVNS algorithm, was implemented in C++
and can be find inside the optimization framework OptFrame 2.2 3 . The tests
were carried out on a OPTIPLEX 9010 Intel Core i7-3770, 8 × 3.40 GHZ with
32GB of RAM, with operating system Ubuntu 14.04, and compiled by g++
4.8.4.

4.1 EEG time series used as cases of study

Some EEG recordings from 109 volunteers, measured using a 64-channels
EEGs, BCI2000 system, with 160 HZ of sampling rate, are used for vali-
dating the proposal. Four out of 14 experimental runs available in the original
dataset were used here. Data from up to 50 volunteers were used for analyzing
the classification strategy, considering 3 distinct experimental runs, and one
duplicated, (namely 1, 2, 4 and 5): two one-minute baseline runs (one with
eyes open, one with eyes closed) and two two-minute runs (4 and 5) where the
volunteers were subjected to a set of imagery and real movements, opening
and closing their left or right fists.

4.2 HFM learning ability

Two different analysis were done. In the first one, we decided to analyze the
ability of the proposed strategy for classifying parts of a single run from each
volunteer. Thus, 70% of the data (5320 and 10640 samples for one and two
minutes experiments, respectively) was subjected to be learned by the HFM,
with a 5 seconds calibration done by the GVNS. The second batch was done
using two different experiment from the dataset, the models were applied to
learn the whole time series from experiment run 4 and tested over the experi-
ment run 5. We believe that these configurations are quite realistic and can be
used in several real applications. However, since the data was not measured
by us, we are still limited to the quality of the Physionet and their proposed
protocol BCI2000. The batches of experiment were composed of around 120
different combinations of parameters, such as, different: forecasting horizons,
number of analyzed volunteers (10, 20, 30 and 50) as well as the number of
models per volunteer.

Figure 3a shows an interaction plot, indicating the accuracy (successes di-
vided by the number of trials). The points in shapes of triangles and crosses

3 Available at http://sourceforge.net/projects/optframe/
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indicate respectively the minimum and maximum accuracy of each configura-
tion. The dashed line indicates the standard deviation while the thicker line
shows the average accuracy.

Fig. 3. Interactions plots and model classification accuracy

(a) Split EEG time series with random
channels

(b) EEG time series with ran-
dom channels and different exper-
iments runs – 4 and 5

As suggested by Yang & Deravi [11], with experiment 4 (a motor imagery
task), might better avoid the contamination of the EEG signal. If the classifi-
cation strategy had been done at random, an average accuracy of around 5%
(10%, 5%, 3% and 2% for 10, 20, 30 and 50 volunteers, respectively) might
be expected. Furthermore, results indicate that more than one model per
volunteer considerably increases the classification accuracy.

5 Final considerations and extensions

In this study, a novel EEG-based biometric system was designed using a fore-
casting model trained with a trajectory search metaheuristic algorithm, the
VNS. Different EEG time series were trained and the initial results point out
that the classification protocol seems to work. Other EEG datasets and new
experiments, measured in different environments and considering other stim-
ulus, will be addressed in a near future. Our future works will extend the
proposal for handling signals from Functional Magnetic Resonance Imaging
(fMRI), which is a powerful and versatile measurement technique. Other non-
invasive that operates near quantum limited sensitivity [7] will be analyzed.
Novel strategies and classification rules for forecasting models should also be
developed and explored. The generation of a more diverse set of models is
also a promising topic, such as a non-dominated set of trained networks.
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