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a b s t r a c t 

This paper addresses the single machine scheduling problem with distinct time windows and sequence- 

dependent setup times. The objective is to minimize the total weighted earliness and tardiness. The prob- 

lem involves determining the job execution sequence and the starting time for each job in the sequence. 

An implicit enumeration algorithm denoted IE and a general variable neighborhood search algorithm de- 

noted GVNS are proposed to determine the job scheduling. IE is an exact algorithm, whereas GVNS is a 

heuristic algorithm. In order to define the starting times, an O ( n 2 ) idle time insertion algorithm (ITIA) 

is proposed. IE and GVNS use the ITIA algorithm to determine the starting time for each job. However, 

the IE algorithm is only valid for instances with sequence-independent setup times, and takes advantage 

of theoretical results generated for this problem. Computational experiments show that the ITIA algo- 

rithm is more efficient than the only other equivalent algorithm found in the literature. The IE algorithm 

allows the optimal solutions of all instances with up to 15 jobs to be determined within a feasible com- 

putational time. For larger instances, GVNS produces better-quality solutions requiring less computational 

time compared with the other algorithm from the literature. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The emergence of the just in time (JIT) management system

ighlighted the importance of carefully planning production activi-

ies. Reducing earliness and tardiness in job scheduling may result

n significant cost reductions. According to Baker and Scudder [4] ,

ompleting a job with tardiness, i.e., after the desired completion

ate, may result in contractual penalties, a loss of credibility for

he company, and reduced sales. Similarly, completing a job before

he desired date may result in extra financial costs, due to require-

ents for early capital availability, storage space or other resources

or the maintenance and management of the inventory [17] . 

The single machine scheduling problem with distinct time win-

ows and sequence-dependent setup times, as discussed in the

resent article, consists of sequencing and determining the time

ithin which jobs must be performed in order to minimize the

eighted sum of earliness and tardiness penalties in the execution
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f the jobs. This is an NP-hard problem [2] , and is hereafter de-

oted by SMSPETP. 

According to Wan and Yen [31] , it is expected in many man-

facturing industry situations that the jobs are finished within a

ertain time interval (time window), rather than at a single point

n time (due date), because of uncertainties and tolerances. Such

ncertainties and tolerances are related to individual job charac-

eristics that influence the size of these time windows. Thus, only

obs completed before or after their respective time windows will

e subject to penalties. 

There exist a variety of applications of time window schedul-

ng models in JIT manufacturing, semi-conductor manufacturing,

hemical processing, PERT/CPM scheduling, and video on demand

ervices, among others [16] . For instance, consider the production

f perishable goods, as presented in Koulamas [20] . Assume that a

hemical manufacturer combines a certain chemical “A ”, which de-

eriorates rapidly, with a second chemical “B ”, to produce a chem-

cal “C ”. If “A ” is produced before “B ” is ready, then it will deteri-

rate. If “A ” is produced later, then delays in the production of “C ”

ay prove costly. 

In industries where different product types are manufactured

nd the types of jobs processed on the machine frequently change,
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it is usually necessary to set up the machine between the exe-

cution of consecutive jobs [2] . The setup time includes the time

spent changing tools, preparing the material, cleaning the machine,

etc. Most studies regarding scheduling problems assume that setup

times are independent of the execution sequence, i.e., the time is

negligible or can be added to job processing time [14] . However,

according to Kopanos et al. [19] and Gupta and Smith [14] , in many

practical situations these times depend on the execution sequence.

Allahverdi et al. [2,3] and [1] provide comprehensive reviews re-

garding scheduling problems with setup times. 

The continuity of machine operations may also be a considera-

tion in the problem. According to Kanet and Sridharan [18] , there

are situations in which machine idleness is not allowed, because

this results in higher costs than the early completion of jobs. How-

ever, the same author states that there are cases in which keeping

the machine idle is beneficial, even if there is a job available to

process. Thus, when there are no restrictions regarding machine

idleness, determining the best date to start the execution of each

job or insert idle time between jobs may lead to better solutions. 

According to the notations employed by Pinedo [26] , the

scheduling problem studied here, SMSPETP, is represented

by 1 /s jk / 
∑ n 

j=1 w 

′ 
j 
E j + 

∑ n 
j=1 w 

′′ 
j 
T j . The case with sequence-

independent setup times is denoted by SMSPETP-SIS. Pinedo

[26] represents SMSPETP-SIS by 1 / / 
∑ n 

j=1 w 

′ 
j 
E j + 

∑ n 
j=1 w 

′′ 
j 
T j . The

applicability combined with the difficulty of finding an optimal

solution for SMSPETP has motivated the development of efficient

algorithms for the resolution of this problem. 

Koulamas [20] studied SMSPETP-SIS by considering that a job is

anticipated when its execution begins , before the beginning of its

time window. This approach is different than that usually found in

the literature, in which a job is usually considered to be early if

it is completed before the beginning of its time window. Earliness

and tardiness penalties are considered to be equal for each job. The

author divides the problem into two subproblems: determining the

job execution sequence and determining the optimal time for com-

pletion of each job in a given sequence (or inserting idle time be-

tween jobs in the sequence). To solve the problem of determin-

ing the optimal execution time for each job in a given sequence,

an algorithm was developed that optimally inserts idle time into

the execution sequence. The scheduling problem is solved with ad-

justments of heuristics that were previously employed in special

SMSPETP-SIS cases. 

Wan and Yen [31] studied various properties of SMSPETP-SIS to

facilitate its resolution. As in the case of Koulamas [20] , the authors

divided the problem into two subproblems. An optimal timing al-

gorithm was developed to determine the optimal completion date

for each job in a given execution sequence. This algorithm, from

now on denoted by OTA, is an extension of the algorithms of Davis

and Kanet [7] , Lee and Choi [21] , and Szwarc and Mukhopadhyay

[30] , to cases with different due dates. Subsequently, a tabu search

procedure [12] was proposed, together with the optimal timing al-

gorithm, to solve the JIT scheduling problem. 

The study of Gomes Júnior et al. [13] focuses on SMSPETP. In

this study, a mixed integer linear programming model is proposed

to represent the problem, and a heuristic resolution algorithm

based on greedy randomized adaptive search procedures (GRASP)

[8] , iterated local search (ILS) [22] , and variable neighborhood de-

scent (VND) [23] is applied to solve it. For each job sequence gen-

erated by the developed heuristic, OTA [31] – adapted to include

setup times – is applied to determine the optimal starting time of

each job. 

Many papers can be found in the literature that use OTA in

heuristic procedures to solve SMSPETP (e.g., [28,29] , and [25] ). 

In the present study, an implicit enumeration algorithm de-

noted IE and an adaptation of the general variable neighborhood
earch algorithm denoted GVNS [15] are proposed to determine the

ob execution sequence of SMSPETP. IE is an exact algorithm, which

s only valid for solving SMSPETP-SIS, and makes use of theoretical

esults established for this problem. On the other hand, GVNS is

 heuristic algorithm, and can be applied to solve larger SMSPETP

nstances. A new O ( n 2 ) algorithm for the optimal allocation of idle

ime, named ITIA, is developed to determine the starting time for

ach job in a given SMSPETP job sequence. Computational experi-

ents compare the performances of ITIA and OTA [31] when em-

loyed by the IE and GVNS algorithms. OTA is the only equivalent

lgorithm to ITIA found in the literature. The results confirm the

uperiority of ITIA over OTA. In addition, because no specific ex-

ct optimization algorithm for solving SMSPETP-SIS can be found

n the literature [16] , the IE algorithm is compared with the CPLEX

olver applied to the mixed integer linear programming model of

omes Júnior et al. [13] . The obtained results show that the IE al-

orithm generates optimal solutions more quickly. Finally, the de-

eloped GVNS algorithm is compared with the adaptive genetic al-

orithm (AGA) [28] for larger instances. The results show that the

VNS algorithm outperforms AGA both in the quality of solutions

nd processing times. 

The remainder of this paper is organized as follows.

ection 2 presents a detailed description of SMSPETP and

MSPETP-SIS. The proposed algorithm for the optimal allocation of

dle time is presented in Section 3 . The GVNS and IE algorithms

re presented in Sections 4 and 5 , respectively. Section 6 presents

nd discusses the computational results. Finally, Section 7 presents

he conclusions. 

. Characteristics of the addressed problem 

The single machine scheduling problem addressed in this study

SMSPETP) has the following characteristics: 

(i) A single machine must process a set I of n jobs. 

(ii) For each job x ∈ I , there is a processing time P x and a time

window [ E x , T x ] in which the job x should preferably be

completed. E x indicates the earliest due date, and T x is the

tardiest due date. 

(iii) If job x is completed before E x , then there is a cost of αx per

unit of earliness time. In the case that the job is completed

after T x , there is a cost of βx per unit of tardiness time. Jobs

completed within their time windows do not incur costs. 

(iv) The machine can perform only one job at a time and once

the process is initiated, it cannot be interrupted. 

