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Abstract—This work deals with the Unrelated Parallel Ma-
chine Scheduling Problem with Setup Times, with the objective
of minimizing the makespan. It is proposed an Adaptive Large
Neighborhood Search (ALNS) metaheuristic using Learning
Automata (LA) to adapt the probabilities of using removal
and insertion heuristics and methods. A computable function in
the LA updates the probability vector for selecting the actions,
corresponding to six removal and six insertion methods. We also
propose a new insertion method based on Hungarian algorithm,
which is applied to solve subproblems optimally. Computational
experiments are performed to verify the performance of the
proposed method. A set of instances available in the literature
with problems up to 150 jobs and 10 machines is employed in
the experiments. The proposed LA-ALNS is compared against
three other algorithms from the literature. The results suggest
that our algorithm has better performance in most of cases
(88%) under the defined conditions of experiments. Statistical
tests also suggest that LA-ALNS is better than the other
algorithms from the literature. The proposed method is able
to automatically choose the most suitable heuristics for the
instance of the problem, through adaptation and learning in
the Learning Automata.

I. INTRODUCTION

Parallel machine scheduling problems with sequence-

dependent setup times are relevant to many manufacturing

and industrial processes, attracting a special interest of

several researchers [1]. Many real world problems can be

approached with a parallel machine scheduling model, since

in a more abstract sense, it deals with the efficient allocation

of resources, generally called machines, to different tasks,

usually called jobs, optimizing a given cost function. Many

problems in airport management and hospital allocation of

resources can be viewed as a parallel machine scheduling

problem. The efficient allocation of resources to jobs in

these applications can result in significant cost reduction

and productivity increase. Figure 1 illustrates a scenario of

machine scheduling in an industrial context. In that scenario,

two machines are making different products. The aim is

related to minimizing the makespan, which in turn results

in the maximization of production.

In this paper we focus on the Unrelated Parallel Ma-

chine Scheduling Problem with Setup Times (UPMSP-ST).

UPMSP-ST is relevant to several industrial processes and

segments, such as textile, chemical, semiconductor and paper

Fig. 1: An example of machine scheduling in an industrial

process.

[2], [3]. This problem is also studied in the literature due to

its theoretical relevance. It belongs to the NP-hard class [4]

and is a generalization of the Parallel Machine Scheduling

Problem with Identical Machines and without Setup Times.

The proof is presented in [5], [6].

In UPMSP-ST, there is a set of jobs N = {1, ..., n} and a

set of machines M = {1, ...,m}, with the following features:

i) each job j ∈ N is allocated to only one machine i ∈ M ;

ii) the time to process j ∈ N on a machine i ∈M is defined

by pij (processing time); iii) there is a setup time Sijk to

process job k ∈ N after job j ∈ N on machine i ∈M , in that

order. The objective is to allocate all N jobs on M machines

and minimizing the makespan. Based on this description, the

UPMPS-ST is defined as RM |Sijk|Cmax [7]. RM indicates

unrelated machines, Sijk indicates that the setup times are

sequence-dependent and Cmax defines the objective function

as the makespan.

An example with six jobs and two machines is presented

as follows. The processing times on machines M1 and M2
are given below. Setup times of those machines are shown

in Table I.

M1 : p1j = {1, 87, 28, 32, 38, 9}

M2 : p2j = {4, 21, 68, 17, 43, 48}

Figure 2 illustrates a solution for this example. Shading

lines represent the setup times. Jobs 3, 5 and 1 are allocated

in machine M1 and jobs 4, 2 and 6 are allocated in machine

M2, in this order.978-1-5090-4601-0/17/$31.00 c©2017 IEEE



TABLE I: Setup times of machines M1 and M2

M1 1 2 3 4 5 6 M2 1 2 3 4 5 6

1 3 1 8 1 3 9 1 8 5 1 6 1 7
2 4 3 7 3 7 8 2 6 1 7 7 6 2
3 7 3 1 2 3 5 3 7 6 3 9 6 9
4 3 8 3 2 5 2 4 3 7 3 2 1 7
5 8 3 7 9 1 5 5 5 8 5 6 1 9
6 8 8 1 2 2 3 6 7 4 1 7 9 2

Fig. 2: A solution for the example problem

The cost of machine M1 is given by CM1 = S103+p13+
S135+p15+S151+p11 = 79, and the cost of machine M2 is

given by CM2 = S204+p24+S242+p22+S226+p26 = 97.

The makespan of the solution is given by the completion time

for the machine that finishes last. In that case, that machine

is M2 and the makespan is thus 97.

Mathematical models are not able to solve large instances

of the UPMPS-ST. In a recent work presented by [8],

mathematical models are developed to solve instances up to

60 jobs optimally in two to three hours. Therefore, heuristic

methods are still a practical approach to deal with instances

with more than 60 jobs efficiently and in a few minutes.

In this paper we propose an Adaptive Large Neighborhood

Search (ALNS) [9] using Learning Automata for adjusting

the probabilities of removal and insertion heuristics that are

essential in ALNS. The algorithm operates as follows: i) an

initial solution is created by means of a semi-greedy heuristic

inspired on the constructive phase of the Greedy Randomized

Adaptive Search Procedures (GRASP) metaheuristic [10]. ii)
ALNS iterations are performed until the stopping criterion is

met. On each iteration, a method to remove jobs and another

one to insert jobs into the solution are applied to explore

the search space in an efficient manner. A roulette method is

used to select those methods according to their probabilities.

Among the heuristics used, we include a new insertion

heuristic based on the Hungarian method, which is able to

solve quadratic assignment problems in polynomial time. iii)
After removal and insertion operation, the Random Variable

Neighborhood Descent (RVND) is used as a local search

[11]. Local searches are operated randomly in RVND, which

is different from Variable Neighborhood Descent (VND)

[12]. iv) In the end of each iteration, the performance of

removal and insertion processes is evaluated and used by the

Learning Automata (LA) to adapt probabilities.

A set of instances available in [13] is used herein to

evaluate the performance of the proposed LA-ALNS. The

results are compared with the metaheuristic AIRP [14], and

the ant colony based methods ACO [15] and ACOII [16] (an

updated version of ACO). The ACOII proposed in [16] has

been compared with a number of different metaheuristics

including genetic algorithms, providing better results than

other methods in the literature for the instances in [13].

The rest of this paper is organized as follows. Section

II presents a literature review of UPMPS-ST. Learning Au-

tomata and Hungarian method are found in Section III. The

proposed algorithm is presented in Section IV. Section V

reports the computational experiments and results. