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A B S T R A C T

Cross-selling campaigns seek to offer the right products to the set of customers with the goal of maximizing
expected profit, while, at the same time, respecting the purchasing constraints set by investors. In this context, a
bi-objective version of this NP-Hard problem is approached in this paper, aiming at maximizing both the
promotion campaign total profit and the risk-adjusted return, which is estimated with the reward-to-variability
ratio known as Sharpe ratio. Given the combinatorial nature of the problem and the large volume of data,
heuristic methods are the most common used techniques. A Greedy Randomized Neighborhood Structure is
also designed, including the characteristics of a neighborhood exploration strategy together with a Greedy
Randomized Constructive technique, which is embedded in a multi-objective local search metaheuristic. The
latter combines the power of neighborhood exploration by using a Pareto Local Search with Variable
Neighborhood Search. Sets of non-dominated solutions obtained by the proposed method are described and
analyzed for a number of problem instances.

1. Introduction

In this paper, we consider a bi-objective metaheuristic for choosing
sets of clients in direct-marketing campaigns. We call this problem the
Targeted Offers Problem in Direct Marketing (TOPDM) promotional
campaigns. Solving the proposed bi-objective problem involves search-
ing for the sets of customers that maximize both the promotion
campaign profit and the risk-adjusted return (reward-to-variability
index). Candidate solutions should respect campaign operational
requirements related to the investors' minimum desired profit, avail-
able budget, viability of the product offers and customer constraints.

Since there is uncertainty concerning whether a client will positively
react to a new offer, a low-risk cross-selling campaign is sought. In the

examples in this paper, we consider instances in which customers with
high expected profits are the ones with higher volatility.

To handle the reward-to-variability concept, a risk-adjusted return
measure based on the Sharpe Ratio [1] is proposed, which is a useful
index for investment analysis usually adopted by investors facing
choices under uncertainties [2].

In the complex scenario of acquiring new customers and improving
existing relationships, the field of customer relationship management
has been investigated for distinct applications [3,4]. As mentioned by
Cohen [5], the right product should be offered to the right customer at
the right time. The goal of recognizing and responding to client
requirements remains a significant challenge. Among several techni-
ques, Operational Research (OR) methods have been shown to be a
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useful and powerful tool that is used by many marketing departments
of well-established firms [6–8].

Bhaskar et al. [9] consider uncertainty in connection with the
problem of selecting customers for a cross-selling campaign in a retail
bank. A linear fuzzy model based on triangular fuzzy rules over the
input parameters (client expected profit and positive responses rates)
was developed. A real case involving up to 180,000 clients was
employed. These customers were aggregated into a small number of
groups according to their expected profits. Cohen [5] studied the case
of a promotional campaign in an international bank. The term
campaign implied one large pro-active customer contact campaign
that comprised 11 distinct offers. Approximately 2.5 million potential
customers were evaluated for that campaign. From response models,
the specific benefit of each offer for each customer was estimated. In
Nobibon et al. [10], a TOPDM was solved using heuristic algorithms
and mathematical formulations; in particular, different mathematical
programming models were developed. A Branch-and-Price [11] meth-
od was designed and the achieved upper bounds were used for
comparing seven different optimization methods. The Branch-and-
Price proved to be unable to obtain good feasible solutions for instances
involving a large set of clients.

Among the proposed techniques, a Tabu Search algorithm [12]
exhibited the best performance, using three different Neighborhood
Structures (NS). Delanote et al. [13] included bundled products and the
use of multi-channel structures, which allowed the offers to be made
through different offering channels (such as mail, email, telemarketing,
etc). In Oliveira et al. [14], the dataset of Nobibon et al. [10] was
further explored and a new greedy randomized initial solution builder
combined with General Variable Neighborhood Search (GVNS) [15]
was proposed.

Here, we present a Multi-Objective approach based on the concepts
of maximizing profits and searching, at the same time, for a set of
customers with less variability over their expected return (represented
by the Sharpe ratio). The use of different NS has been already
investigated in the literature and applied for solving several

− Hard problems [16–18]. In particular, Nobibon et al. [10] and
Oliveira et al. [14] already showed the potential of trajectory search
algorithms for the TOPDM. A new concept of Greedy Randomized
Neighborhood Structures (GRNS) is also proposed in this paper. The
idea of GRNS is to perform neighborhood exploration and reconstruct
parts of the neighbor solution by means of a procedure inspired by the
metaheuristic Greedy Randomized Adaptive Search Procedure
(GRASP) [19]. In order to deal with multiple conflicting objectives,
these mechanisms are included in a Two-phase Pareto Local Search
with VNS (2PPLS-VNS) [20] to explore the search space in the quest
for high quality sets of non-dominated solutions. A Generic 2PPLS-
VNS is therefore designed, considering the core of the 2PPLS-VNS and
the possibility of using different Neighborhood Exploration (NE)
techniques [21]. The problem instances proposed by Nobibon et al.
[10] are adapted and used as cases of study.

The main contributions of this current work are:

• use of profit variability measure in connection to the client response;

• consider the Sharpe ratio index for calculating risk-adjusted profit in
targeted offers;

• introduction of a bi-objective direct marketing promotional cam-
paign;

• design of a Greedy Randomized Neighborhood Structure;

• generalization of the 2PPLS in order to obtain non-dominated
solutions with different neighborhood exploration techniques;

The remainder of this paper is organized as follows. Section 2
describes the TOPDM, as well as an introduction to the uncertainties
concerning the client responses and the use of the reward-to-variability
concept known as Sharpe ratio. Section 3 describes the proposed
framework to engage the multi-objective TOPDM. Solution representa-

tion and its evaluation are described in Sections 3.1 and 3.2,
respectively. The greedy randomized solution generator is described
in Section 3.3. Section 3.4 presents the NS used to guide the search for
non-dominated solutions, as well as the new GRNS concepts, which are
described in Section 3.5. The combination of three multi-objective
metaheuristics is described in Section 3.6. Section 4 presents the
computational experiments, and, finally, followed by a summary and
conclusions in Section 5.

2. Problem description

The variant of the TOPDM approached here is composed of a set
of clients C c c c= { , ,…, }m1 2 and a set of possible product offers
O o o o= { , ,…, }n1 2 , quoted for the direct marketing campaign. A cost
c > 0ij and profit p ≥ 0ij is associated to each customer i C∈ if offer
j O∈ is directed to him/her. For each client i C∈ , there is a
maximum number of offers Mi which would saturate that client.
For each product offer j O∈ , if the product j is selected to be used
during the campaign, it should be offered to a minimal number of
customers, Oj

min. Each product has an initial fixed cost fj, if it is
used in a campaign. A maximum available budget Bj is set by
investors of the campaign, which means that the total cost associated
with each product offer j O∈ should not be bigger than Bj. It also
required a minimum rate of return HR of the whole campaign,
known as the Hurdle Rate.

Nobibon et al. [10] considered a fixed probability of a client
accepting an offer, which they called rij. This value was multiplied by
the return to the firm, defined as DFVij, when client i responded
positively to an offer of product j. Thus, the expected profit pij was
estimated as DFV r·ij ij. In contrast to their work, the bi-objective
problem introduced in this paper considers a extra objective related
to the variability over each client profit pij.

Client uncertainties, regarding their responding positively to an
offer, usually increase when the expected profits from it are also high
[1]. The latter is a well-known fact that investors used to face. In this
sense, a variability parameter, defined as vij, is associated with each
customer i C∈ when it is targeted by the offer j O∈ . The higher the
variability/volatility vij, the higher is the risk of investing in that
client.

Fig. 1 shows a didactic example of a solution with three clients,
m=3, and two products, n=2. It should be emphasized that all clients
and product constraints are respected in this considered example. It
can be seen that product offer o1 is targeting the set of clients
c c c{ , , }1 2 3 , aggregating a total cost and profit of 7 and 10, respectively.
Product offer o2 is being offered to the set of clients c c{ , }1 3 , consuming
an amount of resources equal to 7 and with a total expected profit of 12.

Fig. 1. TOPDM example.
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The total expected return and cost of this whole campaign are equal to
22 and 19, respectively. It means a total profit of 15.78% over the total
amount of money invested over the campaign.

The total variability of the campaign is calculated by the
weighted average of each individual volatility vij multiplied by
the amount of profit pij expected from that client, as can be seen in
Eq. (1).

V s
v p s

p
( ) =

∑ ∑ · ·

∑ ∑
i C j P ij ij ij

i C j P ij

∈ ∈

∈ ∈ (1)

Obviously, only active offers are considered in the calculation, using
the binary variable sij for this selection, as will be described ahead in
Section 3.1.

Thus, the total risk V of the example given in Fig. 1 is:

V = 143
22

= 6.5%

The TOPDM can be reduced to a special case of the 0–1 Multiple
Knapsack Problem (MKP). A brief study of this class of problems can
be found in [22]. In fact, this analogy can be verified if each possible
offer j O∈ in the campaign is seen as a knapsack. Thus, in the
beginning of the campaign, the knapsack is empty and should be filled
with, at least, Oj

min offers. The knapsack maximum capacity is the
available budget for the campaign of that product. Each client i C∈ ,
seen as a single object to be inserted in this knapsack, has an expected
profit pij, an analogy to each object benefit value in the classical
Knapsack Problem. The weights of the items in the knapsack are
related to the customers in the TOPDM and their respective costs cij. In
this sense, since the MKP belongs to the − Hard class, the TOPDM
also does.

In 1966, William Forsyth Sharpe (Economics Nobel prize in 1990)
introduced the concept of reward-to-variability ratio as a way to
measure portfolio performance. The generic Sharpe Ratio [1], as it
was later called by academics and financial operators, can be seen as a
deviation risk measure, or a risk-adjusted return, measuring the
difference between the expected return of a fund and the benchmark
investment, divided by the residual standard deviation, as presented in
Eq. (2). It is often cited as a measure to calculate excess return (or risk
premium).

SR
E RI RI

σ σ
=

[ − ]
−

f

R Rf (2)

In Eq. (2), E [·] represents the mathematical expectation operator,
RI is the return of an asset and RIf is the risk-free return. In the case
that RIf is a constant risk-free return throughout the analyzed period
(as in the current case of study, the marketing campaign),
σ σ σ− =RI RI Rf . E RI RI[ − ]f is the expected value of the excess of the
asset return over the benchmark return.

The Sharpe Ratio has been useful when individual investors face a
choice under uncertainty, as it happens in the case of the expected
profit from huge direct marketing campaigns. It is able to evaluate not
only the profitability, but also the risk faced by the investors of the
cross-selling campaign.

3. Methodology

3.1. Solution representation

A solution handled by the metaheuristic algorithm is represented by
a binary matrix R C O× , where C indicates the set of available customers
and O represents the possible products to be used in the campaign. If a
given cell si j, , with i C j O∈ , ∈ , is equal to “1” (true), the product j will
be offered to the client i; otherwise, the value would be “0” (false).

Fig. 2 shows the solution representation for the example previously
given in Fig. 1.

3.2. Objective functions and evaluation

A solution s is evaluated regarding two conflicting objective
functions, that should be maximized:

• f s( )P , Eq. (3), which measures the total profit of the campaign;

• f s( )SR , Eq. (5), which measures the total reward-to-variability of the
whole investment, inspired from the Sharpe Ratio SR index;

f s( )P is seen as the total return of the marketing campaign and is
calculated following Eq. (3). Basically, it is the total expected profits pij,
given the set of active clients i targeted by offers j, minus the total costs
TC, described in Eq. (4).

The adaptation of the generic Sharpe Ratio for the TOPDM can be
seen in Eq. (5). As mentioned in Section 2, the classic indicator has a
variable related to the risk free investment. Here, the Hurdle Rate HR
of the campaign, settled by the investors, is used instead of the risk-free
Rf. Thus, we define HR R= f , which is constant during the whole
campaign, since investors will not change their minimum total profit.
Finally, the original σR is now seen as the total risk of the campaign,
summed into variable V(s), already described in Eq. (1).

∑ ∑f s p s TC s( ) = − ( )P

i C j P
ij ij

∈ ∈ (3)

∑ ∑ ∑TC s c s f y( ) = −
i C j P

ij ij
j P

j j
∈ ∈ ∈ (4)

f s

f s
TC s

HR

V s
( ) =

( )
( )

−

( )
SR

P

(5)

3.3. Building an initial solution

A novel greedy randomized solution generator, adapted from the
greedy randomized procedure proposed by Oliveira et al. [14], is
described in this section. The procedure is inspired by the pure greedy
procedure of Van Praag [23].

The pseudo-code of this procedure is described in Algorithm 1. Its
main parameters are described below:

• Set A contains available customers which are not saturated and can
receive more offers;

• set S is the set of products already selected to the campaign;

• variable tp measures campaign current total profit;

• variable tc indicates current total cost;

• set LCj is a list of possible clients to be targeted by the product offers
j , greedily ordered;

• set LRCj is a restricted list of possible clients for a product offer j,
ordered according to the greedy randomized parameter γ ∈ [0, 1];

• set CSj is the current set of selected clients of j;

• variables Cj, Pj and PRj are the current costs, profits and campaign
profit, respectively, of the list of clients in CSj.

Fig. 2. Solution representation example.
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Algorithm 1. BuildGRASPSolution.

Line 1 of Algorithm 1 initializes auxiliary variables and sets. Variables
tp and tc are used in line 23 for verifying if the minimum hurdle rate HR
is satisfied. From lines 2 to 6, a metric called ANPP measures clients
profitability and variability, which is an adaptation of the one presented in
Nobibon et al. [10]. It measures the amount of reward related to the costs,
that is being invested, multiplied by the risk of that client.

Between lines 7 and 22, the “best” set of clients with respect to the
greedy parameters γ is defined. In line 8 the clients are sorted in
decreasing order of their ANPP values. This means that clients with
higher profits are the most desired ones, but, a balance with its
volatility is also done. From lines 10 to 18 the minimum number of
clients Oj for the product offer j is selected. The restricted number of
candidates γ LC· j is added to the set LRCj.

The best product j* with the highest PRj values, satisfying all
operational constraints, is selected in the line 23. Clients targeted to
receive offer j* are inserted in solution s and the algorithm returns to

line 7. If there are no more available offers nor the minimum number of
available clients, the procedure goes to its final steps from lines 31 to
37, when the solution s is refined and improved. At this step, all
available clients are sought to receive more offers, if it generates
feasible solutions and improves the campaign total profit.

3.4. Neighborhood structures

To explore the search space of the TOPDM, NS were adapted from
Nobibon et al. [10] and Oliveira et al. [14]. In their works, three different
NS were used, which are briefly described below. It should be noted that
the initial solution generator (Section 3.3) and these two NS are both
designed to keep feasibility and walk through a feasible search space.

Swap Clients Intra – NS s( )SCIntra
: This movement consists in swapping

two positions, l m C, ∈ of a given product j O∈ , such that
s s=l j m j, , and s s=m j l j, , .

Swap Clients Inter – NS s( )SCInter
: Similar to the movement N s( )TC Intra− ,

but in this case, two positions from different products
i j O, ∈ are swapped, e.g., s s=l i m j, , and s s=m j l i, , .

NS s( )SCIntra
or NS s( )SCInter

represent NS involving small changes in the
solution, which is desirable for local search. However, the small steps
performed in these NS might lead to slow convergence in large
problems. For example, the largest problem dealt by Nobibon et al.
[10], composed of 10,000 clients and 15 products, would give a search
space with almost 50 millions different moves for NS s( )SCIntra

.
In the next section, a novel Greedy Randomized NS is described, as

well as an example of its use.

3.5. Greedy randomized NS

The concept of a Greedy Randomized NS (GRNS) derives from the
same principle of GRASP [19], where a semi-greedy constructive
method builds a solution step by step, inserting elements from a list
of candidates (line 8 of Algorithm 1), according to a sorting criterion.
This criterion is generally related to the best parts of the solution that
are able to minimize the desired greedy function. An example was
already presented in line 4 of Algorithm 1, where ANPP criterion
balances profit and volatility, both related to the objective functions
described in Section 3.2.

An example of a GRNS is the neighborhood GRNS s( )SP , described in
Algorithm 2, adapted from NS s( )SP [10].

Swap Products – NS s( )SP : exchanges two bits from two different col-
umns i j O, ∈ of a given solution s, such that yi=1 and yj=0.
Thus, a product offer which is not being used in the camp-
aign (yj=0) can be now part of the active set of products to be
used during the campaign. A new product is added if, and
only if, there are, at least, Oj available clients for receiving
offers (after removing offers from yi).

The main difference between the strategy introduced here is that a
random product from the active set of products is removed (line 2 of
Algorithm 2) and a new random one is selected from the set of the
product offers which are not being used in the campaign, as can be seen
in line 3. As already mentioned, a new product is only inserted in the
campaign if there is a minimum Oj available clients in the set V and if
operational constraints are still satisfied.

Algorithm 2. GRNS s( )SP move generation.

Input: solution s, γ ∈ [0, 1]GRNS , set of available clients A, set of
active products S
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Output: move m(s)
1 j ← productremove offer from the set of active offers S chosen at

random
2 Update A and S by removing all targeted offers from jremove

3 j←pick product offer at random from the set of inactive offers
O S{ − }

4 for each i A do∈
5

ANPP ←ij
p v c

c

( − )ij ij ij

ij

6 end
7 Call the same procedure from Lines 8 to 18 of Algorithm 1,

considering greedy parameter γGRNS

8 Update targeted offers of product j in solution s
9 Update A by removing all saturated clients
10 for each active client i A do∈
11
12
13

p c and the offer j directed to the client i
generates a feasible solution
s

if
then

end

>

← 1

ij ij

ij

14 end
15 return s

3.6. Multi-objective local search algorithm.

Some recent works in the literature have been trying to standardize
and disseminate the use of Dominance-based Multi-objective Local
Search (DMLS) methods [21]. The core of the generic algorithm used in
this paper combines the flexibility provided by the metaheuristics
GRASP [19] and Two-phase Pareto Local Search with VNS (2PPLS-
VNS) [20]. Pareto Local Search [24–26] is a straightforward extension
of the classical Hill–Climbing method. Nevertheless, we design a even
more generic method, able to perform local searches considering
different neighborhood exploration techniques. For those interested
in this topic, different mechanisms for DMLS were pointed out by
Liefooghe et al. [21] and the variants based on multi-objective variable
neighborhood search methods were discussed by Duarte et al. [27]. The
abbreviation G2PPLS-VNS is defined for our Generic 2PPLS-VNS, with
its pseudo-code outlined in Algorithm 3.

Algorithm 3. Generic 2PPLS with VNS.

Input: Neighborhoods Nk(x), graspMaxSol and γmaxRange

Output: Approximation of the efficient set Xe
1 P0←pfBuilder(graspMax,γmaxRange)
2 Xe and P←P0

3 P ← ∅a
4 k←1
5 while k r do≤
6
7
8
9
10
11
12
13
14
15
16
17
18

p P
Xe p Added N x

Added true
P

Xe

P
k
P P P

k k
P Xe x Xe

N x

forall do

if then

end
end
if then

else

∈
NE( , , , ( ), …)

=
update with the new individuals
added to ;

≠ ∅
← 1
← and ← ∅

← + 1
← ⧹{ ∈ Pareto local

optimum for ( )};

k

a

a

a a

k

19 end
20 retorna Xe

In line 1 of Algorithm 3, an initial set of non-dominated solutions is
generated by the procedure Pareto Front Builder (pfBuilder), described
in Algorithm 4. Procedure pfBuilder generates graspMax solutions and
calls addSolution (Algorithm 5, extracted from [28]) procedure for
filtering those that are non-dominated.