(v) All jobs are available for processing starting from time 0. 

(vi) Between two consecutive jobs x and y ∈ I , a setup time of

S xy is required. It is assumed that the time for setting up the

machine in order to process the first job in the sequence is

equal to 0. 

(vii) Idle time between the execution of two consecutive jobs is

allowed. The time of completion of job x ∈ I is represented

by C x , whereas the earliness and tardiness times of x are

represented by e x = max (0 , E x − C x ) and t x = max (0 , C x −
T x ) , respectively. 

The special case with sequence-independent setup times

SMSPETP-SIS) is also considered. In this case, the value of S xy is

he same for any pair of jobs x and y ∈ I . Therefore, it can be added

o the processing time of the respective jobs. 

The objective is to determine a job sequence X of I and the

tarting dates for executing the jobs that minimize the weighted

um of the earliness and tardiness for each job. That is, to mini-

ize the value of 

f (X ) = 

∑ 

x ∈ I 
(αx e x + βx t x ) . (1)
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Table 1 

List of notations. 

Notations Descriptions 

SMSPETP Single Machine Scheduling Problem with Distinct Time Windows and Sequence-Dependent Setup Times 

SMSPETP-SIS Single Machine Scheduling Problem with Distinct Time Windows and Sequence-Independent Setup Times 

OTA Optimal Timing Algorithm [31] 

ITIA Idle Time Insertion Algorithm 

I set of n jobs to be executed 

X sequence of the job set I , i.e., X = (x 1 , x 2 , . . . , x n ) 

x i i th job in a given sequence X 

B subsequence of jobs, i.e., B = (x u , x u +1 , . . . , x v ) , 1 ≤ u ≤ v ≤ n 

| B | cardinality of subsequence B 

B j j th subsequence of a sequence X 

MC ( B ) marginal cost for shifting jobs from B in a single time unit to the right 

Cost j ( ϕ) cost for moving jobs from B j by ϕ time units to the right 

last ( x i ) last job of the subsequence that contains job x i 
GVNS General Variable Neighborhood Search metaheuristic [15] 

GVNSmax stopping criterion of GVNS 

N 1 , N 2 and N 3 neighborhoods used in GVNS and VND 

f ( X ) evaluation function of sequence X , f (X ) = 

∑ 

x ∈ I (αx e x + βx t x ) 

VND Variable Neighborhood Descent procedure [23] 

VNDmax parameter of VND procedure 

IE Implicit Enumeration algorithm 

UB known upper bound to SMSPETP-SIS 

L list of nodes to be investigated in IE algorithm 

δ node of the search tree in IE algorithm 

seq ( δ) subsequence of k jobs stored in node δ, 0 ≤ k ≤ n 

nseq ( δ) subset of jobs that does not belong to seq ( δ) 

X B sequence of jobs in I that begins with the subsequence B 

C X x completion time of the job x in an optimal positioning of X 

GVNS/ITIA GVNS that uses ITIA algorithm 

GVNS/OTA GVNS that uses OTA algorithm 

IE/ITIA IE that uses ITIA algorithm 

IE/OTA IE that uses OTA algorithm 

AGA Adaptive Genetic Algorithm [28] 
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The resolution of this problem involves two actions, which must

e performed in sequence: (i) determine the job processing se-

uence, i.e., the order in which the jobs must be executed, and (ii)

etermine the starting date for each job such that the weighted

um of earliness and tardiness for all jobs is minimized. 

.1. Notations 

In addition to the basic notations introduced above, Table 1

resents further notations employed in this paper. 

. Idle time allocation 

Solving SMSPETP involves the determination of the sequence in

hich the jobs are executed, as well as the date at which each

ob in this sequence begins. Previous studies have addressed this

roblem using heuristics that iteratively generate an execution se-

uence by priority rules or search procedures. To evaluate each

enerated sequence, the determination of the optimal starting date

or the execution of each job in the sequence is required. This can

e achieved by inserting idle times between the executions of con-

ecutive jobs. Therefore, it is essential to use an algorithm that in-

erts idle times as quickly as possible. 

To schedule jobs with different due dates, Fry et al. [10] pro-

osed a mathematical programming formulation that solves the

roblem of determining optimal dates. Garey et al. [11] presented

n O ( n log n ) algorithm to determine optimal dates for the prob-

em of minimizing the weighted sum of discrepancies from the

referred due dates. Yano and Kim [32] suggested a dynamic pro-

ramming algorithm to determine the optimum dates in prob-

ems where the penalty per earliness unit for a given job is not

reater than the respective penalty per tardiness unit. Szwarc and

ukhopadhyay [30] proposed an algorithm based on the clus-

ers concept, which determines the optimal dates in problems
ith generic weights for earliness and tardiness penalties. Davis

nd Kanet [7] and Lee and Choi [21] proposed optimal timing al-

orithms for problems with the same characteristics. Reviews of

cheduling problems involving the insertion of idle times is found

n Kanet and Sridharan [18] and Józefowska [17] . 

Considering problems with distinct time windows, proposed

rocedures for determining optimal dates are limited to studies

y Koulamas [20] and Wan and Yen [31] . In Koulamas [20] , an al-

orithm of polynomial complexity for problems with unweighted

arliness and tardiness penalties is presented. This algorithm is an

xtension of that in the study of Garey et al. [11] . Wan and Yen

31] extended the optimal timing algorithms of Davis and Kanet

7] , Lee and Choi [21] , and Szwarc and Mukhopadhyay [30] to

roblems with different time windows and arbitrary weights for

arliness and tardiness penalties. 

In the following, a new O ( n 2 ) algorithm called the idle time in-

ertion algorithm (ITIA) is proposed for the optimal allocation of

dle times. This algorithm is motivated by the study of França Filho

9] , which addressed the problem of scheduling in unrelated paral-

el machines with sequence-dependent setup times, earliness and

ardiness penalties, release times, and due dates for each job. 

Let X = (x 1 , x 2 , . . . , x n ) be a given sequence of the job set I .

hus, x i , x j ∈ I and x i � = x j for every i, j ∈ { 1 , 2 , . . . , n } . ITIA con-

ists of two steps. First, all jobs are scheduled to start processing as

oon as possible, respecting the sequence X and without idle times

nserted. Thus, the costs resulting from tardiness are minimized,

hereas the costs caused by earliness are at the highest possible

evel for the sequence X . Second, idle times are inserted between

ach pair of consecutive jobs, such that the total sum of penalties

or earliness and tardiness is reduced. 

Let C x be the completion time of job x . In the first step of ITIA,

he execution of the first job of the sequence X is scheduled to

tart at time 0, i.e., C x 1 = P x 1 . The completion time of the other jobs

s given by C x i = C x i −1 
+ S (x i −1 )(x i ) 

+ P x i , for i = 2 , 3 , . . . , n . 
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Table 2 

Instance to exemplify the application of ITIA procedure. 

Data Setup 

Jobs P E T α β 1 2 3 4 

1 3 14 15 2 4 0 2 1 2 

2 4 22 24 7 9 1 0 2 3 

3 4 9 12 7 8 1 3 0 1 

4 3 5 7 1 4 1 2 2 0 

Fig. 1. Initial positioning of the ITIA procedure. 

Fig. 2. Positioning after one iteration of the second step of the ITIA procedure. 

Fig. 3. Positioning after iteration 2 of the second step of the ITIA procedure. 
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In contrast to the algorithm of França Filho [9] , the second step

of ITIA starts from the last job in the sequence ( x n ). From the last

to the first job successively, it is verified whether the insertion of

idle time is beneficial. If the last job is not early at the end of the

first step, then it will not incur a shift to the right, because this

would not reduce the associated earliness cost. Otherwise (i.e., if

x n is early), it is shifted ϕ units to the right, with ϕ given by 

ϕ = E x n − C x n . (2)

A job subsequence B = (x u , x u +1 , . . . , x v ) with u ≤ v forms a

block in the sequence X if the jobs in B are scheduled consecu-

tively without idle time between them and there is idleness be-

tween jobs x u −1 and x u and jobs x v and x v +1 . For the case in which

u = 1 , the idleness between jobs x u −1 and x u is disregarded. Simi-

larly, for the case in which v = n the idleness between jobs x v and

x v +1 is disregarded. 

The insertion of idle time before jobs x i , with i = n − 1 , n −
2 , . . . , 1 , is performed as follows: 

• If C x i ≥ E x i , no idle time is inserted before x i . 
• If C x i < E x i , then it is verified whether a reduction to the earli-

ness of job x i is beneficial. For this purpose, let last ( x i ) be the

last job in the block containing x i . To reduce the earliness of

job x i , all jobs from B = { x i , x i +1 , . . . , last(x i ) } must be shifted to

the right. The marginal cost MC of shifting jobs from B a single

time unit to the right is given by 

MC(B ) = 

∑ 

x ∈ B : C x ≥T x 

βx −
∑ 

x ∈ B : C x <E x 

αx . (3)

In consequence: 
• If MC ( B ) ≥ 0, then shifting jobs from the set B to the right

is not beneficial, because the increase in tardiness costs will

be higher than the reduction in earliness costs. 
• If MC ( B ) < 0, then shifting jobs from set B to the

right is beneficial. Moreover, MC ( B ) will still be neg-

ative if the jobs from B are moved up to ϕ =
min 

(
C last(x i )+1 − P last(x i )+1 − S (last(x i ))(last(x i )+1) , m 1 , m 2 

)
time

units to the right, where m 1 = min x ∈ B : E x ≤C x <T x (T x − C x ) ,

m 2 = min x ∈ B : C x <E x (E x − C x ) , and last(x i ) + 1 represents the

job scheduled immediately after job last ( x i ). This is because

the mentioned shift does not change the early/tardy status

of the jobs from B . For the case in which last(x i ) = x n , the

value of ϕ is given by ϕ = min ( m 1 , m 2 ) . Thus, jobs from B

are shifted by ϕ time unites to the right. Consequently, the

following cases may occur: 
• If C last(x i ) 

+ S (last(x i ))(last(x i )+1) + P last(x i )+1 = C last(x i )+1 ,

then the set B joins the successor block. The set B

and the element last ( x i ) are updated. Subsequently, the

benefit of shifting jobs from the new set B to the right

(via MC ( B ) analysis) is determined. 
• If C last(x i ) 

+ S (last(x i ))(last(x i )+1) + P last(x i )+1 < C last(x i )+1 ,

then it is necessary to verify whether shifting jobs from

set B to the right (via MC ( B ) analysis) is still beneficial. 

The algorithm ends when inserting additional idle time in the

sequence X is not beneficial. 

The cost incurred by the earliness or tardiness of a job x ∈ I

completed at date C x can be determined by the following func-

tion: 

g x (C x ) = αx · max { 0 , E x − C x } + βx · max { 0 , C x − T x } 
The function g x (C x + ϕ) is a piecewise linear convex function with

respect to ϕ for every x ∈ I , as shown in Wan and Yen [31] . Con-

sider the case that there are l blocks in X , i.e., X = B 1 ∪ B 2 ∪ . . . ∪ B l .

Thus, if jobs from the set B j are moved ϕ time units to the right,

then the associated cost function will be given by 

Cost j (ϕ) = 

∑ 

x ∈ B j 
g x (C x + ϕ) ∀ j ∈ { 1 , 2 , . . . , l} , (4)
here C x + ϕ is the new completion date for the execution of

ob x . 

emma 1 [5] . The sum of two piecewise linear convex functions is

lso a piecewise linear convex function. 

Based on Lemma 1 , the following can be shown. 

roposition 1 [31] . Cost j ( ϕ) is a piecewise linear convex function

ith respect to ϕ, for every j ∈ { 1 , 2 , . . . , l} . 
Owing to the piecewise linear convex nature of the cost func-

ion, the minimum cost of a block B j occurs at the extreme points

f its function Cost j , i.e., at the beginning or at the end of the

ime window of one of the jobs in the block. This fact, in con-

unction with Proposition 2 , ensures that the presented algorithm

etermines the optimal starting times for the given job sequence. 

roposition 2 [31] . The total cost of a given job sequence achieves

ts optimal value if each block B j in the sequence reaches its minimum

oint, except that B 1 may have its execution scheduled to start at time

ero. 

To illustrate how ITIA works, consider the scheduling problem

f four jobs represented in Table 2 . This table shows the processing

ime ( P x ), starting date ( E x ), ending date ( T x ), cost per earliness unit

 αx ), and cost per tardiness unit ( βx ) of the time window, as well

s the setup time relative to each job x ∈ I . 

Given the sequence X = (3 , 4 , 1 , 2) , all jobs are scheduled to

tart processing as soon as possible, as shown in Fig. 1 . Thus, the

um of penalties resulting from earliness and tardiness is 71 units.

The second step verifies whether inserting idle time before the

xecution of each job is beneficial. This procedure is performed it-

ratively, starting with the last job in the sequence ( x 4 = 2 ) and

nding with the first ( x 1 = 3 ). Because inserting idle time before

he execution of the job x 4 = 2 reduces its earliness ( MC({ x 4 } ) =
7 < 0 ), x 4 is shifted four time units to the right ( Fig. 2 ). Follow-

ng this shift, the sum of earliness and tardiness penalties is equal

o 43. 

Iteration 2 of the second step of ITIA verifies whether the in-

ertion of idle time before the execution of the job x 3 = 1 is ben-

ficial. Because the insertion of time is advantageous ( MC({ x 3 } ) =
2 < 0 ), x is shifted two time units to the right ( Fig. 3 ). Following
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Fig. 4. Positioning after iteration 4 of the second step of the ITIA procedure. 

Fig. 5. Optimal positioning for the sequence X . 
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Algorithm 1: ITIA (n, I, X ) . 

1 C x 1 ← P x 1 ; 

2 for i = 2 , . . . , n do 

3 C x i ← C x i −1 
+ S (x i −1 )(x i ) 

+ P x i ; 

end 

4 for i = n, n − 1 , . . . , 2 , 1 do 

5 if C x i < E x i then 

6 last(x i ) ← last job of the block that contains x i ; 

7 B ← { x i , x i +1 , . . . , last(x i ) } ; 
8 MC(B ) ← 

∑ 

x ∈ B : C x ≥T x 

βx −
∑ 

x ∈ B : C x <E x 

αx ; 

9 while MC(B ) < 0 do 

10 m 1 ← min 

x ∈ B : E x ≤C x <T x 
(T x − C x ) ; 

11 m 2 ← min 

x ∈ B : C x <E x 
(E x − C x ) ; 

12 if last(x i ) � = x n then 

13 ϕ ← 

min 

(
C last(x i )+1 −P last(x i )+1 −S (last(x i ))(last(x i )+1) ,m 1 ,m 2 

)
; 

else 

14 ϕ ← min ( m 1 , m 2 ) ; 

end 

15 for x ∈ B do 

16 C x = C x + ϕ; 

end 

17 if C last(x i ) 
+ S (last(x i ))(last(x i )+1) + P last(x i )+1 = C last(x i )+1 

then 

// B joins with the successor block and it 

is updated. 

18 last(x i ) ← last job of the block that contains x i ; 

19 if i < n then 

20 B ← { x i , x i +1 , . . . , last(x i ) } ; 
else 

21 B ← { x n } ; 
end 

end 

// MC(B ) is recalculated. 

22 MC(B ) ← 

∑ 

x ∈ B : C x ≥T x 

βx −
∑ 

x ∈ B : C x <E x 

αx ; 

end 

end 

end 

23 f ← 

∑ 

x ∈ I 
αx · max ( 0 , E x − C x ) + βx · max ( 0 , C x − T x ) ; 

24 Return f ; 
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a

his shift, the sum of earliness and tardiness penalties is equal to

9. 

Iteration 3 of the second step of ITIA verifies whether insert-

ng idle time before the execution of the job x 2 = 4 is beneficial.

s this insertion of idle time is not beneficial ( MC({ x 2 } ) = 4 ≥ 0 ),

he ITIA procedure goes to iteration 4. Iteration 4 analyzes whether

nserting idle time before the execution of the first job in the se-

uence ( x 1 = 3 ) is beneficial. To make this time insertion possi-

le, the job block (x 1 , x 2 ) = (3 , 4) must be shifted to the right.

ecause a shift is beneficial ( MC({ x 1 , x 2 } ) = −7 + 4 = −3 < 0 ), the

lock ( x 1 , x 2 ) is shifted two time units to the right. Following this

hift, the sum of earliness and tardiness penalties is equal to 33.

 new block (x 1 , x 2 , x 3 ) = (3 , 4 , 1) is then formed ( Fig. 4 ). At this

oint, it is necessary to verify whether this new block is in the

ptimal position. Because shifting this block to the right is benefi-

ial MC({ x 1 , x 2 , x 3 } ) = −7 + 4 + 0 = −3 < 0 ), it is shifted one time

nit to the right ( Fig. 5 ). Following this shift, the sum of earli-

ess and tardiness penalties is equal to 30. Because the inclusion

f more idle time before the first job does not improve the solution

 MC({ x 1 , x 2 , x 3 } ) = −7 + 4 + 4 = 1 ≥ 0 ), this position is optimal for

he sequence X . 

.1. ITIA complexity analysis 

Algorithm 1 presents the pseudo-code for ITIA applied to a se-

uence X = (x 1 , x 2 , . . . , x n ) of I . 

It is straightforward to see that the initialization of ITIA, lines

–3 of Algorithm 1 , has a computational complexity of O ( n ). For

ach i ∈ { n, n − 1 , . . . , 2 , 1 } in the loop in line 4, the computational

ost associated to lines 6, 7, and 8 is O (| B |), where | B | is the car-

inality of B . The size of the largest possible set B at iteration

 is n − i + 1 (i.e., | B | ≤ n − i + 1 , ∀ i ∈ { n, n − 1 , . . . , 2 , 1 } ). There-

ore, the computational complexity relating to lines 6, 7, and 8 of

lgorithm 1 is O (n − i + 1) . 

It is also easy to see that the computational cost associated

ith lines 10–22 of the ITIA algorithm is O (| B | ) = O (n − i + 1) ,

hereas the cost relating to line 23 is O ( n ). Thus, if mc ( i ) denotes

he number of times that the “while loop” (lines 9–22) is per-

ormed in iteration i ∈ { n, n − 1 , . . . , 2 , 1 } of ITIA (i.e., the number

f times that MC ( B ) < 0 at iteration i ), then the complexity of the

TIA algorithm is 

 

( 

n + 

n ∑ 

i =1 

( 

(n − i + 1) + 

mc(i ) ∑ 

j=1 

(n − i + 1) 

) ) 

= O 

( 

n 

2 + 

n ∑ 

i =1 

(n − i + 1) · mc(i ) 

) 

. 

emma 2. If mc ( i ) denotes the number of times that MC ( B ) < 0 oc-

urs in lines 9–22 of iteration i ∈ { n, n − 1 , . . . , 2 , 1 } of the ITIA algo-

ithm, then 

n 
 

i =1 

mc(i ) ≤ 3 n − 1 . 
roof. Given that the shifting of the jobs is only performed to the

ight in the ITIA algorithm, the following are the only two possi-

ilities each time that MC ( B ) < 0: 

(i) Block B is shifted until a job is completed at the first limit

of its respective time window. 

(ii) Block B is shifted until it joins with the successor block and

is updated. 

Because each job will be at a limit of its time window at most

nce, it follows that 2 n is an upper bound on the number of times

ase (i) occurs (because there are n jobs, and the time window

f each job x ∈ I has two limits, E x and T x ). On the other hand,

nce they are together, two jobs do not separate. Therefore, n − 1

s an upper bound on the number of times case that (ii) occurs,

nd 2 n + (n − 1) = 3 n − 1 is an upper bound on 

n ∑ 

i =1 

mc(i ) . �
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The following is a consequence of Lemma 2 : 

n ∑ 

i =1 

(n − i + 1) · mc(i ) = n · mc(1) + (n − 1) · mc(2) + . . . 

+ 2 · mc(n − 1) + 1 · mc(n ) 

= mc(1) + mc(2) + . . . + mc(n −1) + mc(n )︸ ︷︷ ︸
≤3 ·n −1 

+ mc(1) + mc(2) + . . . + mc(n − 1) ︸ ︷︷ ︸ 
≤3 ·(n −1) −1 

. . . 

+ mc(1) + mc(2) ︸ ︷︷ ︸ 
≤3 ·2 −1 

+ mc(1) ︸ ︷︷ ︸ 
≤3 ·1 −1 

. 

Hence, 

n ∑ 

i =1 

(n − i + 1) · mc(i ) ≤
n ∑ 

i =1 

3 i − 1 = 

n (3 n + 1) 

2 

. 

The following proposition summarizes this result. 

Proposition 3. The computational complexity of the ITIA algorithm is

O ( n 2 ) . 

Similarly, it can be proved that the complexity of the optimal

timing algorithm (OTA) of Wan and Yen [31] is also O ( n 2 ). 

4. GVNS applied to the considered problem 

This section presents the adaptation of the general variable

neighborhood search (GVNS) metaheuristic [15] that is proposed

in this study to solve SMSPETP. Its pseudo-code is presented in

Algorithm 2 . GVNSmax corresponds to the maximum number of

Algorithm 2: GVNS (I, n, f, N 1 , N 2 , N 3 , GVNSmax , VNDmax ) . 

X ← Initial Sol ution (I, n ) ; // See Section 4.2 

f � ← f (X ) ; // See Section 4.4 

Iter ← 0 ; 

while Iter < GVNSmax do 

I ter ← I ter + 1 ; 

k ← 1 ; 

while k ≤ 3 do 

Randomly generates a neighbor X ′ ∈ N k (X ) ; 

X ′′ ← VND (X ′ , f, N 1 , N 2 , N 3 , VNDmax ) ; // See Section 

4.5 

if f (X ′′ ) < f (X ) then 

X ← X ′′ ; 
f � ← f (X ) ; 

k ← 1 ; 

Iter ← 0 ; 
else 

k ← k + 1 ; 

end 

end 

end 

Return f � ; 

iterations without an improvement in the best known solution,

which sets the stopping criterion of the algorithm. In the follow-

ing subsections, the GVNS algorithm is detailed. 
.1. Solution representation 

A solution for SMSPETP with n jobs is represented by a se-

uence X of length n . Each index i = 1 , 2 , . . . , n indicates the

ob to be executed at position i of X . For example, in the sequence

 = (5 , 1 , 2 , 6 , 4 , 3) , job 5 is the first to be executed, and job 3

s the last. 

.2. Initial solution 

An initial solution for SMSPETP is constructed by applying the

arliest due date (EDD) heuristic. EDD is a greedy constructive

euristic, often applied in the literature to scheduling problems

ith distinct due dates [26] . The proposed construction begins

ith an empty execution subsequence (i.e., no jobs are in the se-

uence). Iteratively, the job with the earliest starting date for its

ime window of those not yet sequenced is inserted at the end of

he current subsequence. Ties are broken randomly. The construc-

ion procedure is stopped when no more jobs lie outside of the

xecution sequence. 

.3. Neighborhood of a solution 

To explore the solution space, three types of movements are

onsidered: 

(i) pairwise interchange; 

(ii) one job reallocation; 

(iii) subsequence reallocation. 

These movements define the neighborhoods N 1 , N 2 , and N 3 , re-

pectively, described below. 

.3.1. Neighborhood N 1 

An example of a neighbor of X = (5 , 3 , 2 , 1 , 4 , 6) in the

eighborhood N 1 is X ′ = (5 , 4 , 2 , 1 , 3 , 6) . Note that X 

′ is ob-

ained from X by swapping the execution positions of jobs 3 and

. 

For a given sequence of n jobs, the position of each job can

e swapped with that of the remaining n − 1 jobs. On the other

and, swapping the position of the i th job in the sequence with

hat of the j th job is equivalent to swapping the position of the j th

ob with that of the i th job, for every i, j ∈ { 1 , 2 , . . . , n } . Therefore,

here are n (n − 1) / 2 different neighbors in respect to the neighbor-

ood N 1 . 

.3.2. Neighborhood N 2 

The solution X ′ = (5 , 2 , 1 , 4 , 3 , 6) is an example of neigh-

or of X = (5 , 3 , 2 , 1 , 4 , 6) in the neighborhood N 2 . In fact, X 

′
s obtained from X by reallocating job 3 (which is in the second

osition in X ) to the fifth position. 

Given a sequence of n jobs, each one may be reallocated to n −
 distinct positions. In addition, reallocating the job from position

 to position i + 1 is equivalent to reallocating the job in position

 + 1 to position i , for every i ∈ { 1 , 2 , . . . , n − 1 } . Therefore, there

re (n − 1) 2 distinct neighbors in the neighborhood N 2 . 

.3.3. Neighborhood N 3 

The solution X ′ = (1 , 4 , 5 , 3 , 2 , 6) is in neighborhood the N 3 

f X = (5 , 3 , 2 , 1 , 4 , 6) . This solution is obtained by reallocating

he subsequence < 5, 3, 2 > with the three consecutive jobs in the

rst three positions of X to after job 4. 

Given a sequence of n jobs, there are n − k + 1 distinct subse-

uences of k jobs for every k ∈ {1, 2, ���, n }. Each of these subse-

uences may be reallocated to n − k distinct positions in the se-

uence. In addition, reallocating a subsequence with k 1 jobs to

 successor positions is equivalent to reallocating a subsequence
2 
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ith k 2 jobs to k 1 predecessor positions, for every k 1 and k 2 ∈
 1 , 2 , . . . , n } and k 1 + k 2 ≤ n . Thus, there are (n 3 − n ) / 6 distinct

eighbors with respect to the neighborhood N 3 . 

In order to prevent returning to previously analyzed neigh-

ors and to reduce the computational cost, all previous moves are

voided in the computational implementation of the GVNS algo-

ithm. Furthermore, the chosen order for the exploration of neigh-

orhoods explores increasingly distant neighborhoods of the cur-

ent incumbent solution in terms of computational complexity, as

roposed by Hansen et al. [15] . 

.4. Evaluation of a solution 

Any job sequence can produce a feasible solution to SMSPETP

y means of an optimal positioning algorithm (e.g., the ITIA or OTA

lgorithms – see Section 3 ). 

.5. Variable neighborhood descent 

The local search used in the GVNS algorithm is performed using

he variable neighborhood descent (VND) procedure [23] . In this

tudy, VND uses the following sequence of local searches: 

• LS1: Random descent using neighborhood N 1 . 
• LS2: Random descent using neighborhood N 2 . 
• LS3: Random descent using neighborhood N 3 . 

In the first local search (LS1), two jobs are randomly chosen,

nd their positions in the sequence are swapped. If the new se-

uence gives an improved solution, then it is accepted and be-

omes the current solution. Otherwise, another random swap in

he current solution is evaluated. LS1 ends when VNDmax succes-

ive swaps occur without an improvement in the current solution,

here VNDmax is a parameter of the procedure. When LS1 fin-

shes, the next local search (LS2) is applied. 

In the local search LS2, a job of the sequence and a new posi-

ion for this job are randomly chosen. If the new sequence gives

 better solution, then it becomes the current solution, and VND

witches back to the local search LS1. Otherwise, another random

eallocation in the current solution is evaluated. LS2 is interrupted

hen VNDmax successive reallocations occur without an improve-

ent in the current solution. In this case, the next local search

LS3) is conducted. 

In the local search LS3, a subsequence of jobs of the sequence

nd a new position for this subsequence are randomly chosen. The

ubsequence size is also chosen randomly in the interval [1 , n −
] . If the new sequence gives an improved solution, then it be-

omes the current solution, and VND switches back to the local

earch LS1. Otherwise, another random subsequence reallocation in

he current solution is evaluated. LS3 is interrupted after VNDmax

uccessive subsequence reallocations occur without an improve-

ent in the current solution. In this case, VND is stopped, and the

est solution is returned. 

Once again, the three neighborhoods of the incumbent solution

re explored in order to visit increasingly distant neighbors. 

. Implicit enumeration 

In this section, an exact algorithm based on implicit enumer-

tion (IE) is proposed to solve SMSPETP-SIS. According to Janiak

t al. [16] , there is no specific exact optimization algorithm for

olving SMSPETP-SIS. Let I be the set of n jobs that must be sched-

led. Let UB be a known upper bound on the problem, which can

e obtained heuristically. During the enumeration process, a node

corresponds to a structure that stores a subsequence of k jobs

0 ≤ k ≤ n ) as well as the set of n − k jobs that are outside of
he subsequence, which are represented by seq ( δ) and nseq ( δ), re-

pectively. Let L be the list of nodes to be investigated. The job

equence X is evaluated by the function f given by Eq. (1) , as in

ection 4.4 . 

Let δ0 be the node such that seq (δ0 ) = ∅ and nseq (δ0 ) = I. The

E algorithm is initialized by inserting the node δ0 as the only node

f L . Thereafter, each IE iteration consists of the following steps: 

Step 1: Let δ be the last node inserted into L . 

Step 2: The node δ is removed from L . 

Step 3: If nseq (δ) = ∅ , then the subsequence seq ( δ) corresponds

to a complete solution. In addition, if f ( seq ( δ)) < UB then

the value of UB is updated to UB = f (seq (δ)) . 

Step 4: If nseq (δ) � = ∅ , then for each job x ∈ nseq ( δ) it is verified

whether the subsequence seq ( δ) ∪ { x } obtained by insert-

ing the job x at the end of the subsequence seq ( δ) vio-

lates the optimality conditions (presented in Section 5.1 ).

If these conditions are not violated, then the node δson 

is inserted into L , where seq (δson ) = seq (δ) ∪ { x } and

nseq (δson ) = nseq (δ) \ { x } . 
The IE algorithm is stopped when L = ∅ , and the final value of

B corresponds to the optimal solution of the problem. 

.1. Optimality conditions 

For ease of notation, let seq (δ) = B = (x 1 , x 2 , · · · , x u ) with 1 ≤
 ≤ n denote a subsequence of jobs in I . An optimal positioning of

 subsequence B is an optimal scheduling of the jobs (in B ) where

he order of the jobs is conserved. Furthermore, let X B denote a

equence of all jobs in I that begins with the subsequence B . 

roposition 4. If f ( B ) > UB, where UB is a given upper bound on the

roblem, then there is no optimal scheduling of jobs in I that contains

he subsequence B. 

roof. This result is straightforward, because the inclusion of jobs

n B does not decrease the total cost of the jobs in B . �

emma 3. If C B x is the completion time of the job x (with x in B) in

n optimal positioning of the subsequence B, then there is an optimal

ositioning of X B in which x is completed on time, i.e., C 
X B 
x ≤ C B x . 

roof. Shifting x to the right does not decrease the total cost of

he jobs in B , and moreover, this also does not reduce the sum of

he penalties associated with the jobs outside of B . On the other

and, although shifting x to the left does not reduce the cost of B ,

here is a possibility that the sum of the penalties associated to the

obs outside of B is reduced, so that the cost of X B is also reduced.

herefore, there exists an optimal positioning of X B in which C 
X B 
x ≤

 

B 
x . �

orollary 1. If there is an optimal positioning of B in which all jobs

re performed consecutively without idle times inserted and the first

ob starts at time 0, then there is an optimal positioning of X B in

hich C 
X B 
x = C B x , where C 

X B 
x and C B x are the completion times of x in

 B and B, respectively. 

roof. Note that in this case, C B x is given by the sum of the pro-

essing times of the jobs sequenced before x . Therefore, the proof

iffers from that of Lemma 3 only by the fact that it is now not

ossible to shift the job x to the left. �

roposition 5. If there are two consecutive jobs x and y in B such

hat αy P x < αx P y and C B x + P y = C B y ≤ min (E x , E y ) in an optimal po-

itioning of B, then there is no optimal scheduling of jobs in I that

egins with the subsequence B. 

roof. Suppose that there is an optimal sequence X B . By Lemma 3 ,

here is an optimal completion time of job y in an optimal po-
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Algorithm 3: IE( I, n, f (.), UB ). 

seq (δ0 ) ← ∅ ; 
nseq (δ0 ) ← I; 

L ← { δ0 } ; 
while L � = ∅ do 

δ ← the last node inserted in L ; 

L ← L \ { δ} ; 
if nseq (δ) = ∅ then 

if f (seq (δ)) < UB then 

UB ← f (seq (δ)) ; 

end 

else 

for j ∈ nseq (δ) do 

if the subsequence seq (δ) ∪ { j} 
does not violate the optimality condition then 

seq (δson ) ← seq (δ) ∪ { j} ; 
nseq (δson ) ← nseq (δ) \ { j} ; 
L ← L ∪ { δson } ; 

end 

end 

end 

end 

Return UB ; 
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sitioning of X B such that C 
X B 
y ≤ min (E x , E y ) . Thus, the amount of

penalties associated to the jobs x and y is given by 

αx · (E x − C X B x ) + αy · (E y − C X B y ) , 

i.e., 

αx · (E x − C X B y + P y ) + αy · (E y − C X B y ) . (5)

Let X ′ 
B 

be the sequence obtained from X B by just swapping the pro-

cessing order of the jobs x and y . Then, there exists a positioning of

X ′ 
B 

in which C 
X ′ 

B 
x = C 

X ′ 
B 

y + P x , C 
X ′ 

B 
x = C 

X B 
y , and C 

X ′ 
B 

z = C 
X B 
z , ∀ z ∈ I \ { x, y } .

Therefore, the amount of penalties associated to the jobs x and y

is given by 

αx · (E x − C 
X ′ B 
x ) + αy · (E y − C 

X ′ B 
y ) , 

i.e., 

αx · (E x − C X B y ) + αy · (E y − C X B y + P x ) . (6)

As the completion times of the remaining jobs are the same in the

positioning of X B and X ′ B , f ( X B ) and f (X ′ B ) are such that 

f (X B ) − f (X 

′ 
B ) = (5) − (6) = αx P y − αy P x > 0 . 

This contradicts the fact that X B is an optimal sequence of the jobs

in I . �

Proposition 6. If there exists an optimal positioning of B in which all

jobs are performed consecutively without idle times inserted, the first

job starts at time 0, and there are two adjacent jobs x and y such that

cost 1 > cost 2 where 

cost 1 = αx e x + βx t x + αy e y + βy t y and 

cost 2 = αx max (0 , E x − C B x − P y ) + βx max (0 , C B x + P y − T x ) 

+ αy max (0 , E y − C B y + P x ) + βy max (0 , C B y − P x − T y ) , 

then there is no optimal scheduling of jobs in I that begins with the

subsequence B. 

Proof. Suppose that there is an optimal sequence X B . By

Corollary 1 , there are optimal completion times for the jobs x and

y such that C 
X B 
x = C B x and C 

X B 
y = C B y . Consequently, the amount of

penalties associated to the jobs x and y is given by cost 1 . Let X ′ B 
be the sequence obtained from X B by just swapping the process-

ing order of the jobs x and y . Then, there is a positioning of X ′ 
B 

in

which C 
X ′ 

B 
z = C 

X B 
z , ∀ z ∈ I \ { x, y } . It is easy to see that the amount

of penalties associated to the jobs x and y is given by cost 2 in this

positioning of X ′ B . Thus, f ( X B ) and f (X ′ B ) are such that 

f (X B ) − f (X 

′ 
B ) = cost 1 − cost 2 > 0 . 

