Computers and Operations Research 81 (2017) 203-215

Computers and Operations Research

Contents lists available at ScienceDirect

com|]
& operations
research

journal homepage: www.elsevier.com/locate/cor

Algorithms for job scheduling problems with distinct time windows
and general earliness/tardiness penalties

@ CrossMark

Bruno Ferreira Rosa?, Marcone Jamilson Freitas SouzaP®, Sérgio Ricardo de Souza®*,
Moacir Felizardo de Franca Filho*, Zacharie Ales®, Philippe Yves Paul Michelon®

3 Federal Center of Technological Education of Minas Gerais (CEFET-MG), +55-31-3319-6780, ZIP Code: 30510-000, Belo Horizonte, MG, Brazil
b Department of Computer Science, Federal University of Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
€LIA EA 4128, University of Avignon and Pays de Vaucluse (UAPV), ZIP Code: 84911, Avignon, France

ARTICLE INFO

ABSTRACT

Article history:

Received 7 October 2015

Revised 5 September 2016
Accepted 27 December 2016
Available online 28 December 2016

Keywords:

Scheduling

Makespan

Idle time

Enumeration algorithm

This paper addresses the single machine scheduling problem with distinct time windows and sequence-
dependent setup times. The objective is to minimize the total weighted earliness and tardiness. The prob-
lem involves determining the job execution sequence and the starting time for each job in the sequence.
An implicit enumeration algorithm denoted IE and a general variable neighborhood search algorithm de-
noted GVNS are proposed to determine the job scheduling. IE is an exact algorithm, whereas GVNS is a
heuristic algorithm. In order to define the starting times, an O(n?) idle time insertion algorithm (ITIA)
is proposed. IE and GVNS use the ITIA algorithm to determine the starting time for each job. However,
the IE algorithm is only valid for instances with sequence-independent setup times, and takes advantage
of theoretical results generated for this problem. Computational experiments show that the ITIA algo-
rithm is more efficient than the only other equivalent algorithm found in the literature. The IE algorithm
allows the optimal solutions of all instances with up to 15 jobs to be determined within a feasible com-
putational time. For larger instances, GVNS produces better-quality solutions requiring less computational
time compared with the other algorithm from the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of the just in time (JIT) management system
highlighted the importance of carefully planning production activi-
ties. Reducing earliness and tardiness in job scheduling may result
in significant cost reductions. According to Baker and Scudder [4],
completing a job with tardiness, i.e., after the desired completion
date, may result in contractual penalties, a loss of credibility for
the company, and reduced sales. Similarly, completing a job before
the desired date may result in extra financial costs, due to require-
ments for early capital availability, storage space or other resources
for the maintenance and management of the inventory [17].

The single machine scheduling problem with distinct time win-
dows and sequence-dependent setup times, as discussed in the
present article, consists of sequencing and determining the time
within which jobs must be performed in order to minimize the
weighted sum of earliness and tardiness penalties in the execution

* Corresponding author. .

E-mail addresses: brunorosa@div.cefetmg.br (B.F. Rosa), marcone@iceb.ufop.br
(MJ.E. Souza), sergio@dppg.cefetmg.br (S.R. de Souza), franca@des.cefetmg.br (M.E.
de Franga Filho), zacharie.ales@univ-avignon.fr (Z. Ales), philippe.michelon@univ-
avignon.fr (P.Y.P. Michelon).

http://dx.doi.org/10.1016/j.cor.2016.12.024
0305-0548/© 2016 Elsevier Ltd. All rights reserved.

of the jobs. This is an NP-hard problem [2], and is hereafter de-
noted by SMSPETP.

According to Wan and Yen [31], it is expected in many man-
ufacturing industry situations that the jobs are finished within a
certain time interval (time window), rather than at a single point
in time (due date), because of uncertainties and tolerances. Such
uncertainties and tolerances are related to individual job charac-
teristics that influence the size of these time windows. Thus, only
jobs completed before or after their respective time windows will
be subject to penalties.

There exist a variety of applications of time window schedul-
ing models in JIT manufacturing, semi-conductor manufacturing,
chemical processing, PERT/CPM scheduling, and video on demand
services, among others [16]. For instance, consider the production
of perishable goods, as presented in Koulamas [20]. Assume that a
chemical manufacturer combines a certain chemical “A”, which de-
teriorates rapidly, with a second chemical “B”, to produce a chem-
ical “C". If “A” is produced before “B” is ready, then it will deteri-
orate. If “A” is produced later, then delays in the production of “C”
may prove costly.

In industries where different product types are manufactured
and the types of jobs processed on the machine frequently change,

http://dx.doi.org/10.1016/j.cor.2016.12.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.12.024&domain=pdf
mailto:brunorosa@div.cefetmg.br
mailto:marcone@iceb.ufop.br
mailto:sergio@dppg.cefetmg.br
mailto:franca@des.cefetmg.br
mailto:zacharie.ales@univ-avignon.fr
mailto:philippe.michelon@univ-avignon.fr
http://dx.doi.org/10.1016/j.cor.2016.12.024

204 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

it is usually necessary to set up the machine between the exe-
cution of consecutive jobs [2]. The setup time includes the time
spent changing tools, preparing the material, cleaning the machine,
etc. Most studies regarding scheduling problems assume that setup
times are independent of the execution sequence, i.e., the time is
negligible or can be added to job processing time [14]|. However,
according to Kopanos et al. [19] and Gupta and Smith [14], in many
practical situations these times depend on the execution sequence.
Allahverdi et al. [2,3] and [1] provide comprehensive reviews re-
garding scheduling problems with setup times.

The continuity of machine operations may also be a considera-
tion in the problem. According to Kanet and Sridharan [18], there
are situations in which machine idleness is not allowed, because
this results in higher costs than the early completion of jobs. How-
ever, the same author states that there are cases in which keeping
the machine idle is beneficial, even if there is a job available to
process. Thus, when there are no restrictions regarding machine
idleness, determining the best date to start the execution of each
job or insert idle time between jobs may lead to better solutions.

According to the notations employed by Pinedo [26], the
scheduling problem studied here, SMSPETP, is represented
by 1/sp/ 2'17:1 W;.Ej + Z'}:l wg.’Tj. The case with sequence-
independent setup times is denoted by SMSPETP-SIS. Pinedo
[26] represents SMSPETP-SIS by 1/ /37}_; W;Ej +Y0 WyTj. The
applicability combined with the difficulty of finding an optimal
solution for SMSPETP has motivated the development of efficient
algorithms for the resolution of this problem.

Koulamas [20] studied SMSPETP-SIS by considering that a job is
anticipated when its execution begins, before the beginning of its
time window. This approach is different than that usually found in
the literature, in which a job is usually considered to be early if
it is completed before the beginning of its time window. Earliness
and tardiness penalties are considered to be equal for each job. The
author divides the problem into two subproblems: determining the
job execution sequence and determining the optimal time for com-
pletion of each job in a given sequence (or inserting idle time be-
tween jobs in the sequence). To solve the problem of determin-
ing the optimal execution time for each job in a given sequence,
an algorithm was developed that optimally inserts idle time into
the execution sequence. The scheduling problem is solved with ad-
justments of heuristics that were previously employed in special
SMSPETP-SIS cases.

Wan and Yen [31] studied various properties of SMSPETP-SIS to
facilitate its resolution. As in the case of Koulamas [20], the authors
divided the problem into two subproblems. An optimal timing al-
gorithm was developed to determine the optimal completion date
for each job in a given execution sequence. This algorithm, from
now on denoted by OTA, is an extension of the algorithms of Davis
and Kanet [7], Lee and Choi [21], and Szwarc and Mukhopadhyay
[30], to cases with different due dates. Subsequently, a tabu search
procedure [12] was proposed, together with the optimal timing al-
gorithm, to solve the JIT scheduling problem.

The study of Gomes Jdnior et al. [13] focuses on SMSPETP. In
this study, a mixed integer linear programming model is proposed
to represent the problem, and a heuristic resolution algorithm
based on greedy randomized adaptive search procedures (GRASP)
[8], iterated local search (ILS) [22], and variable neighborhood de-
scent (VND) [23] is applied to solve it. For each job sequence gen-
erated by the developed heuristic, OTA [31] - adapted to include
setup times - is applied to determine the optimal starting time of
each job.

Many papers can be found in the literature that use OTA in
heuristic procedures to solve SMSPETP (e.g., [28,29], and [25]).

In the present study, an implicit enumeration algorithm de-
noted IE and an adaptation of the general variable neighborhood

search algorithm denoted GVNS [15] are proposed to determine the
job execution sequence of SMSPETP. IE is an exact algorithm, which
is only valid for solving SMSPETP-SIS, and makes use of theoretical
results established for this problem. On the other hand, GVNS is
a heuristic algorithm, and can be applied to solve larger SMSPETP
instances. A new O(n?) algorithm for the optimal allocation of idle
time, named ITIA, is developed to determine the starting time for
each job in a given SMSPETP job sequence. Computational experi-
ments compare the performances of ITIA and OTA [31] when em-
ployed by the IE and GVNS algorithms. OTA is the only equivalent
algorithm to ITIA found in the literature. The results confirm the
superiority of ITIA over OTA. In addition, because no specific ex-
act optimization algorithm for solving SMSPETP-SIS can be found
in the literature [16], the IE algorithm is compared with the CPLEX
solver applied to the mixed integer linear programming model of
Gomes Junior et al. [13]. The obtained results show that the IE al-
gorithm generates optimal solutions more quickly. Finally, the de-
veloped GVNS algorithm is compared with the adaptive genetic al-
gorithm (AGA) [28] for larger instances. The results show that the
GVNS algorithm outperforms AGA both in the quality of solutions
and processing times.