Algorithm 4. pfBuilder.

Input: graspMaxSol and γmaxRange

Output: Approximation of the efficient set Xe
1 for Toi graspMaxSol do← 1
2
3

γ in γ
s BuildGRASPSolution γ
Xe addSolution Xe s f p

← random value [0, ]
← ( )
′ ← ( , , ( ))

maxRange

4 end
5 return Xe

Algorithm 5. addSolution.

Input: Non-dominated population Xe; Solution s and its cor-
responding evaluations z(s)
Output: Xe and Added (optional)

1 Added←true
2 forall x Xe do∈
3
4
5
6
7
8
9

z x z s

z s z x
Xe Xe x

if then

end
if then

end

( ( )⪯ ( )
Added ← false
Break

( )≺ ( )
← ⧹

10 end
11 if Added = true then
12 Xe Xe s← ∪
13 end
14 return Xe

Algorithm 3 performs a Pareto Local Search according to the
2PPLS-VNS designed by Lust & Teghem [20]. This algorithm handles
an auxiliary set Pa that contains the solution added in each iteration.

Line 7 explores the neighbors of each solution p from population P
using any Neighborhood Exploration (NE) technique. In our designed
strategy, the procedure NE, an abbreviation for any Neighborhood
Exploration techniques, should update the set of non-dominated
solutions Xe. An example of an Exhaustive Neighborhood
Exploration (ENE) is given in Algorithm 6, which would result in the
classical PLS algorithm. ENE procedure generates all possible neigh-
bors from lines 1 to 3. However, a partial neighborhood exploration can
be done with random moves, as exemplified in Algorithm 7.

If, at least one new non-dominated solution was found during the
NE procedure (line 12 of Algorithm 3), the local search starts again
from the first NS (line 13) and will search over the new obtained ones.
Otherwise, if no new solution was found, line 16 makes the algorithm
jump to the next available NS. A speed up is made in line 17, in a such
way that the method will not repeat the neighborhood search over
visited neighbors.
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Algorithm 6. Exhaustive Neighborhood Exploration (ENE).

Input: Initial approximation of the efficient set Xe, solution p
and Neighborhood N(p)
Output: Xe and Added (optional)

1 forall p N p do′ ∈ ( )
2 Xe p f p AddedaddSolution( , ′, ( ′), )
3 end
4 retorna Xe

Algorithm 7. Random Neighborhood Exploration (RNE).

Input: Initial approximation of the efficient set Xe, solution p,
Neighborhood N(p) and number of random moves mMax
Output: Xe and Added (optional)

1 for tom mMax do= 1
2
3

p N p
Xe p f p Added

′ ← random move of ( )
addSolution( , ′, ( ′), )

4 end
5 retorna Xe

4. Computational experiments

This section is divided into six subsections. Section 4.1 presents the
computational resources, some considerations about the code and
algorithm parameters. Section 4.2 introduces the cases of study used
in this paper. Section 4.3 checks the ability of the constructive in

generating diversified solutions for composing initial sets of non-
dominated solutions. Section 4.4 analyses the GRNS proposed in this
paper. Section 4.5 reports the results considering all features of the
proposed algorithm. Finally, Section 4.6 describes two Pareto fronts
obtained using the proposed methodology.

4.1. Basic configurations

The metaheuristic algorithm was implemented in C++ in the
framework OptFrame 2.21 [29]. This framework has been successfully
applied to other problems in the literature, as can be seen in
[30,31,18].

The tests were carried out on an OPTIPLEX 9010 Intel Core i7-
3770, 3.40×8 GHZ with 32GB of RAM, with operating system Ubuntu
14.04 precise, and compiled by g++ 4.8.4, using the Eclipse Kepler
Release.

4.2. Datasets

The set of instances was taken from Nobibon et al. [10]. The test
problems comprised cases with 300, 2000 and 10,000 clients, respec-
tively small, medium and large size cases. For each different set of
clients, three instances with different number of possible offers were
used: 5, 10 and 15 available products for the promotional campaign.