This contradicts the fact that X B is an optimal sequence of the jobs

in I . �

To verify whether a given subsequence of jobs B = seq (δ) =
(x 1 , x 2 , · · · , x u ) ∈ δ with 1 ≤ u ≤ n can be contained in an opti-

mal sequence (i.e., if it does not violate the optimality conditions),

the value of f ( seq ( δ)) is calculated, and the completion times of the

jobs in seq ( δ) are determined. This procedure is performed by ap-

plying ITIA (see Section 3 ) in seq ( δ). 

Based on the Propositions 4, 5 , and 6 , the following corollary

highlights the above results. 

Corollary 2. The subsequence seq ( δ) violates the condition of opti-

mality if one of the following cases occurs: 

(i) f ( seq ( δ)) > UB. 

(ii) There are two consecutive jobs x and y in seq ( δ), such that

αy P x < αx P y and C 
seq (δ) 
x + P y = C 

seq (δ) 
y ≤ min (E x , E y ) . 

(iii) All jobs in seq ( δ) are performed consecutively without idle

times inserted, the first job starts at time 0 and there are two
adjacent jobs x and y that satisfy the condition of Proposition 6 . 
Algorithm 3 describes the IE procedure applied to SMSPETP-

IS. In this procedure, the entry UB corresponds to a known upper

ound for the problem. This value is updated using the IE proce-

ure, so that the returned value UB is the optimal solution for the

roblem. In the present work, the initial upper bound is provided

y the GVNS algorithm, as presented in Section 4 . 

. Computational results 

The ITIA, GVNS, and IE algorithms presented in Sections 3, 4 ,

nd 5 , respectively, were implemented using the C++ language

ith NetBeans IDE 7.4 as the compiler. 

The experiments were performed on a computer with Intel ®

ore TM i7-3632QM CPU, 2.20 GHz, 8GB of RAM, and the Ubuntu

3.10 operating system. Although the processor of this device has

ore than one core, the algorithms are not optimized for multi-

rocessing. 

The instances used to test the algorithms are described in

ection 6.1 . In Section 6.2 , the results associated to the applica-

ion of GVNS, the IE algorithm, and the CPLEX solver on instances

f SMSPETP-SIS containing up to 20 jobs are presented. The algo-

ithms ITIA and OTA are also compared. OTA is the only algorithm

ound in the literature that is able to determine the optimal com-

letion date for each job in a given execution sequence of SM-

PETP. On the other hand, in Section 6.3 the best heuristic algo-

ithm from Section 6.2 , namely GVNS using ITIA, is compared with

n algorithm from the literature. 

.1. Instance description 

In order to evaluate the algorithms GVNS, ITIA, and IE, in-

tances were generated using the methodology of [31] and [27] .

his methodology is described below. 

For each job x ∈ I , the processing time P x , cost per tardiness

nit βx , and cost per earliness unit αx are randomly generated in-

egers within the intervals [1, 40], [1, 10], and [1, βx ], respectively.

he time window center of job x is a random integer number

ithin the interval [(1 − T F − RDD 
2 ) TPT , (1 − TF + 

RDD 
2 ) TPT ] , where:

• TPT is the total processing time of all jobs. 
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Table 3 

Comparison of the results obtained with configurations GVNS/OTA, IE/OTA, 

GVNS/ITIA , IE/ITIA , and CPLEX (average times in seconds over 16 instances). 

# OTA ITIA CPLEX 

Jobs GVNS IE GVNS IE 

08 0 .08 0 .02 0 .02 0 .01 2 .62 

09 0 .14 0 .09 0 .02 0 .04 18 .91 

10 0 .22 0 .44 0 .04 0 .18 183 .67 

11 0 .35 2 .61 0 .05 0 .97 2085 .10 

12 0 .54 19 .45 0 .07 6 .12 –

13 0 .76 212 .35 0 .09 66 .76 –

14 1 .07 1126 .28 0 .13 277 .56 –

15 1 .40 6594 .25 0 .19 1799 .71 –

16 2 .07 – 0 .23 – –

17 2 .80 – 0 .29 – –

18 3 .47 – 0 .38 – –

19 4 .56 – 0 .43 – –

20 6 .33 – 0 .56 – –
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i  
• TF is the tardiness factor. 
• RDD is the relative range of the time windows. 

The time window width is an integer number that is randomly

elected in the interval [0 , TPT 
n ] , where n is the number of jobs to

e scheduled. For any distinct jobs x , y ∈ I , the setup time S xy is

n integer number that is randomly selected in the interval [5, 15].

he setup times are not necessarily symmetrical. Sets of instances

ith 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, and 75

obs were generated. The values 0.1, 0.3, 0.5, and 0.8 were used for

F , and 0.4, 0.7, 1.0, and 1.3 for RDD . Thus, there are 16 instances

n each set, totaling 272 instances. Whenever the setup times for

 generated instance did not satisfy the triangle inequality given

y 

 xy ≤ S xz + P z + S zy , ∀ x, y, z ∈ I, x � = y, x � = z and y � = z (7) 

he instance was discarded, and another was generated with the

ame values for TF and RDD . Therefore, all instances from the

resent database satisfy the triangle inequality in relation to the

etup times. These instances, and all of the computational results,

re available at http://www.decom.ufop.br/prof/marcone/projects/ 

MSPETP.html . 

.2. Results for instances of up to 20 jobs for SMSPETP-SIS 

This section presents the computational results associated to

he application of the GVNS and IE algorithms, as well as the

PLEX solver, for solving SMSPETP-SIS. An initial upper bound on

he objective function value of the problem used in the IE algo-

ithm is provided by the GVNS procedure. On the other hand, the

PLEX solver is applied to the mathematical programming model

f Gomes Júnior et al. [13] . This model was implemented with the

++ Concert Technology of the IBM ILOG CPLEX Optimization Stu-

io 12.5.1 optimizer. The solver was configured to use only one

hread. Other parameters remained unchanged. 

The instances used in this set of tests each involve up to 20

obs, on account of the prohibitive computational cost required by

he exact algorithms for solving larger instances. Because the IE

lgorithm is only applied to solve SMSPETP-SIS, the setup times of

ach instance were disregarded in this set of tests. 

The GVNS parameters were empirically set to the values GVNS-

ax = VNDmax = 4 n , where n is the total number of jobs to be

cheduled. The effect of these parameters on the GVNS algorithm

s presented in Section 6.3 . Each job sequence generated by the

VNS is evaluated by both the ITIA and OTA [31] algorithms in or-

er to compare the efficiency of these procedures. Considering the

tochastic nature of GVNS, each instance is solved 30 times. 

Table 3 presents the average times obtained by the applica-

ion of the GVNS and IE algorithms and the CPLEX solver in in-
tances of up to 20 jobs. In this table, the first column indicates

he number of jobs in each set of instances. The second and third

olumns show the mean times, in seconds, required for OTA to

valuate each job sequence generated by the GVNS and IE algo-

ithms, respectively. Similarly, the fourth and fifth columns show

he required computational times when using the ITIA algorithm.

inally, the last column presents the mean time required by CPLEX

o solve the instances of each set. For instances with 12 jobs or

ore, the run time using the CPLEX solver is prohibitive. Similar

ehavior is observed when applying the IE algorithm to solve in-

tances with more than 15 jobs. Therefore, Table 3 does not include

hese results. 

According to Table 3 , the average time required by GVNS with

TIA (GVNS/ITIA) is always lower than the respective average time

equired by GVNS with OTA (GVNS/OTA). For example, for the set

f 20 jobs the average time required by GVNS/OTA is almost 11

imes higher than that required by GVNS/ITIA. For instances with

p to 11 jobs, GVNS is able to determine the optimal solutions ob-

ained by CPLEX within significantly lower computational times,

egardless of the algorithm used to evaluate the generated se-

uences. For the instance set of 11 jobs, GVNS/ITIA requires an av-

rage time of 0.05 s, and CPLEX requires 2085.1 s. 

Table 3 also indicates that the average times required by CPLEX

re significantly higher than those required by IE. For the instance

et of 11 jobs, IE/ITIA requires less than 1 s on average, whereas

PLEX requires 2085.1 s. The average times required by IE/ITIA are

lways lower than those required by IE/OTA. For example, for the

et of 14 jobs the average time required by IE/OTA is more than

our times greater than that of IE/ITIA. 

If the processing time had been limited to one hour, then

E/OTA would have been unable to solve one of the instances with

4 jobs and six of the instances with 15 jobs. Under the same con-

itions, only three of the instances with 15 jobs would not have

een solved by IE/ITIA. 