The remainder of this paper is organized as follows.
Section 2 presents a detailed description of SMSPETP and
SMSPETP-SIS. The proposed algorithm for the optimal allocation of
idle time is presented in Section 3. The GVNS and IE algorithms
are presented in Sections 4 and 5, respectively. Section 6 presents
and discusses the computational results. Finally, Section 7 presents
the conclusions.

2. Characteristics of the addressed problem

The single machine scheduling problem addressed in this study
(SMSPETP) has the following characteristics:

(i) A single machine must process a set I of n jobs.

(ii) For each job x < I, there is a processing time Py and a time
window [Ex, Tx] in which the job x should preferably be
completed. Ex indicates the earliest due date, and Ty is the
tardiest due date.

(iii) If job x is completed before Ey, then there is a cost of ay per
unit of earliness time. In the case that the job is completed
after Ty, there is a cost of By per unit of tardiness time. Jobs
completed within their time windows do not incur costs.

(iv) The machine can perform only one job at a time and once
the process is initiated, it cannot be interrupted.

(v) All jobs are available for processing starting from time 0.

(vi) Between two consecutive jobs x and y € I, a setup time of
Sxy is required. It is assumed that the time for setting up the
machine in order to process the first job in the sequence is
equal to 0.

(vii) Idle time between the execution of two consecutive jobs is
allowed. The time of completion of job x € I is represented
by Cx, whereas the earliness and tardiness times of x are
represented by ey = max(0, Ex—Cy) and ty = max(0,Cx —
Tx), respectively.

The special case with sequence-independent setup times
(SMSPETP-SIS) is also considered. In this case, the value of Sy is
the same for any pair of jobs x and y € I. Therefore, it can be added
to the processing time of the respective jobs.

The objective is to determine a job sequence X of I and the
starting dates for executing the jobs that minimize the weighted
sum of the earliness and tardiness for each job. That is, to mini-
mize the value of

f&X) = Z(O{xex + Bxtx). (1)

xel

B.E Rosa et al./Computers and Operations Research 81 (2017) 203-215 205

Table 1
List of notations.

Notations Descriptions

SMSPETP Single Machine Scheduling Problem with Distinct Time Windows and Sequence-Dependent Setup Times
SMSPETP-SIS Single Machine Scheduling Problem with Distinct Time Windows and Sequence-Independent Setup Times
OTA Optimal Timing Algorithm [31]

ITIA Idle Time Insertion Algorithm

1 set of n jobs to be executed

X sequence of the job set I, i.e., X = (X1,X2, ..., Xn)

Xi ith job in a given sequence X

B subsequence of jobs, i.e., B= (Xy,Xy41,...,%), l Su<v<n
|B| cardinality of subsequence B

B; Jjth subsequence of a sequence X

MC(B) marginal cost for shifting jobs from B in a single time unit to the right
Costj(p) cost for moving jobs from B; by ¢ time units to the right
last(x;) last job of the subsequence that contains job x;

GVNS General Variable Neighborhood Search metaheuristic [15]
GVNSmax stopping criterion of GVNS

N;, N, and N3 neighborhoods used in GVNS and VND

fiX) evaluation function of sequence X, f(X) = Y, (ctxex + Pxtx)
VND Variable Neighborhood Descent procedure [23]

VNDmax parameter of VND procedure

IE Implicit Enumeration algorithm

UB known upper bound to SMSPETP-SIS

L list of nodes to be investigated in IE algorithm

§ node of the search tree in IE algorithm

seq(d) subsequence of k jobs stored in node §, 0 < k <n

nseq(d) subset of jobs that does not belong to seq(3)

Xp sequence of jobs in I that begins with the subsequence B

ct completion time of the job x in an optimal positioning of X
GVNS/ITIA GVNS that uses ITIA algorithm

GVNS/OTA GVNS that uses OTA algorithm

IE/ITIA IE that uses ITIA algorithm

IE/OTA [E that uses OTA algorithm

AGA Adaptive Genetic Algorithm [28]

The resolution of this problem involves two actions, which must
be performed in sequence: (i) determine the job processing se-
quence, i.e., the order in which the jobs must be executed, and (ii)
determine the starting date for each job such that the weighted
sum of earliness and tardiness for all jobs is minimized.

2.1. Notations

In addition to the basic notations introduced above, Table 1
presents further notations employed in this paper.

3. Idle time allocation

Solving SMSPETP involves the determination of the sequence in
which the jobs are executed, as well as the date at which each
job in this sequence begins. Previous studies have addressed this
problem using heuristics that iteratively generate an execution se-
quence by priority rules or search procedures. To evaluate each
generated sequence, the determination of the optimal starting date
for the execution of each job in the sequence is required. This can
be achieved by inserting idle times between the executions of con-
secutive jobs. Therefore, it is essential to use an algorithm that in-
serts idle times as quickly as possible.

To schedule jobs with different due dates, Fry et al. [10] pro-
posed a mathematical programming formulation that solves the
problem of determining optimal dates. Garey et al. [11] presented
an O(nlogn) algorithm to determine optimal dates for the prob-
lem of minimizing the weighted sum of discrepancies from the
preferred due dates. Yano and Kim [32] suggested a dynamic pro-
gramming algorithm to determine the optimum dates in prob-
lems where the penalty per earliness unit for a given job is not
greater than the respective penalty per tardiness unit. Szwarc and
Mukhopadhyay [30] proposed an algorithm based on the clus-
ters concept, which determines the optimal dates in problems

with generic weights for earliness and tardiness penalties. Davis
and Kanet [7] and Lee and Choi [21] proposed optimal timing al-
gorithms for problems with the same characteristics. Reviews of
scheduling problems involving the insertion of idle times is found
in Kanet and Sridharan [18] and Jézefowska [17].

Considering problems with distinct time windows, proposed
procedures for determining optimal dates are limited to studies
by Koulamas [20] and Wan and Yen [31]. In Koulamas [20], an al-
gorithm of polynomial complexity for problems with unweighted
earliness and tardiness penalties is presented. This algorithm is an
extension of that in the study of Garey et al. [11]. Wan and Yen
[31] extended the optimal timing algorithms of Davis and Kanet
[7], Lee and Choi [21], and Szwarc and Mukhopadhyay [30] to
problems with different time windows and arbitrary weights for
earliness and tardiness penalties.

In the following, a new O(n?) algorithm called the idle time in-
sertion algorithm (ITIA) is proposed for the optimal allocation of
idle times. This algorithm is motivated by the study of Franca Filho
[9], which addressed the problem of scheduling in unrelated paral-
lel machines with sequence-dependent setup times, earliness and
tardiness penalties, release times, and due dates for each job.

Let X = (X1,X2,...,Xp) be a given sequence of the job set L
Thus, x;, x; € I and x; # x; for every i, je {1,2,..., n}. ITIA con-
sists of two steps. First, all jobs are scheduled to start processing as
soon as possible, respecting the sequence X and without idle times
inserted. Thus, the costs resulting from tardiness are minimized,
whereas the costs caused by earliness are at the highest possible
level for the sequence X. Second, idle times are inserted between
each pair of consecutive jobs, such that the total sum of penalties
for earliness and tardiness is reduced.

Let Cx be the completion time of job x. In the first step of ITIA,
the execution of the first job of the sequence X is scheduled to
start at time 0, i.e., Gy, = Px,. The completion time of the other jobs
is given by Gy, =Gy, , +So_ oy T P fori=2,3,...,n

206 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

In contrast to the algorithm of Franga Filho [9], the second step
of ITIA starts from the last job in the sequence (x;). From the last
to the first job successively, it is verified whether the insertion of
idle time is beneficial. If the last job is not early at the end of the
first step, then it will not incur a shift to the right, because this
would not reduce the associated earliness cost. Otherwise (i.e., if
Xp is early), it is shifted ¢ units to the right, with ¢ given by

¢ =E, -G, (2)

A job subsequence B = (xy,X,1,...,Xy) with u < v forms a
block in the sequence X if the jobs in B are scheduled consecu-
tively without idle time between them and there is idleness be-
tween jobs x,_1 and x, and jobs x, and x,,, 1. For the case in which
u =1, the idleness between jobs x,_; and x; is disregarded. Simi-
larly, for the case in which v =n the idleness between jobs x, and
Xy41 is disregarded.

The insertion of idle time before jobs x;, with i=n—-1,n—
2,...,1, is performed as follows:

o If Cy; > Ey,, nO idle time is inserted before x;.

o If G, < Ey,. then it is verified whether a reduction to the earli-
ness of job x; is beneficial. For this purpose, let last(x;) be the
last job in the block containing x;. To reduce the earliness of
job x;, all jobs from B = {x;, x; .1, ..., last(x;)} must be shifted to
the right. The marginal cost MC of shifting jobs from B a single
time unit to the right is given by

MCB)=) fx— Y o 3)

xeB:G>Ty xeB:Cy<Ex

In consequence:

o If MC(B) > 0, then shifting jobs from the set B to the right

is not beneficial, because the increase in tardiness costs will
be higher than the reduction in earliness costs.
If MC(B) < 0, then shifting jobs from set B to the
right is beneficial. Moreover, MC(B) will still be neg-
ative if the jobs from B are moved up to Q=
min (Clast(x,-)+1 = Puast(x)+1 = S(tast (x;)) last (x) +1)> M1 my) time
units to the right, where m; = minyeg.g,<c 1 (Tx — Cx),
My = MiNkep.c, <k, (Ex —CG), and last(x;) + 1 represents the
job scheduled immediately after job last(x;). This is because
the mentioned shift does not change the early/tardy status
of the jobs from B. For the case in which last(x;) = x,, the
value of ¢ is given by ¢ = min (my, my). Thus, jobs from B
are shifted by ¢ time unites to the right. Consequently, the
following cases may occur:

o If Clast(x,-) +S(last(xi))(last(x,-)+1) +Plast(xl-)+1 = Clast(x,-)ﬂv
then the set B joins the successor block. The set B
and the element last(x;) are updated. Subsequently, the
benefit of shifting jobs from the new set B to the right
(via MC(B) analysis) is determined.

o If Clast(x,-) +S(last(xi))(las[(x,-)+1) +Plast(xl-)+1 < Clast(x,-)ﬂ’
then it is necessary to verify whether shifting jobs from
set B to the right (via MC(B) analysis) is still beneficial.

The algorithm ends when inserting additional idle time in the
sequence X is not beneficial.

The cost incurred by the earliness or tardiness of a job x € I
completed at date Cx can be determined by the following func-
tion:

8x(G) = oy - max {0, Ey — G} + Bx - max {0, G — Ty}

The function gx(Cx + ¢) is a piecewise linear convex function with
respect to ¢ for every x € I, as shown in Wan and Yen [31]. Con-
sider the case that there are I blocks in X, i.e, X =By UB,U...UB,.
Thus, if jobs from the set B; are moved ¢ time units to the right,
then the associated cost function will be given by

Costi(p) =Y &x(G+e) Vje{l, 2, ..., 1}, (4)

XeB;

Table 2

Instance to exemplify the application of ITIA procedure.
Data Setup

Jobs P E T a B 1 2 3 4
1 3 14 15 2 4 0 2 1 2
2 4 2 24 7 9 1 0 2 3
3 4 9 12 7 8§ 1 3 0 1
4 3 5 7 1 4 1 2 2 0

] 7
4 E4+ 6 T4 8 E310 T3 E1 Ti16 18 20 E2

Fig. 1. Initial positioning of the ITIA procedure.
i

il 7
4 E4 6 T4 8 E310 Ts E1 T116 18 20 E2

0 2

Fig. 2. Positioning after one iteration of the second step of the ITIA procedure.
py

i i
4 E1 6 T4 8 E310 T3 E1 Ti 16 18 20 E2

0 2

Fig. 3. Positioning after iteration 2 of the second step of the ITIA procedure.

where Cx+ ¢ is the new completion date for the execution of
job x.

Lemma 1 [5]. The sum of two piecewise linear convex functions is
also a piecewise linear convex function.

Based on Lemma 1, the following can be shown.

Proposition 1 [31]. Costj(¢) is a piecewise linear convex function
with respect to ¢, for every je {1, 2, ..., l}.

Owing to the piecewise linear convex nature of the cost func-
tion, the minimum cost of a block B; occurs at the extreme points
of its function Cost;, ie., at the beginning or at the end of the
time window of one of the jobs in the block. This fact, in con-
junction with Proposition 2, ensures that the presented algorithm
determines the optimal starting times for the given job sequence.

Proposition 2 [31]. The total cost of a given job sequence achieves
its optimal value if each block B; in the sequence reaches its minimum
point, except that B; may have its execution scheduled to start at time
zero.

To illustrate how ITIA works, consider the scheduling problem
of four jobs represented in Table 2. This table shows the processing
time (Py), starting date (Ex), ending date (Ty), cost per earliness unit
(aex), and cost per tardiness unit (8x) of the time window, as well
as the setup time relative to each job x € I.

Given the sequence X = (3, 4, 1, 2), all jobs are scheduled to
start processing as soon as possible, as shown in Fig. 1. Thus, the
sum of penalties resulting from earliness and tardiness is 71 units.

The second step verifies whether inserting idle time before the
execution of each job is beneficial. This procedure is performed it-
eratively, starting with the last job in the sequence (x4 =2) and
ending with the first (x; = 3). Because inserting idle time before
the execution of the job x4 =2 reduces its earliness (MC({x4}) =
—7 < 0), x4 is shifted four time units to the right (Fig. 2). Follow-
ing this shift, the sum of earliness and tardiness penalties is equal
to 43.

Iteration 2 of the second step of ITIA verifies whether the in-
sertion of idle time before the execution of the job x3 =1 is ben-
eficial. Because the insertion of time is advantageous (MC({x3}) =
—2 < 0), x3 is shifted two time units to the right (Fig. 3). Following

B.E Rosa et al./Computers and Operations Research 81 (2017) 203-215 207

] 7
0 2 4 E4 6 T4 8 E310 T3 E1 Ti16 18 20 E2

Fig. 4. Positioning after iteration 4 of the second step of the ITIA procedure.
iy

[7
0 2 4 E4+ 6 T2 8 E310 Ts Ei Ti16 18 20 E2

Fig. 5. Optimal positioning for the sequence X.

this shift, the sum of earliness and tardiness penalties is equal to
39.

Iteration 3 of the second step of ITIA verifies whether insert-
ing idle time before the execution of the job x; =4 is beneficial.
As this insertion of idle time is not beneficial (MC({x,}) =4 > 0),
the ITIA procedure goes to iteration 4. Iteration 4 analyzes whether
inserting idle time before the execution of the first job in the se-
quence (x; = 3) is beneficial. To make this time insertion possi-
ble, the job block (x1,%;) = (3,4) must be shifted to the right.
Because a shift is beneficial (MC({x{,x,}) = -7 +4 = -3 < 0), the
block (x1, x5) is shifted two time units to the right. Following this
shift, the sum of earliness and tardiness penalties is equal to 33.
A new block (x1,x2,%3) = (3,4,1) is then formed (Fig. 4). At this
point, it is necessary to verify whether this new block is in the
optimal position. Because shifting this block to the right is benefi-
cial MC({x1,x2,%3}) = -7+4+0= -3 <0), it is shifted one time
unit to the right (Fig. 5). Following this shift, the sum of earli-
ness and tardiness penalties is equal to 30. Because the inclusion
of more idle time before the first job does not improve the solution
(MC({x1,%3,x3}) = -7 +4+4 =1 > 0), this position is optimal for
the sequence X.

3.1. ITIA complexity analysis

Algorithm 1 presents the pseudo-code for ITIA applied to a se-
quence X = (xq,Xy,...,Xn) of L

It is straightforward to see that the initialization of ITIA, lines
1-3 of Algorithm 1, has a computational complexity of O(n). For
eachie{n,n—1,...,2,1} in the loop in line 4, the computational
cost associated to lines 6, 7, and 8 is O(|B|), where |B| is the car-
dinality of B. The size of the largest possible set B at iteration
iisn—i+1 (e, |[Bj<sn—i+1, Vie{n,n-1,...,2,1}). There-
fore, the computational complexity relating to lines 6, 7, and 8 of
Algorithm 1 is O(n—i+1).

It is also easy to see that the computational cost associated
with lines 10-22 of the ITIA algorithm is O(|B|) =0(n—i+1),
whereas the cost relating to line 23 is O(n). Thus, if mc(i) denotes
the number of times that the “while loop” (lines 9-22) is per-
formed in iteration ie {n,n—1,..., 2,1} of ITIA (i.e., the number
of times that MC(B) < 0O at iteration i), then the complexity of the
ITIA algorithm is

n mc(i)
ofn+> [(n-i+1)+ > (n-i+1)
i=1 j=1

=0 n2+2n:(n—i+1)-mc(i)

i=1

Lemma 2. If mc(i) denotes the number of times that MC(B) < 0 oc-
curs in lines 9-22 of iteration i e {n,n —1,...,2, 1} of the ITIA algo-
rithm, then

Xn:mc(i) <3n-1.

i=1

Algorithm 1: ITIA(n, I, X).

1 Gy < Py
2for i=2,...,ndo
3 ‘ sz’ <~ Cxi—l +S(Xi71)(xi) +Pxi;
end
gfor i=nn-1,...,2,1do
5 if Gy < Ey then
6 last(x;) < last job of the block that contains x;;
7 B <« {x;, X1, ..., last(xp)};
8 MCB) <« > B— > au
xeB: Gx>Tx xeB: Cx<Ex
9 while MC(B) <0 do
10 my < min (T — G);
xeB: Ex<Cx<Tx
1 M < XeBr:ng(LEx (Bx = Go;
12 if last (x;) # x, then
13 © «~
N (Ciage x, 141~ Plast (x; 111 —Slast (x;)) (st (x, 1) M1 ,mz)i
else
14 | @ < min(my, my);
end
15 for x<B do
16 | G=G+e;
end
17 if Ciase(x) + Sttast(x)) last () +1) + Plast(x)+1 = Clast ()41
then
// B joins with the successor block and it
is updated.
18 last (x;) < last job of the block that contains x;;
19 if i < n then
20 | B« {Xi.Xip1. ... last(x)};
else
2 | B« {xa}:
end
end
// MC(B) is recalculated.
2 MCB) <« > fx— Y axu
xeB: G>Tx xeB: Cx<Ex
end
end
end
23 f <Y ax-max (0, Ex — Gy) + By - max (0,Gx — Tr);
xel
24 Return f;

Proof. Given that the shifting of the jobs is only performed to the
right in the ITIA algorithm, the following are the only two possi-
bilities each time that MC(B) < 0O:

(i) Block B is shifted until a job is completed at the first limit
of its respective time window.

(ii) Block B is shifted until it joins with the successor block and
is updated.

Because each job will be at a limit of its time window at most
once, it follows that 2n is an upper bound on the number of times
case (i) occurs (because there are n jobs, and the time window
of each job x € I has two limits, Ex and Ty). On the other hand,
once they are together, two jobs do not separate. Therefore, n — 1
is an upper bound on the number of times case that (ii) occurs,

n
and 2n+ (n—1) =3n—1 is an upper bound on }_ mc(i). O
i=1

208 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

The following is a consequence of Lemma 2:

Xn:(n—i+l)~mc(i) =n-mc(1)+(n—-1)-mc(2) +...
i=1
+2-mc(n—1)+1-mc(n)
mc(1) + mc(2) +...+mc(n—1) + mc(n)

<3.n-1
+mc(1)+mc(2) +...+mc(n—-1)

<3.(n-1)-1

+ mc(1) + mc(2)
—— e ———
<3.2-1
+ mc(1).

———
<3.1-1

Hence,

Xn:(n—i—i—l)-mc(i) fzn:3i—1= w
i=1 i=1

The following proposition summarizes this result.

Proposition 3. The computational complexity of the ITIA algorithm is
o(n?).

Similarly, it can be proved that the complexity of the optimal
timing algorithm (OTA) of Wan and Yen [31] is also O(n?).

4. GVNS applied to the considered problem

This section presents the adaptation of the general variable
neighborhood search (GVNS) metaheuristic [15] that is proposed
in this study to solve SMSPETP. Its pseudo-code is presented in
Algorithm 2. GVNSmax corresponds to the maximum number of

Algorithm 2: GVNS(I, n, f, Ny, No, N3, GVNSmax, VNDmax).

X <« InitialSolution(l, n);
fr < X,

Iter < 0;

while Iter < GVNSmax do
Iter < Iter + 1;

k< 1;

while k <3 do
Randomly generates a neighbor X’ € Ni(X);

X" < VND(X’, f,N;y, Ny, N3, VNDmax); // See Section
4.5

if f(X”) < f(X) then

// See Section 4.2
// See Section 4.4

Iter <~ 0;
else
| k< k+1;
end
end
end
Return f*;

iterations without an improvement in the best known solution,
which sets the stopping criterion of the algorithm. In the follow-
ing subsections, the GVNS algorithm is detailed.

4.1. Solution representation

A solution for SMSPETP with n jobs is represented by a se-
quence X of length n. Each index i=1, 2, ..., n indicates the
job to be executed at position i of X. For example, in the sequence
X=(5,1, 2, 6, 4, 3), job 5 is the first to be executed, and job 3
is the last.

4.2. Initial solution

An initial solution for SMSPETP is constructed by applying the
earliest due date (EDD) heuristic. EDD is a greedy constructive
heuristic, often applied in the literature to scheduling problems
with distinct due dates [26]. The proposed construction begins
with an empty execution subsequence (i.e., no jobs are in the se-
quence). Iteratively, the job with the earliest starting date for its
time window of those not yet sequenced is inserted at the end of
the current subsequence. Ties are broken randomly. The construc-
tion procedure is stopped when no more jobs lie outside of the
execution sequence.

4.3. Neighborhood of a solution

To explore the solution space, three types of movements are
considered:

(i) pairwise interchange;
(ii) one job reallocation;
(iii) subsequence reallocation.

These movements define the neighborhoods N;, N,, and Ns, re-
spectively, described below.

4.3.1. Neighborhood N;

An example of a neighbor of X = (5, 3, 2, 1, 4, 6) in the
neighborhood Ny is X’ = (5, 4, 2, 1, 3, 6). Note that X’ is ob-
tained from X by swapping the execution positions of jobs 3 and
4.

For a given sequence of n jobs, the position of each job can
be swapped with that of the remaining n — 1 jobs. On the other
hand, swapping the position of the ith job in the sequence with
that of the jth job is equivalent to swapping the position of the jth
job with that of the ith job, for every i, j € {1, 2,..., n}. Therefore,
there are n(n — 1)/2 different neighbors in respect to the neighbor-
hood Nj.

4.3.2. Neighborhood N,

The solution X’ = (5, 2, 1, 4, 3, 6) is an example of neigh-
bor of X = (5, 3, 2, 1, 4, 6) in the neighborhood N;. In fact, X’
is obtained from X by reallocating job 3 (which is in the second
position in X) to the fifth position.

Given a sequence of n jobs, each one may be reallocated to n —
1 distinct positions. In addition, reallocating the job from position
i to position i+ 1 is equivalent to reallocating the job in position
i+ 1 to position i, for every i € {1, 2, ..., n— 1}. Therefore, there
are (n—1)? distinct neighbors in the neighborhood N;.

4.3.3. Neighborhood N3

The solution X’ = (1, 4, 5, 3, 2, 6) is in neighborhood the N3
of X = (5, 3, 2, 1, 4, 6). This solution is obtained by reallocating
the subsequence < 5,3,2 > with the three consecutive jobs in the
first three positions of X to after job 4.

Given a sequence of n jobs, there are n — k + 1 distinct subse-
quences of k jobs for every k € {1,2,---,n}. Each of these subse-
quences may be reallocated to n — k distinct positions in the se-
quence. In addition, reallocating a subsequence with k; jobs to
k, successor positions is equivalent to reallocating a subsequence

B.E Rosa et al./Computers and Operations Research 81 (2017) 203-215 209

with k, jobs to k; predecessor positions, for every k; and k, €
{1, 2, ..., n} and ky + k, < n. Thus, there are (n3 —n)/6 distinct
neighbors with respect to the neighborhood Ns.

In order to prevent returning to previously analyzed neigh-
bors and to reduce the computational cost, all previous moves are
avoided in the computational implementation of the GVNS algo-
rithm. Furthermore, the chosen order for the exploration of neigh-
borhoods explores increasingly distant neighborhoods of the cur-
rent incumbent solution in terms of computational complexity, as
proposed by Hansen et al. [15].

4.4. Evaluation of a solution

Any job sequence can produce a feasible solution to SMSPETP
by means of an optimal positioning algorithm (e.g., the ITIA or OTA
algorithms - see Section 3).

4.5. Variable neighborhood descent

The local search used in the GVNS algorithm is performed using
the variable neighborhood descent (VND) procedure [23]. In this
study, VND uses the following sequence of local searches:

e LS1: Random descent using neighborhood Nj.
e LS2: Random descent using neighborhood N,.
o LS3: Random descent using neighborhood Nj.

In the first local search (LS1), two jobs are randomly chosen,
and their positions in the sequence are swapped. If the new se-
quence gives an improved solution, then it is accepted and be-
comes the current solution. Otherwise, another random swap in
the current solution is evaluated. LS1 ends when VNDmax succes-
sive swaps occur without an improvement in the current solution,
where VNDmax is a parameter of the procedure. When LS1 fin-
ishes, the next local search (LS2) is applied.

In the local search LS2, a job of the sequence and a new posi-
tion for this job are randomly chosen. If the new sequence gives
a better solution, then it becomes the current solution, and VND
switches back to the local search LS1. Otherwise, another random
reallocation in the current solution is evaluated. LS2 is interrupted
when VNDmax successive reallocations occur without an improve-
ment in the current solution. In this case, the next local search
(LS3) is conducted.

In the local search LS3, a subsequence of jobs of the sequence
and a new position for this subsequence are randomly chosen. The
subsequence size is also chosen randomly in the interval [1, n —
1]. If the new sequence gives an improved solution, then it be-
comes the current solution, and VND switches back to the local
search LS1. Otherwise, another random subsequence reallocation in
the current solution is evaluated. LS3 is interrupted after VNDmax
successive subsequence reallocations occur without an improve-
ment in the current solution. In this case, VND is stopped, and the
best solution is returned.

Once again, the three neighborhoods of the incumbent solution
are explored in order to visit increasingly distant neighbors.

5. Implicit enumeration

In this section, an exact algorithm based on implicit enumer-
ation (IE) is proposed to solve SMSPETP-SIS. According to Janiak
et al. [16], there is no specific exact optimization algorithm for
solving SMSPETP-SIS. Let I be the set of n jobs that must be sched-
uled. Let UB be a known upper bound on the problem, which can
be obtained heuristically. During the enumeration process, a node
6 corresponds to a structure that stores a subsequence of k jobs
(0 < k < n) as well as the set of n—k jobs that are outside of

the subsequence, which are represented by seq(§) and nseq(§), re-
spectively. Let L be the list of nodes to be investigated. The job
sequence X is evaluated by the function f given by Eq. (1), as in
Section 4.4.

Let 8y be the node such that seq(dy) = @ and nseq(8p) = I. The
[E algorithm is initialized by inserting the node § as the only node
of L. Thereafter, each IE iteration consists of the following steps:

Step 1: Let § be the last node inserted into L.

Step 2: The node § is removed from L.

Step 3: If nseq(8) = @, then the subsequence seq(8) corresponds
to a complete solution. In addition, if f{seq(§)) < UB then
the value of UB is updated to UB = f(seq(§)).

Step 4: If nseq(8) # @, then for each job x € nseq(8) it is verified
whether the subsequence seq(é)U{x} obtained by insert-
ing the job x at the end of the subsequence seq(§) vio-
lates the optimality conditions (presented in Section 5.1).
If these conditions are not violated, then the node §son
is inserted into L, where seq(dson) =seq(8) U {x} and
nseq(8son) = nseq(d) \ {x}.

The IE algorithm is stopped when L = &, and the final value of
UB corresponds to the optimal solution of the problem.

5.1. Optimality conditions

For ease of notation, let seq(§) =B = (x1,Xy,---,Xy) with 1 <
u < n denote a subsequence of jobs in I. An optimal positioning of
a subsequence B is an optimal scheduling of the jobs (in B) where
the order of the jobs is conserved. Furthermore, let Xg denote a
sequence of all jobs in I that begins with the subsequence B.

Proposition 4. If f{B) > UB, where UB is a given upper bound on the
problem, then there is no optimal scheduling of jobs in I that contains
the subsequence B.

Proof. This result is straightforward, because the inclusion of jobs
in B does not decrease the total cost of the jobs in B. O

Lemma 3. If CB is the completion time of the job x (with x in B) in
an optimal positioning of the subsequence B, then there is an optimal
positioning of Xg in which x is completed on time, i.e., C))((B <Ck

Proof. Shifting x to the right does not decrease the total cost of
the jobs in B, and moreover, this also does not reduce the sum of
the penalties associated with the jobs outside of B. On the other
hand, although shifting x to the left does not reduce the cost of B,
there is a possibility that the sum of the penalties associated to the
jobs outside of B is reduced, so that the cost of Xj is also reduced.
Therefore, there exists an optimal positioning of Xz in which Cffs <
s o

Corollary 1. If there is an optimal positioning of B in which all jobs
are performed consecutively without idle times inserted and the first
job starts at time O, then there is an optimal positioning of Xp in
which CX® = CB, where CX® and CB are the completion times of x in
Xg and B, respectively.

Proof. Note that in this case, C5 is given by the sum of the pro-
cessing times of the jobs sequenced before x. Therefore, the proof
differs from that of Lemma 3 only by the fact that it is now not
possible to shift the job x to the left. O

Proposition 5. If there are two consecutive jobs x and y in B such
that ayPy < axPy and C8 + P, = Cf < min(Ey, Ey) in an optimal po-
sitioning of B, then there is no optimal scheduling of jobs in I that
begins with the subsequence B.

Proof. Suppose that there is an optimal sequence Xg. By Lemma 3,
there is an optimal completion time of job y in an optimal po-

210 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

sitioning of Xz such that C;(B < min(Ey, Ey). Thus, the amount of
penalties associated to the jobs x and y is given by

ax- (B —G*) +ay - (B, — G,
ie.,
oy (Ex—CP+P) +ay - (E, —G). (5)

Let X; be the sequence obtained from Xp by just swapping the pro-

cessing order of the jobs x and y. Then, there exists a positioning of
! ! ! !

X3 in which CfB :C;(B + Py, Cff‘* = ;fB, and CfB =C® Vzel\ {x. y).

Therefore, the amount of penalties associated to the jobs x and y

is given by

- (Be—CF) +ay - (Ey —),
ie.,
oy (Ex—C®) +ay - (Ey —CF +PR). (6)

As the completion times of the remaining jobs are the same in the
positioning of Xp and X;. fiXg) and f(X}) are such that

fXe) — f(Xg) = (5) — (6) = oxPy — oty Px > 0.

This contradicts the fact that Xg is an optimal sequence of the jobs
inl. O

Proposition 6. If there exists an optimal positioning of B in which all
jobs are performed consecutively without idle times inserted, the first
job starts at time 0, and there are two adjacent jobs x and y such that
cost; > cost, where

cost; = oxex + Putx + ayey + Byt and
cost; = aymax(0, Ey — CZ — B)) + B, max(0,C5 + P, — Ty)
+aymax(0, E, — G + P) + B, max(0,C; — K —Ty),

then there is no optimal scheduling of jobs in I that begins with the
subsequence B.

Proof. Suppose that there is an optimal sequence Xz. By
Corollary 1, there are optimal completion times for the jobs x and
y such that C¥* =8 and C;(B = C}. Consequently, the amount of
penalties associated to the jobs x and y is given by cost;. Let X},
be the sequence obtained from Xp by just swapping the process-
ing order of the jobs x and y. Then, there is a positioning of X} in

which Ci(B = CfB, Vz eI\ {x, y}. It is easy to see that the amount
of penalties associated to the jobs x and y is given by cost, in this
positioning of X}. Thus, f{Xg) and f(X}) are such that

f(X) — f(X}) = cost; — cost; > 0.

This contradicts the fact that Xp is an optimal sequence of the jobs
inl. O

To verify whether a given subsequence of jobs B =seq(d) =
(X1,%p,--+,Xy) €6 with 1 < u < n can be contained in an opti-
mal sequence (i.e., if it does not violate the optimality conditions),
the value of f{seq(§)) is calculated, and the completion times of the
jobs in seq(8) are determined. This procedure is performed by ap-
plying ITIA (see Section 3) in seq(§).

Based on the Propositions 4, 5, and 6, the following corollary
highlights the above results.

Corollary 2. The subsequence seq(8) violates the condition of opti-
mality if one of the following cases occurs:

(i) flseq(8)) > UB.
(ii) There are two consecutive jobs x and y in seq(§), such that
ayPx < axPy and G4 4 p, = G < min(Ex, Ey).
(iii) All jobs in seq(8) are performed consecutively without idle
times inserted, the first job starts at time 0 and there are two
adjacent jobs x and y that satisfy the condition of Proposition 6.

Algorithm 3: IE(], n, f{.), UB).
seq(8g) < ¥;
nseq(8g) < I,
while L+ ¢ do
8 < the last node inserted in L;
L« L\ {8}
if nseq(5) = ¢ then
if f(seq(d)) < UB then
| UB < f(seq(8));
end
else
for jenseq(d) do
if the subsequence seq(§) U {j}
does not violate the optimality condition then
seq(8son) < seq(8) U {j};
nseq(Sson) < nseq(s) \ {j};
L« LU {8son};
end
end
end
end
Return UB;

Algorithm 3 describes the IE procedure applied to SMSPETP-
SIS. In this procedure, the entry UB corresponds to a known upper
bound for the problem. This value is updated using the IE proce-
dure, so that the returned value UB is the optimal solution for the
problem. In the present work, the initial upper bound is provided
by the GVNS algorithm, as presented in Section 4.

6. Computational results

The ITIA, GVNS, and IE algorithms presented in Sections 3, 4,
and 5, respectively, were implemented using the C++ language
with NetBeans IDE 7.4 as the compiler.

The experiments were performed on a computer with Intel ®
Core ™{7-3632QM CPU, 2.20 GHz, 8GB of RAM, and the Ubuntu
13.10 operating system. Although the processor of this device has
more than one core, the algorithms are not optimized for multi-
processing.

The instances used to test the algorithms are described in
Section 6.1. In Section 6.2, the results associated to the applica-
tion of GVNS, the IE algorithm, and the CPLEX solver on instances
of SMSPETP-SIS containing up to 20 jobs are presented. The algo-
rithms ITIA and OTA are also compared. OTA is the only algorithm
found in the literature that is able to determine the optimal com-
pletion date for each job in a given execution sequence of SM-
SPETP. On the other hand, in Section 6.3 the best heuristic algo-
rithm from Section 6.2, namely GVNS using ITIA, is compared with
an algorithm from the literature.

6.1. Instance description

In order to evaluate the algorithms GVNS, ITIA, and IE, in-
stances were generated using the methodology of [31] and [27].
This methodology is described below.

For each job x e I, the processing time Px, cost per tardiness
unit By, and cost per earliness unit «y are randomly generated in-
tegers within the intervals [1, 40], [1, 10], and [1, Bx], respectively.
The time window center of job x is a random integer number
within the interval [(1 — TF — @)TPT, (1-TF+ @)TPT}, where:

o TPT is the total processing time of all jobs.

B.E Rosa et al./Computers and Operations Research 81 (2017) 203-215 211

Table 3
Comparison of the results obtained with configurations GVNS/OTA, IE/OTA,
GVNS/ITIA, IE/ITIA, and CPLEX (average times in seconds over 16 instances).

OTA ITIA CPLEX
Jobs GVNS IE GVNS IE

08 0.08 0.02 0.02 0.01 2.62
09 0.14 0.09 0.02 0.04 18.91
10 0.22 0.44 0.04 0.18 183.67
11 0.35 2.61 0.05 0.97 2085.10
12 0.54 19.45 0.07 6.12 -

13 0.76 212.35 0.09 66.76 -

14 1.07 1126.28 0.13 277.56 -

15 1.40 6594.25 0.19 1799.71 -

16 2.07 - 0.23 - -

17 2.80 B 0.29 B -

18 3.47 - 0.38 - -

19 4.56 - 0.43 - -

20 6.33 - 0.56 - -

o TF is the tardiness factor.
e RDD is the relative range of the time windows.

The time window width is an integer number that is randomly
selected in the interval [0, %T], where n is the number of jobs to
be scheduled. For any distinct jobs x,y € I, the setup time Syy is
an integer number that is randomly selected in the interval [5, 15].
The setup times are not necessarily symmetrical. Sets of instances
with 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, and 75
jobs were generated. The values 0.1, 0.3, 0.5, and 0.8 were used for
TF, and 0.4, 0.7, 1.0, and 1.3 for RDD. Thus, there are 16 instances
in each set, totaling 272 instances. Whenever the setup times for
a generated instance did not satisfy the triangle inequality given
by

Sy < St + P+ Sy, X#Y,

the instance was discarded, and another was generated with the
same values for TF and RDD. Therefore, all instances from the
present database satisfy the triangle inequality in relation to the
setup times. These instances, and all of the computational results,
are available at http://www.decom.ufop.br/prof/marcone/projects/
SMSPETP.html.

Vxy zel, x#zandy#z (7)

6.2. Results for instances of up to 20 jobs for SMSPETP-SIS

This section presents the computational results associated to
the application of the GVNS and IE algorithms, as well as the
CPLEX solver, for solving SMSPETP-SIS. An initial upper bound on
the objective function value of the problem used in the IE algo-
rithm is provided by the GVNS procedure. On the other hand, the
CPLEX solver is applied to the mathematical programming model
of Gomes Janior et al. [13]. This model was implemented with the
C++ Concert Technology of the IBM ILOG CPLEX Optimization Stu-
dio 12.5.1 optimizer. The solver was configured to use only one
thread. Other parameters remained unchanged.

The instances used in this set of tests each involve up to 20
jobs, on account of the prohibitive computational cost required by
the exact algorithms for solving larger instances. Because the IE
algorithm is only applied to solve SMSPETP-SIS, the setup times of
each instance were disregarded in this set of tests.

The GVNS parameters were empirically set to the values GVNS-
max = VNDmax = 4n, where n is the total number of jobs to be
scheduled. The effect of these parameters on the GVNS algorithm
is presented in Section 6.3. Each job sequence generated by the
GVNS is evaluated by both the ITIA and OTA [31] algorithms in or-
der to compare the efficiency of these procedures. Considering the
stochastic nature of GVNS, each instance is solved 30 times.