The expected return pij for each offer j O∈ directed to customer
i C∈ is an integer between 0 and 16. Clients were grouped according to
their expected profit. Volatility values vij were generated for each
group, as described in Eq. (6). A maximum volatility of 0.6 can be
returned by this formula.
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Fig. 3. Interaction plots of number of initial solutions, γmaxRange parameters and sorting strategy.

1 Available at http://sourceforge.net/projects/optframe/.
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4.3. Checking GRASP ability of obtaining non-dominated solutions—
pfBuilder procedure

The first batch of experiments sought to analyze the ability of the
constructive procedure in finding good initial sets of non-dominated
solutions, i.e., initial estimates of the Pareto front. Different sizes
of the initial population and GRASP greedy parameters were
verified: graspMaxSol = [1, 10, 100, 500, 1000, 3000, 5000, 10, 000] and
γ = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]maxRange . The batch
was composed of 11,673 executions, considering all possible config-
urations of both parameters.

Furthermore, the new ANPP strategy, which includes the variability
vij in the original NPP calculus was also analyzed. In this sense, both
sorting strategies ANPP and NPP were considered for the constructive
procedure.

Obtained sets of non-dominated solutions were evaluated according to:

1. Hypervolume (HV) [32] quality indicator (using the computational
tool provided by Beume et al. [33]);

2. Number of non-dominated solutions.

Fig. 3 shows one interaction plot between analyzed parameters and
these Quality Indicators (QI). Values were normalized for the HV by
subtracting the minimum values and dividing the result by the range of
each indicator,

QI QI
QI QI

− min( )
max( ) − min( )

Dashed lines show the standard deviation while the continuous
lines indicate average values. The higher the γmaxRange, the more
non-dominated solutions could be found, since solutions can be
generated with more randomness. We decide to set this parameter to
γ = 0.8maxRange , providing an interesting balance between the HV,
number of non-dominated solutions and standard deviation.

4.4. Checking PLS with the GRNS

This second batch intended to check if the proposed GRNS was able
to improve the quality of the initial estimates of the Pareto Front. Thus,
we verify its effectiveness regarding different greedy parameters
γ = {0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 1}GRNS , iterMax = {1, 5, 10, 50, 100}GRNS

and graspMaxSol = [1, 10, 100, 500] In the same way as proceeded in
the last batch of experiments, 5000 random runs, with a restricted
computational time of 5 min, were performed considering all combina-
tions of these values.

This randomized greedy NS can be exhaustively searched following
the procedure defined in Algorithm 6. The number of neighbors is the
amount of possible swaps between products (105 for the case involving
15 products, 15 * 14

2
). However, due to the greedy parameter γGRNS,

different clients can be targeted each time a move is generated. Fig. 4
illustrates the obtained results considering both aforementioned QI
plus a diversity indicator, calculated with the Δ metric [34];
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Fig. 4. Interaction plots of different indicators, GRNS parameters and optimization strategy.
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As expected, whenever an ENE is performed (iterMaxGRNS), the
quality of the estimate set of non-dominated solutions is improved.
Thus, parameter γGRNS was fixed to 0.1 for the following analysis.

4.5. Checking complete Generic 2PPLS with VNS

This third and last batch of experiments aimed at analyzing the
performance of the proposed G2PPLS-VNS. For this purpose, two
different configurations were analyzed:

1. searching from the largest to the smallest neighborhoods, l2s
(NS s( )SCInter

, NS s( )SCIntra
and GRNS s( )SP , respectively);

2. exploring from the smallest to the largest neighborhoods, s2l,
(GRNS s( )SP , NS s( )SCIntra

and NS s( )SCInter
, respectively).

As pointed out in Section 3.4, it would be a huge computational

effort to run ENE for the neighborhood NS s( )SCInter
and NS s( )SCIntra

. In
this sense, two RNE (Algorithm 7) were created for each of these NS
with mMax=1000. The first two graphics of Fig. 5 show the HV of the
final estimate of the Pareto Front (after G2PPLS-VNS refinement) and
of its respective initial set of non-dominated solutions, while the third
one shows the HV improvement.