Although GVNS is a heuristic procedure, it always determines

he same solution in all of the runs for each instance of SMSPETP-

IS involving up to 20 jobs. Furthermore, GVNS finds the optimal

olutions for all instances where such solutions are known (i.e., in-

tances with up to 15 jobs). 

.3. Results for instances of up to 75 jobs for SMSPETP 

For instances of SMSPETP involving between eight and 75 jobs,

he GVNS/ITIA algorithm is compared with the best version of the

GA algorithm from Ribeiro et al. [28] . GVNS is employed with

TIA because the ITIA algorithm is faster than OTA in determin-

ng the optimal starting dates of the job sequence, according to

ection 6.2 . 

For the comparison with the AGA algorithm, the parameters

VNSmax and VNDmax of the GVNS/ITIA algorithm are executed

ith the values GVNSmax = VNDmax = 3 n, GVNSmax = VNDmax

 4 n , and GVNSmax = VNDmax = 5 n , where n is the number of

obs to be scheduled. These parameters characterize the stopping

riteria of GVNS and VND, respectively. 

In Section 6.3.1 , statistical tests are presented to compare GVNS

ith AGA. In Sections 6.3.2 to 6.3.4 , the results achieved by these

lgorithms are compared. In Section 6.3.2 , the number of times

hat AGA achieved a better performance than GVNS is described.

n Section 6.3.3 , the number of times that GVNS obtained a better

erformance than AGA is considered. In Section 6.3.4 , these algo-

ithms are compared in relation to the relative average deviation

RAD) metric. Finally, in Section 6.3.5 the average times required

y these algorithms are compared. 

.3.1. Hypothesis tests 

Considering the stochastic nature of the algorithms, each one

s applied 30 times to each instance. On the other hand, instances

http://www.decom.ufop.br/prof/marcone/projects/SMSPETP.html
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Table 4 

Number of times AGA is better than GVNS. 

# Parametric test Permutation test 

Jobs GVNS/3 n GVNS/4 n GVNS/5 n GVNS/3 n GVNS/4 n GVNS/5 n 

08 0 0 0 0 0 0 

09 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 1 0 0 0 0 0 

13 0 0 0 0 0 0 

14 2 0 0 2 0 0 

15 1 1 0 1 0 0 

16 1 0 0 0 0 0 

17 2 1 0 2 0 0 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

20 3 1 1 3 1 0 

30 7 3 1 8 2 1 

40 8 0 0 8 0 0 

50 6 1 0 5 1 0 

75 1 0 0 2 0 0 

Total 32 7 2 31 4 1 
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with 75 jobs are only solved 10 times per algorithm, on account of

the high computational cost. 

For each instance, the results obtained by GVNS with the three

parameter values are compared with those found by AGA. The

comparison is performed by using two one-way hypothesis tests

with a significance level of γ = 0 . 05 . The first test is a paramet-

ric hypothesis test for two independent samples [24] , whereas

the second is a permutation test [6] . Permutation tests are non-

parametric statistical methods, i.e., they do not require that sam-

ples come from populations with normal distributions [24] . 

For the two algorithms A 1 and A 2 , the following hypotheses

(null and alternative) are formulated to compare the averages of

their solutions on a given instance: 

• Null hypothesis ( H 0 ): The averages of the solutions obtained us-

ing the algorithms A 1 and A 2 are equal. 
• Alternative hypothesis ( H 1 ): The average of the solutions ob-

tained using algorithm A 1 is lower than the average of solutions

obtained using algorithm A 2 . 

Therefore, the null hypothesis states that there is no significant

evidence that the average of the solutions obtained by algorithm

A 1 is lower than the average of the solutions obtained by algorithm

A 2 . Conversely, rejecting the null hypothesis and accepting the al-

ternative hypothesis means that within the adopted significance

level, there is significant evidence that the solutions obtained by

algorithm A 1 are better on average than the solutions obtained by

algorithm A 2 . 

The permutation test is based on Carrano et al. [6] , and is de-

scribed in Algorithm 4 . In this algorithm, A 1 = (a 1 , a 2 , . . . , a n 1 ) and

A 2 = (b 1 , b 2 , . . . , b n 2 ) are vectors that store the solutions obtained

by algorithms A 1 and A 2 , respectively, as applied to a given in-

stance. The significance level is γ , with 0 < γ < 1. 

Algorithm 4: Permutation test( A 1 , A 2 , γ ). 

d ← 

1 
n 2 

n 2 ∑ 

i =1 

b i − 1 
n 1 

n 1 ∑ 

i =1 

a i ; 

V ← (a 1 , a 2 , . . . , a n 1 , b 1 , b 2 , . . . , b n 2 ) ; 

for i = 1 , 2 , . . . , 500 do 

V ′ ← the vector V shuffled; 

w i ← 

1 
n 2 

n 2 ∑ 

j=1 

v ′ 
j 
− 1 

n 1 

n 2 + n 1 ∑ 

j= n 2 +1 

v ′ 
j 
; 

end 

p v alue (d) ← P (W < d) ; // Probability that W is smaller 

than d. 

if p v alue (d) ≥ 1 − γ then 

reject H 0 and accept H 1 ; 

end 

6.3.2. AGA × GVNS 

First, in order to verify the number of times that AGA achieved

a better performance than GVNS the hypothesis tests are per-

formed with the combination of algorithms given by AGA × GVNS.

The rejection of the null hypothesis with this combination indi-

cates that the average solution of AGA is better than the average

solution of GVNS (with a significance level of 0.05). 

In Table 4 , the columns “Parametric Test” and “Permutation

Test” present a summary of the results obtained by applying these

hypothesis tests to the solutions of each instance. The first column

indicates the number of jobs in each set of instances. The columns

“GVNS/3 n , ” “GVNS/4 n , ” and “GVNS/5 n ” indicates the number of

times that the null hypothesis is rejected when applying the cor-

responding hypothesis tests with the GVNS parameter values set as

3 n , 4 n , and 5 n , respectively. 
According to Table 4 , the hypothesis tests (the permutation and

arametric tests) obtained similar results. Regardless of the param-

ter values used in GVNS, the null hypothesis is not rejected in

ny of the comparisons involving instances of up to 11 jobs. For

he other sets of instances, as the GVNS parameter values increase

he number of times that the average solution obtained by AGA

s better than that obtained by GVNS decreases, in both hypothesis

ests. For example, in the 16 instances with 50 jobs, the parametric

est indicates that AGA is better than GVNS/3 n in six instances, and

etter than GVNS/4 n in just a single case. For instances with 75

obs, when AGA is compared with GVNS/3 n the permutation test

ndicates that the null hypothesis should be rejected in only two

f the 16 instances. With the GVNS parameters fixed to 4 n or 5 n ,

here is no significant evidence that the average solutions of AGA

re better than the corresponding average solutions of GVNS. 

Finally, when the GVNS parameters are fixed to 5 n , the para-

etric and permutation tests indicate that the null hypothesis

hould be rejected a total of two and one times, respectively, in

elation to all instances of all sets. 

.3.3. GVNS × AGA 

The hypothesis (parametric and permutation) tests are used to

erify the number of times that GVNS obtained a better average

olution than AGA. These tests are conducted using a combination

f algorithms in the form GVNS × AGA. Thus, rejection of the null

ypothesis indicates that there is significant evidence that the av-

rage solution of GVNS is better than that of AGA (with a signifi-

ance level of 0.05). 

The columns “Parametric Test” and “Permutation Test” of

able 5 summarize the results when the hypothesis tests are ap-

lied to the solutions of each instance. Note that in this table, all

olumns have the same meanings as those in Table 4 . 

Table 5 shows that the hypothesis (parametric and permuta-

ion) tests return similar results. For the instances with 11 jobs,

he parametric hypothesis test indicates that GVNS obtains a better

verage solution than AGA for one instance when the GVNS param-

ter values are set to 4 n or 5 n . Similar behavior can be observed

n the instance sets with 13, 15, 16, and 17 jobs, respectively. For

nstance sets with less than 20 jobs, the permutation test rejects

he null hypothesis for only a single instance (with 13 jobs and

VNS parameter values set to 4 n or 5 n ). In other instances, as the

VNS parameter values increase, the number of times that both

ypothesis tests show that the average solution of GVNS is bet-

er than that of AGA increases. For the set of 16 instances with 75
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Table 5 

Number of times that GVNS is better than AGA. 

# Parametric test Permutation test 

Jobs GVNS/3 n GVNS/4 n GVNS/5 n GVNS/3 n GVNS/4 n GVNS/5 n 

08 0 0 0 0 0 0 

09 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 1 1 0 0 0 

12 0 0 0 0 0 0 

13 0 1 1 0 1 1 

14 0 0 0 0 0 0 

15 0 0 1 0 0 0 

16 0 1 1 0 0 0 

17 1 1 1 0 0 0 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

20 1 3 3 0 3 4 

30 0 2 7 0 2 6 

40 0 2 9 0 2 8 

50 0 6 10 0 6 10 

75 0 4 11 0 4 11 

Total 2 21 45 0 18 40 

j  

l  

o  

w  

i  

A  

a

 

c  

g  

c  

m  

u  

c  

t  

o  

i  

a

6

 

q  

t  

m  

t  

R

I  

f  

b

 

s  

a  

R  

A

 

t  

r

 

 

Table 6 

Results of the hypothesis tests with the RAD metric. 