Table 3 presents the average times obtained by the applica-
tion of the GVNS and IE algorithms and the CPLEX solver in in-

stances of up to 20 jobs. In this table, the first column indicates
the number of jobs in each set of instances. The second and third
columns show the mean times, in seconds, required for OTA to
evaluate each job sequence generated by the GVNS and IE algo-
rithms, respectively. Similarly, the fourth and fifth columns show
the required computational times when using the ITIA algorithm.
Finally, the last column presents the mean time required by CPLEX
to solve the instances of each set. For instances with 12 jobs or
more, the run time using the CPLEX solver is prohibitive. Similar
behavior is observed when applying the IE algorithm to solve in-
stances with more than 15 jobs. Therefore, Table 3 does not include
these results.

According to Table 3, the average time required by GVNS with
ITIA (GVNS/ITIA) is always lower than the respective average time
required by GVNS with OTA (GVNS/OTA). For example, for the set
of 20 jobs the average time required by GVNS/OTA is almost 11
times higher than that required by GVNS/ITIA. For instances with
up to 11 jobs, GVNS is able to determine the optimal solutions ob-
tained by CPLEX within significantly lower computational times,
regardless of the algorithm used to evaluate the generated se-
quences. For the instance set of 11 jobs, GVNS/ITIA requires an av-
erage time of 0.05 s, and CPLEX requires 2085.1 s.

Table 3 also indicates that the average times required by CPLEX
are significantly higher than those required by IE. For the instance
set of 11 jobs, IE/ITIA requires less than 1 s on average, whereas
CPLEX requires 2085.1 s. The average times required by IE/ITIA are
always lower than those required by IE/OTA. For example, for the
set of 14 jobs the average time required by IE/OTA is more than
four times greater than that of IE/ITIA.

If the processing time had been limited to one hour, then
IE/OTA would have been unable to solve one of the instances with
14 jobs and six of the instances with 15 jobs. Under the same con-
ditions, only three of the instances with 15 jobs would not have
been solved by IE/ITIA.

Although GVNS is a heuristic procedure, it always determines
the same solution in all of the runs for each instance of SMSPETP-
SIS involving up to 20 jobs. Furthermore, GVNS finds the optimal
solutions for all instances where such solutions are known (i.e., in-
stances with up to 15 jobs).

6.3. Results for instances of up to 75 jobs for SMSPETP

For instances of SMSPETP involving between eight and 75 jobs,
the GVNS/ITIA algorithm is compared with the best version of the
AGA algorithm from Ribeiro et al. [28]. GVNS is employed with
ITIA because the ITIA algorithm is faster than OTA in determin-
ing the optimal starting dates of the job sequence, according to
Section 6.2.

For the comparison with the AGA algorithm, the parameters
GVNSmax and VNDmax of the GVNS/ITIA algorithm are executed
with the values GVNSmax = VNDmax = 3n, GVNSmax = VNDmax
= 4n, and GVNSmax = VNDmax = 5n, where n is the number of
jobs to be scheduled. These parameters characterize the stopping
criteria of GVNS and VND, respectively.

In Section 6.3.1, statistical tests are presented to compare GVNS
with AGA. In Sections 6.3.2 to 6.3.4, the results achieved by these
algorithms are compared. In Section 6.3.2, the number of times
that AGA achieved a better performance than GVNS is described.
In Section 6.3.3, the number of times that GVNS obtained a better
performance than AGA is considered. In Section 6.3.4, these algo-
rithms are compared in relation to the relative average deviation
(RAD) metric. Finally, in Section 6.3.5 the average times required
by these algorithms are compared.

6.3.1. Hypothesis tests
Considering the stochastic nature of the algorithms, each one
is applied 30 times to each instance. On the other hand, instances

http://www.decom.ufop.br/prof/marcone/projects/SMSPETP.html

212 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

with 75 jobs are only solved 10 times per algorithm, on account of
the high computational cost.

For each instance, the results obtained by GVNS with the three
parameter values are compared with those found by AGA. The
comparison is performed by using two one-way hypothesis tests
with a significance level of y = 0.05. The first test is a paramet-
ric hypothesis test for two independent samples [24], whereas
the second is a permutation test [6]. Permutation tests are non-
parametric statistical methods, i.e., they do not require that sam-
ples come from populations with normal distributions [24].

For the two algorithms A; and A,, the following hypotheses
(null and alternative) are formulated to compare the averages of
their solutions on a given instance:

o Null hypothesis (Hp): The averages of the solutions obtained us-
ing the algorithms A; and A, are equal.

o Alternative hypothesis (H;): The average of the solutions ob-
tained using algorithm A; is lower than the average of solutions
obtained using algorithm A,.

Therefore, the null hypothesis states that there is no significant
evidence that the average of the solutions obtained by algorithm
A, is lower than the average of the solutions obtained by algorithm
A,. Conversely, rejecting the null hypothesis and accepting the al-
ternative hypothesis means that within the adopted significance
level, there is significant evidence that the solutions obtained by
algorithm A; are better on average than the solutions obtained by
algorithm A,.

The permutation test is based on Carrano et al. [6], and is de-
scribed in Algorithm 4. In this algorithm, Ay = (a1, ay,...,an,) and
Ay = (b1, by, ..., bn,) are vectors that store the solutions obtained
by algorithms A; and A,, respectively, as applied to a given in-
stance. The significance level is y, with 0 < y < 1.

Algorithm 4: Permutation test(A, Ay, ¥).

D) n
d— - b—+>a;

2iq tici
V < (ay,ay,...,an;, b1, by, bn,);

fori=1,2,...,500 do
V’ « the vector V shuffled;

1 ny 1 np+nq
wieEng——l > v
1 J=np+1
end

Puaiue(d) < P(W <d) ; // Probability that W is smaller
than d.

if pyae(d) > 1 —y then

| reject Hy and accept Hy;

end

6.3.2. AGA x GVNS

First, in order to verify the number of times that AGA achieved
a better performance than GVNS the hypothesis tests are per-
formed with the combination of algorithms given by AGA x GVNS.
The rejection of the null hypothesis with this combination indi-
cates that the average solution of AGA is better than the average
solution of GVNS (with a significance level of 0.05).

In Table 4, the columns “Parametric Test” and “Permutation
Test” present a summary of the results obtained by applying these
hypothesis tests to the solutions of each instance. The first column
indicates the number of jobs in each set of instances. The columns
“GVNS/3n, ” “GVNS/4n, ” and “GVNS/5n” indicates the number of
times that the null hypothesis is rejected when applying the cor-
responding hypothesis tests with the GVNS parameter values set as
3n, 4n, and 5n, respectively.

Table 4
Number of times AGA is better than GVNS.

Parametric test Permutation test

Jobs GVNS/3n GVNS/4n GVNS/5n GVNS/3n GVNS/4n GVNS/5n
08 0 0 0 0 0 0
09 0 0 0 0 0 0
10 0 0 0 0 0 0
1 0 0 0 0 0 0
12 1 0 0 0 0 0
13 0 0 0 0 0 0
14 2 0 0 2 0 0
15 1 1 0 1 0 0
16 1 0 0 0 0 0
17 2 1 0 2 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 3 1 1 3 1 0
30 7 3 1 8 2 1
40 8 0 0 8 0 0
50 6 1 0 5 1 0
75 1 0 0 2 0 0
Total 32 7 2 31 4 1

According to Table 4, the hypothesis tests (the permutation and
parametric tests) obtained similar results. Regardless of the param-
eter values used in GVNS, the null hypothesis is not rejected in
any of the comparisons involving instances of up to 11 jobs. For
the other sets of instances, as the GVNS parameter values increase
the number of times that the average solution obtained by AGA
is better than that obtained by GVNS decreases, in both hypothesis
tests. For example, in the 16 instances with 50 jobs, the parametric
test indicates that AGA is better than GVNS/3n in six instances, and
better than GVNS/4n in just a single case. For instances with 75
jobs, when AGA is compared with GVNS/3n the permutation test
indicates that the null hypothesis should be rejected in only two
of the 16 instances. With the GVNS parameters fixed to 4n or 5n,
there is no significant evidence that the average solutions of AGA
are better than the corresponding average solutions of GVNS.

Finally, when the GVNS parameters are fixed to 5n, the para-
metric and permutation tests indicate that the null hypothesis
should be rejected a total of two and one times, respectively, in
relation to all instances of all sets.

6.3.3. GVNS x AGA

The hypothesis (parametric and permutation) tests are used to
verify the number of times that GVNS obtained a better average
solution than AGA. These tests are conducted using a combination
of algorithms in the form GVNS x AGA. Thus, rejection of the null
hypothesis indicates that there is significant evidence that the av-
erage solution of GVNS is better than that of AGA (with a signifi-
cance level of 0.05).

The columns “Parametric Test” and “Permutation Test” of
Table 5 summarize the results when the hypothesis tests are ap-
plied to the solutions of each instance. Note that in this table, all
columns have the same meanings as those in Table 4.

Table 5 shows that the hypothesis (parametric and permuta-
tion) tests return similar results. For the instances with 11 jobs,
the parametric hypothesis test indicates that GVNS obtains a better
average solution than AGA for one instance when the GVNS param-
eter values are set to 4n or 5n. Similar behavior can be observed
in the instance sets with 13, 15, 16, and 17 jobs, respectively. For
instance sets with less than 20 jobs, the permutation test rejects
the null hypothesis for only a single instance (with 13 jobs and
GVNS parameter values set to 4n or 5n). In other instances, as the
GVNS parameter values increase, the number of times that both
hypothesis tests show that the average solution of GVNS is bet-
ter than that of AGA increases. For the set of 16 instances with 75

B.E Rosa et al./Computers and Operations Research 81 (2017) 203-215 213

Table 5 Table 6
Number of times that GVNS is better than AGA. Results of the hypothesis tests with the RAD metric.