4.6. Obtained sets of non-dominated solutions

Two different test problems were used for illustrating the Pareto
Fronts that can be obtained using the proposed methodology. A single
run of 10 min was performed for each case and the obtained sets of
non-dominated solutions (or parts of it) are illustrated in Fig. 6 and
Table 1.
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Fig. 5. Interaction plots of different indicators, checking local search improvement.
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Table 1
Targeted offers according to clients risk – Different non-dominated solutions
characteristics.

Expected
profit

Sharpe ratio Client risk – vij

0.01 0.05 0.1 0.25 0.4 0.6

Small instance with 100 clients and 15 products
4599 3.69364 0 2 23 96 192 253
4311 4.11411 0 0 24 99 189 211
4177 4.24447 1 1 40 109 176 196
3990 4.3399 1 9 54 111 172 176
3883 4.37944 1 8 62 121 171 160
3846 4.38868 0 12 66 118 169 158

Large instance “L-10-15-1-l” with 10,000 clients and 15 products
240,218 1.63729 4758 7631 14250 14851 15075 15045
239,108 1.92499 4617 7018 12989 13586 13816 13811
238,344 1.9392 5250 6993 12929 13613 13791 13736
217,520 2.03421 5020 6206 11503 12176 12330 12231
217,774 2.01374 4464 6210 11552 12145 12347 12294
192,945 2.09869 3422 5161 9804 10431 10725 10661
192,934 2.12584 3936 5161 9759 10465 10713 10601
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Table 1 shows characteristics of some of the non-dominated
solutions obtained in each case. As can be noticed, those different
solutions illustrate several possible scenarios for conducting the
promotional campaign. Each of these possible sets of targeted offers
indicate a specific expected profit and Sharpe Ratio associated to it.

Finally, Fig. 7 computes the maximum expected profit of each
execution from the batch of experiments of this section. In order to
compare the performance of the proposed algorithm in terms of

minimizing a single objective, the GAP metric gap( = )i
n f f

f

* −
*

i i
n

i
was used,

with f *
i being the best known result for a given test-problem and fi

n the
value obtained by each algorithm. Average gaps of the G2PPLS-VNS
algorithm are compared with the single values reported from a Tabu
Search algorithm (H8) [10].

5. Conclusions and extensions

5.1. Summary and final considerations

In this paper, a bi-objective direct-marketing promotional cam-
paign was discussed by simultaneously optimizing campaign profits
and a reward-to-variability index, adapted from the Sharpe Ratio. A
multi-objective DMLS metaheuristic was proposed for searching for
sets of non-dominated solutions.

Due to the large number of neighborhoods that can be searched, a
generic Pareto Local Search was introduced. In order to produce a
diversified initial estimate of the Pareto Front, a greedy randomized
initial solution builder was proposed for dealing with the concept of
volatility. Furthermore, a special case involving a Greedy Randomized
Neighborhood Structure, which reconstructs parts of the solution, was
described and evaluated.

By adapting test problems from the literature, different char-
acteristics from the obtained Pareto Fronts were described and
analyzed. Sharpe ratio index was able to regulate the search for
low-risk direct marketing campaigns, providing a trade-off between
campaign total profit and the groups of clients which the offers are
directed to.

5.2. Extensions

As future extensions for this research, the current approach should
be applied in other types of direct marketing campaigns.

The development of new neighborhood structures might improve
the ability of the Pareto Local Search in finding non-dominated
solutions from the space of solutions. A parallel version of the method

could improve the performance of the model over problems with large
amount of data. This approach would take advantage of the multi-core
technology that is already integrated in the current machines, and with
easy abstraction for this metaheuristic algorithm.

The entire code used in this research is, from this moment,
available as example on the OptFrame website. Thus, it is expected
that future researchers continue contributing to enhancing the pro-
posed model, increasing its efficiency and improving the tools and ideas
presented in this paper.
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