Comparison Conclusion 

Parametric test Permutation test 

GVNS/3 n × AGA No reject H 0 No reject H 0 
GVNS/4 n × AGA No reject H 0 Reject H 0 
GVNS/5 n × AGA Reject H 0 Reject H 0 

Table 7 

Average times required by the AGA and GVNS algorithms (in seconds). 

# Average time 

Jobs GVNS/3 n GVNS/4 n GVNS/5 n AGA 

08 0 .01 0 .01 0 .02 0 .54 

09 0 .01 0 .02 0 .03 0 .67 

10 0 .02 0 .03 0 .05 0 .84 

11 0 .03 0 .04 0 .07 1 .06 

12 0 .04 0 .06 0 .10 1 .43 

13 0 .06 0 .09 0 .13 1 .87 

14 0 .08 0 .13 0 .19 2 .18 

15 0 .11 0 .18 0 .26 2 .95 

16 0 .13 0 .22 0 .32 3 .90 

17 0 .17 0 .27 0 .42 4 .79 

18 0 .21 0 .33 0 .50 5 .88 

19 0 .26 0 .43 0 .63 6 .96 

20 0 .36 0 .60 0 .90 9 .06 

30 2 .25 3 .63 5 .15 57 .95 

40 8 .87 14 .55 20 .49 215 .94 

50 27 .07 42 .76 61 .62 655 .92 

75 195 .35 306 .33 461 .46 5213 .14 
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obs each, both of the hypothesis tests suggest that the average so-

ution of GVNS with parameter values set to 4 n is better than that

f AGA in four instances, and that the average solution of GVNS

ith parameter values set to 5 n is better than that of AGA for 11

nstances. Finally, GVNS/5 n obtains a better average solution than

GA in a total of 45 and 40 instances according to the parametric

nd permutation tests, respectively. 

The comparisons of results presented in Tables 4 and 5 indi-

ate that the hypothesis (parametric and permutation) tests sug-

est that AGA is more often better than GVNS/3 n . However, when

onsidering GVNS/4 n or GVNS/5 n , this scenario is reversed. The

ost significant difference occurs when the GVNS parameter val-

es are set to 5 n . In this case, the parametric hypothesis test indi-

ates that AGA determined better average solutions than GVNS in

wo instances, whereas the permutation test indicates the same for

nly one instance. The same hypothesis tests suggest that GVNS/5 n

s better than AGA in 45 and 40 instances for the parametric test

nd permutation tests, respectively. 

.3.4. Analysis of the relative average deviation 

In order to determine which of the algorithms provides a better

uality of solutions, the hypothesis (parametric and permutation)

ests are also applied using the relative average deviation ( RAD )

etric. Given an instance i and an algorithm A , the RAD of solu-

ions of A for the instance i , denoted RAD 

A 
i , is calculated as follows:

AD 

A 
i = 

f A 
i 

− f ∗
i 

f ∗
i 

. (8) 

n this equation, f A 
i 

represents the average value of the solutions

ound by algorithm A for the instance i , and f ∗
i 

is the value of the

est known solution for this instance. 

For the considered instances, the value adopted for f ∗
i 

corre-

ponds to the best solution found for the instance i using the AGA

lgorithm of Ribeiro et al. [28] . Note that the lower the value for

AD 

A 
i , the better the quality of the solutions obtained by algorithm

 for instance i . 

The following hypotheses (null and alternative) are developed

o compare the average RAD values of the GVNS and AGA algo-

ithms: 

• Null hypothesis ( H 0 ): The average RAD of GVNS is equal to the

average RAD of AGA. 
• Alternative hypothesis ( H 1 ): The average RAD of GVNS is lower
than the average RAD of AGA. r  
Based on this metric, accepting the null hypothesis means that

here is no significant evidence that the average of the solutions

ound by GVNS is better than the average of those found by AGA.

n contrast, rejecting the null hypothesis and accepting the alterna-

ive hypothesis means that there is sufficient evidence to state that

he average solution obtained by GVNS is better than that obtained

y AGA (with a significance level of 0.05). 

Table 6 presents the conclusions of the hypothesis (parametric

nd permutation) tests with the RAD metric. GVNS/3 n , GVNS/4 n ,

nd GVNS/5 n represent the applications of GVNS with the parame-

er values set to 3 n , 4 n , and 5 n , respectively. This table shows that

he parametric hypothesis test does not reject the null hypothesis

or GVNS/3 n and GVNS/4 n . Conversely, these tests suggest that the

verage solution for GVNS/5 n is of a higher quality than that of

GA. The permutation test only does not reject H 0 when the GVNS

arameter values are set to 3 n . This indicates that according to this

est, when the GVNS parameter values are set to 4 n or 5 n , GVNS

btains a better average solution than AGA. 

.3.5. Comparisons in relation to required times 

Table 7 presents the average times required (in seconds) by

VNS and AGA for each set of instances. In this table, the first col-

mn indicates the number of jobs for each instance set. The aver-

ges are relative to the 30 applications of the algorithms for each

nstance. The values obtained with the GVNS parameter values set

o 3 n , 4 n , and 5 n are presented. 

Table 7 indicates that the average time required by GVNS is di-

ectly related to the parameter values of the algorithm. This occurs

ecause the average time increases whenever the GVNS parame-

er values increase. A comparison of the average times required

y AGA with the corresponding average times required by GVNS

hows that the time required by AGA is significantly higher, re-

ardless of the parameter values used for GVNS. Although GVNS/5 n

equired a higher computational time than other settings of GVNS,
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AGA required average times that were still over 10 times higher

than this setting for all instance sets. 

7. Conclusions 

This paper has addressed the single machine scheduling prob-

lem with distinct time windows and sequence-dependent setup

times (SMSPETP). The objective is to minimize the total weighted

earliness and tardiness. This problem involves determining the job

execution sequence and the starting times of all jobs in the se-

quence, considering the possibility of inserting idle time between

the executions of consecutive jobs. This study also considered the

special case with a sequence-independent machine setup time,

which is denoted by SMSPETP-SIS. 

The main contribution of this study is to propose a new O ( n 2 )

algorithm, named ITIA, for determining the optimal times for the

completion of each job in a given sequence. In addition, the de-

velopment of an implicit enumeration algorithm (IE) and a gen-

eral variable neighborhood search algorithm (GVNS) also constitute

important contributions. The IE algorithm is an exact algorithm,

which is only valid for solving SMSPETP-SIS based on theoretical

results developed for this problem. Because no specific exact algo-

rithm for solving SMSPETP-SIS is present in the literature, the re-

sults obtained by EI can be used as a benchmark in future works.

On the other hand, GVNS is a heuristic algorithm that can be ap-

plied to solve larger SMSPETP instances. Each sequence generated

by the GVNS and IE algorithms is evaluated using ITIA. 

Computational experiments performed on a set of instances

generated according to the standard parameters from the literature

indicated that ITIA is more efficient than the OTA algorithm from

Wan and Yen [31] . This is because of the lower times required by

IE and GVNS using ITIA rather than OTA. 

The IE algorithm is able to solve SMSPETP-SIS in a much lower

time compared with CPLEX applied to the formulation of mixed in-

teger programming from Gomes Júnior et al. [13] . Conversely, the

GVNS algorithm is robust, finding the optimum solution for all in-

stances with known optimum solutions and zero variability in the

remaining cases. 

Owing to the better performance achieved by ITIA compared

with OTA in the first set of tests, GVNS combined with ITIA

(GVNS/ITIA) was compared with the best version of the AGA al-

gorithm from Ribeiro et al. [28] , in SMSPETP instances with up to

75 jobs. Two hypothesis tests, a parametric test and a permutation

test, demonstrate that GVNS/ITIA is able to determine better aver-

age solutions than AGA in a significant number of cases. For exam-

ple, in instances with 75 jobs, GVNS/ITIA performs better in almost

70% of the instances. These hypothesis tests indicate that with the

parameter values set to 5 n , where n is the number of jobs to be

scheduled, the GVNS/ITIA algorithm performs better than AGA in

relation to the relative average deviation metric. In addition, the

average time required by AGA is always 10 times greater than the

corresponding time required by GVNS/ITIA. 

Regarding future research, the study of new optimality condi-

tions for solutions of SMSPETP-SIS is recommended. In this case, it

is expected that the computational time required for the IE algo-

rithm would be reduced, with the consequence of allowing the res-

olution of larger instances. Furthermore, it is proposed to study op-

timality conditions for solutions of SMSPETP, in order to apply the

IE algorithm in problems with sequence-independent setup times. 
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