Parametric test Permutation test Comparison Conclusion

Jobs GVNS/3n GVNS/4n GVNS/5n GVNS/3n GVNS/4n GVNS/5n Parametric test Permutation test

08 0 0 0 0 0 0 GVNS/3n x AGA No reject Hy No reject Hy

09 0 0 0 0 0 0 GVNS/4n x AGA No reject Hy Reject Hy

10 0 0 0 0 0 0 GVUNS/5n x AGA Reject Hp Reject Hp

1 0 1 1 0 0 0

12 0 0 0 0 0 0

13 0 1 1 0 1 1

4 0 0 0 0 0 0 Table 7. . N lorithms (i

15 0 0 1 0 0 0 Average times required by the AGA and GVNS algorithms (in seconds).

16 0 1 1 0 0 0 # Average time

17 1 1 1 0 0 0

18 0 0 0 0 0 0 Jobs GVNS/3n GVNS/4n GVNS/5n AGA

19 0 0 0 0 0 0

20 1 3 3 0 3 4 08 0.01 0.01 0.02 0.54

30 0 2 - 0 5 6 09 0.01 0.02 0.03 0.67

40 0 2 9 0 5 3 10 0.02 0.03 0.05 0.84

50 0 6 10 0 6 10 1 0.03 0.04 0.07 1.06

75 0 4 1 0 4 1 12 0.04 0.06 0.10 143

13 0.06 0.09 0.13 1.87
Total 2 21 45 0 18 40 14 0.08 013 019 218
15 0.11 0.18 0.26 2.95

. . 16 0.13 0.22 0.32 3.90
jobs each, both of the hypothesis tests suggest that the average so- 17 017 027 0.42 479
lution of GVNS with parameter values set to 4n is better than that 18 0.21 0.33 0.50 5.88
of AGA in four instances, and that the average solution of GVNS 19 0.26 0.43 0.63 6.96
with parameter values set to 5n is better than that of AGA for 11 gg ggg g'gg g'?g 53'(9)(53
1nstapces. Finally, GVNS/5n o})talns a better average solution tha.n 20 3.87 1455 20,49 215.94
AGA in a total of 45 and 40 instances according to the parametric 50 27.07 42.76 61.62 655.92
and permutation tests, respectively. 75 195.35 306.33 461.46 5213.14

The comparisons of results presented in Tables 4 and 5 indi-
cate that the hypothesis (parametric and permutation) tests sug-
gest that AGA is more often better than GVNS/3n. However, when
considering GVNS/4n or GVNS/5n, this scenario is reversed. The
most significant difference occurs when the GVNS parameter val-
ues are set to 5n. In this case, the parametric hypothesis test indi-
cates that AGA determined better average solutions than GVNS in
two instances, whereas the permutation test indicates the same for
only one instance. The same hypothesis tests suggest that GVNS/5n
is better than AGA in 45 and 40 instances for the parametric test
and permutation tests, respectively.

6.3.4. Analysis of the relative average deviation

In order to determine which of the algorithms provides a better
quality of solutions, the hypothesis (parametric and permutation)
tests are also applied using the relative average deviation (RAD)
metric. Given an instance i and an algorithm A, the RAD of solu-
tions of A for the instance i, denoted RAD‘:‘ is calculated as follows:

RAD — fAf;f (8)

In this equation, fl.A represents the average value of the solutions
found by algorithm A for the instance i, and f; is the value of the
best known solution for this instance.

For the considered instances, the value adopted for f;* corre-
sponds to the best solution found for the instance i using the AGA
algorithm of Ribeiro et al. [28]. Note that the lower the value for
RAD{* the better the quality of the solutions obtained by algorithm
A for instance i.

The following hypotheses (null and alternative) are developed
to compare the average RAD values of the GVNS and AGA algo-
rithms:

o Null hypothesis (Hg): The average RAD of GVNS is equal to the
average RAD of AGA.

o Alternative hypothesis (H;): The average RAD of GVNS is lower
than the average RAD of AGA.

Based on this metric, accepting the null hypothesis means that
there is no significant evidence that the average of the solutions
found by GVNS is better than the average of those found by AGA.
In contrast, rejecting the null hypothesis and accepting the alterna-
tive hypothesis means that there is sufficient evidence to state that
the average solution obtained by GVNS is better than that obtained
by AGA (with a significance level of 0.05).

Table 6 presents the conclusions of the hypothesis (parametric
and permutation) tests with the RAD metric. GVNS/3n, GVNS/4n,
and GVNS/5n represent the applications of GVNS with the parame-
ter values set to 3n, 4n, and 5n, respectively. This table shows that
the parametric hypothesis test does not reject the null hypothesis
for GVNS/3n and GVNS/4n. Conversely, these tests suggest that the
average solution for GVNS/5n is of a higher quality than that of
AGA. The permutation test only does not reject Hy when the GVNS
parameter values are set to 3n. This indicates that according to this
test, when the GVNS parameter values are set to 4n or 5n, GVNS
obtains a better average solution than AGA.

6.3.5. Comparisons in relation to required times

Table 7 presents the average times required (in seconds) by
GVNS and AGA for each set of instances. In this table, the first col-
umn indicates the number of jobs for each instance set. The aver-
ages are relative to the 30 applications of the algorithms for each
instance. The values obtained with the GVNS parameter values set
to 3n, 4n, and 5n are presented.

Table 7 indicates that the average time required by GVNS is di-
rectly related to the parameter values of the algorithm. This occurs
because the average time increases whenever the GVNS parame-
ter values increase. A comparison of the average times required
by AGA with the corresponding average times required by GVNS
shows that the time required by AGA is significantly higher, re-
gardless of the parameter values used for GVNS. Although GVNS/5n
required a higher computational time than other settings of GVNS,

214 B.E. Rosa et al./Computers and Operations Research 81 (2017) 203-215

AGA required average times that were still over 10 times higher
than this setting for all instance sets.

7. Conclusions

This paper has addressed the single machine scheduling prob-
lem with distinct time windows and sequence-dependent setup
times (SMSPETP). The objective is to minimize the total weighted
earliness and tardiness. This problem involves determining the job
execution sequence and the starting times of all jobs in the se-
quence, considering the possibility of inserting idle time between
the executions of consecutive jobs. This study also considered the
special case with a sequence-independent machine setup time,
which is denoted by SMSPETP-SIS.

The main contribution of this study is to propose a new O(n2)
algorithm, named ITIA, for determining the optimal times for the
completion of each job in a given sequence. In addition, the de-
velopment of an implicit enumeration algorithm (IE) and a gen-
eral variable neighborhood search algorithm (GVNS) also constitute
important contributions. The IE algorithm is an exact algorithm,
which is only valid for solving SMSPETP-SIS based on theoretical
results developed for this problem. Because no specific exact algo-
rithm for solving SMSPETP-SIS is present in the literature, the re-
sults obtained by EI can be used as a benchmark in future works.
On the other hand, GVNS is a heuristic algorithm that can be ap-
plied to solve larger SMSPETP instances. Each sequence generated
by the GVNS and IE algorithms is evaluated using ITIA.

Computational experiments performed on a set of instances
generated according to the standard parameters from the literature
indicated that ITIA is more efficient than the OTA algorithm from
Wan and Yen [31]. This is because of the lower times required by
IE and GVNS using ITIA rather than OTA.

The IE algorithm is able to solve SMSPETP-SIS in a much lower
time compared with CPLEX applied to the formulation of mixed in-
teger programming from Gomes Jtnior et al. [13]. Conversely, the
GVNS algorithm is robust, finding the optimum solution for all in-
stances with known optimum solutions and zero variability in the
remaining cases.

Owing to the better performance achieved by ITIA compared
with OTA in the first set of tests, GVNS combined with ITIA
(GVNS/ITIA) was compared with the best version of the AGA al-
gorithm from Ribeiro et al. [28], in SMSPETP instances with up to
75 jobs. Two hypothesis tests, a parametric test and a permutation
test, demonstrate that GVNS/ITIA is able to determine better aver-
age solutions than AGA in a significant number of cases. For exam-
ple, in instances with 75 jobs, GVNS/ITIA performs better in almost
70% of the instances. These hypothesis tests indicate that with the
parameter values set to 5n, where n is the number of jobs to be
scheduled, the GVNS/ITIA algorithm performs better than AGA in
relation to the relative average deviation metric. In addition, the
average time required by AGA is always 10 times greater than the
corresponding time required by GVNS/ITIA.

Regarding future research, the study of new optimality condi-
tions for solutions of SMSPETP-SIS is recommended. In this case, it
is expected that the computational time required for the IE algo-
rithm would be reduced, with the consequence of allowing the res-
olution of larger instances. Furthermore, it is proposed to study op-
timality conditions for solutions of SMSPETP, in order to apply the
IE algorithm in problems with sequence-independent setup times.

Acknowledgements

The authors would like to thank the Minas Gerais State Re-
search Foundation (FAPEMIG), the National Council of Technolog-
ical and Scientific Development (CNPq), the Minas Gerais Federal
Center of Technological Education (CEFET-MG), and the Federal

University of Ouro Preto (UFOP) for supporting the development
of the present study.

References

[1] Allahverdi A. The third comprehensive survey on scheduling problems with
setup times/costs. Eur] Oper Res 2015;246(2):345-78. doi:10.1016/j.ejor.2015.
04.004.

[2] Allahverdi A, Gupta JND, Aldowaisan T. A review of scheduling re-
search involving setup considerations. Omega 1999;27(2):219-39. doi:10.1016/
S0305-0483(98)00042-5.

[3] Allahverdi A, Ng C, Cheng T, Kovalyov MY. A survey of scheduling problems
with setup times or costs. Eur] Oper Res 2008;187(3):985-1032. doi:10.1016/
j.ejor.2006.06.060.

[4] Baker KR, Scudder GD. Sequencing with earliness and tardiness penalties: a
review. Oper Res 1990;38(1):22-36. doi:10.1287/opre.38.1.22. http://dx.doi.org/
10.1287/opre.38.1.22.

[5] Bertsimas D, Tsitsiklis JN. Introduction to Linear Optimization. 1st. Athena Sci-
entific; 1997. ISBN 1886529191.

[6] Carrano E, Wanner E, Takahashi R. A multicriteria statistical based comparison
methodology for evaluating evolutionary algorithms. IEEE Trans Evol Comput
2011;15(6):848-70. doi:10.1109/TEVC.2010.2069567.

[7] Davis JS, Kanet JJ. Single-machine scheduling with early and tardy
completion costs. Nav Res Logist (NRL) 1993;40(1):85-101. doi:10.1002/
1520-6750(199302)40:1(85::AID-NAV3220400106)3.0.CO;2-C.

[8] Feo TA, Resende MGC. Greedy randomized adaptive search procedures.] Global
Optim 1995;6(2):109-33. doi:10.1007/BF01096763.

[9] Franga Filho MF. Grasp and tabu search applied to scheduling problems in par-
allel machines (in Portuguese). Phd thesis. School of Electrical and Computer
Engineering, State University of Campinas - UNICAMP; Campinas, Brazil; 2007.

[10] Fry TD, Armstrong RD, Blackstone JH. Minimizing weighted absolute devia-
tion in single machine scheduling. IIE Trans 1987;19(4):445-50. doi:10.1080/
07408178708975418.

[11] Garey MR, Tarjan RE, Wilfong GT. One-processor scheduling with symmetric
earliness and tardiness penalties. Math Oper Res 1988;13(2):330-48. doi:10.
1287/moor.13.2.330.

[12] Glover F, Laguna M. Tabu search. Norwell, MA, USA: Kluwer Academic Publish-
ers; 1997. ISBN 079239965X.

[13] Gomes Janior AC, Carvalho CRV, Munhoz PLA, Souza MJF. A hybrid heuris-
tic method for solving the single machine scheduling problem with earliness
and tardiness penalties (in Portuguese). In: Proceedings of the XXXIX Brazil-
ian symposium of operational research — XXXIX SBPO. Fortaleza, Brazil; 2007.
p. 1649-60.

[14] Gupta SR, Smith]S. Algorithms for single machine total tardiness scheduling
with sequence dependent setups. Eur] Oper Res 2006;175(2):722-39. doi:10.
1016/j.ejor.2005.05.018.

[15] Hansen P, Mladenovi¢ N, Prez JAM. Variable neighborhood search: meth-
ods and applications. 40R: Q] Oper Res 2008;6(4). 319-316. doi: 10.1007/
510288-008-0089-1.

[16] Janiak A, Janiak WA, Krysiak T, Kwiatkowski T. A survey on scheduling prob-
lems with due windows. Eur] Oper Res 2015;242(2):347-57. doi:10.1016/j.ejor.
2014.09.043.

[17] J6zefowska]. Just-in-time scheduling: models and algorithms for computer
and manufacturing systems. International series sn operations research &
management science. New York: Springer; 2007. ISBN 9780387717173, http:
|/isbnplus.org/9780387717173.

[18] Kanet JJ, Sridharan V. Scheduling with inserted idle time: problem taxonomy
and literature review. Oper Res 2000;48(1):99-110. doi:10.1287/opre.48.1.99.
12447.

[19] Kopanos GM, Lainez JM, Puigjaner L. An efficient mixed-integer linear pro-
gramming scheduling framework for addressing sequence-dependent setup is-
sues in batch plants. Ind Eng Chem Res 2009;48(13):6346-57. doi:10.1021/
ie801127t.

[20] Koulamas C. Single-machine scheduling with time windows and -earli-
ness/tardiness penalties. Eur] Oper Res 1996;91(1):190-202. doi:10.1016/
0377-2217(95)00116-6.

[21] Lee CY, Choi JY. A genetic algorithm for job sequencing problems with dis-
tinct due dates and general early-tardy penalty weights. Comput Oper Res
1995;22(8):857-69. doi:10.1016/0305-0548(94)00073-H.

[22] Lourengo HR, Martin OC, Stiitzle T. Iterated local search. In: Glover F, Kochen-
berger GA, editors. Handbook of metaheuristics. International Series in Op-
erations Research & Management Science, 57. Springer US; 2003. p. 320-53.
doi:10.1007/0-306-48056-5_11.

[23] Mladenovi¢ N, Hansen P. Variable neighborhood search. Comput Oper Res
1997;24:1097-100. doi:10.1016/S0305-0548(97)00031-2.

[24] Montgomery DC, Runger GC. Applied statistics and probability for engineers.
6. Wiley; 2013.

[25] Penna PHV, Souza MJF, Gonalves FACA, Ochi LS. A hybrid heuristic algorithm
for job scheduling problem on a single-machine (in Portuguese). Production
2012;22(4):766-77. doi:10.1590/S0103-65132012005000020.

[26] Pinedo ML. Scheduling: theory, algorithms, and systems. 4. Springer New York;
2012. doi:10.1007/978-1-4614-2361-4.

http://dx.doi.org/10.1016/j.ejor.2015.04.004
http://dx.doi.org/10.1016/S0305-0483(98)00042-5
http://dx.doi.org/10.1016/j.ejor.2006.06.060
http://dx.doi.org/10.1287/opre.38.1.22
http://dx.doi.org/10.1287/opre.38.1.22
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0005
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0005
http://dx.doi.org/10.1109/TEVC.2010.2069567
http://dx.doi.org/10.1002/1520-6750(199302)40:1<85::AID-NAV3220400106>3.0.CO;2-C
http://dx.doi.org/10.1007/BF01096763
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0009
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0009
http://dx.doi.org/10.1080/07408178708975418
http://dx.doi.org/10.1287/moor.13.2.330
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0012
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0012
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0012
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0012
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0013
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0013
http://dx.doi.org/10.1016/j.ejor.2005.05.018
http://dx.doi.org/10.1007/s10288-008-0089-1
http://dx.doi.org/10.1016/j.ejor.2014.09.043
http://isbnplus.org/9780387717173
http://dx.doi.org/10.1287/opre.48.1.99.12447
http://dx.doi.org/10.1021/ie801127t
http://dx.doi.org/10.1016/0377-2217(95)00116-6
http://dx.doi.org/10.1016/0305-0548(94)00073-H
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0024
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0024
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0024
http://dx.doi.org/10.1590/S0103-65132012005000020
http://dx.doi.org/10.1007/978-1-4614-2361-4

[27]

(28]

(29]

B.F. Rosa et al./ Computers and Operations Research 81 (2017) 203-215 215

Rabadi G, Mollaghasemi M, Anagnostopoulos GC. A branch-and-bound al-
gorithm for the early/tardy machine scheduling problem with a com-
mon due-date and sequence-dependent setup time. Comput Oper Res
2004;31(10):1727-51. doi:10.1016/S0305-0548(03)00117-5.

Ribeiro FF, Souza MJF, de Souza SR. An adaptive genetic algorithm to the sin-
gle machine scheduling problem with earliness and tardiness penalties. In: da
Rocha Costa AC, Vicari RM, Tonidandel F, editors. Advances in artificial intelli-
gence - SBIA 2010. Lecture Notes in Computer Science, 6404. Springer Berlin
Heidelberg; 2010. p. 203-12. doi:10.1007/978-3-642-16138-4_21.

Souza MJF, Ochi LS, Maculan Filho N. Minimizing earliness and tardiness
penalties on a single machine scheduling problem with distinct due windows
and sequence-dependent setup times. In: Proceedings of the ALIO/EURO 2008
conference, 1. Buenos Aires: Facultad de Ciencias Exactas y Naturales; 2008.
p. 1-6.

[30] Szwarc W, Mukhopadhyay SK. Optimal timing schedules in earliness-tardiness
single machine sequencing. Nav Res Logist (NRL) 1995;42(7):1109-14.

[31] Wan G, Yen BP-C. Tabu search for single machine scheduling with distinct
due windows and weighted earliness/tardiness penalties. Eur] Oper Res
2002;142(2):271-81. doi:10.1016/S0377-2217(01)00302-2.

[32] Yano CA, Kim Y-D. Algorithms for a class of single-machine weighted tardi-
ness and earliness problems. Eur] Oper Res 1991;52(2):167-78. doi:10.1016/
0377-2217(91)90078-A.

http://dx.doi.org/10.1016/S0305-0548(03)00117-5
http://dx.doi.org/10.1007/978-3-642-16138-4_21
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0030
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0030
http://refhub.elsevier.com/S0305-0548(16)30332-X/sbref0030
http://dx.doi.org/10.1016/S0377-2217(01)00302-2
http://dx.doi.org/10.1016/0377-2217(91)90078-A

	Algorithms for job scheduling problems with distinct time windows and general earliness/tardiness penalties
	1 Introduction
	2 Characteristics of the addressed problem
	2.1 Notations

	3 Idle time allocation
	3.1 ITIA complexity analysis

	4 GVNS applied to the considered problem
	4.1 Solution representation
	4.2 Initial solution
	4.3 Neighborhood of a solution
	4.3.1 Neighborhood N1
	4.3.2 Neighborhood N2
	4.3.3 Neighborhood N3

	4.4 Evaluation of a solution
	4.5 Variable neighborhood descent

	5 Implicit enumeration
	5.1 Optimality conditions

	6 Computational results
	6.1 Instance description
	6.2 Results for instances of up to 20 jobs for SMSPETP-SIS
	6.3 Results for instances of up to 75 jobs for SMSPETP
	6.3.1 Hypothesis tests
	6.3.2 AGA × GVNS
	6.3.3 GVNS × AGA
	6.3.4 Analysis of the relative average deviation
	6.3.5 Comparisons in relation to required times

	7 Conclusions
	 Acknowledgements
	 References

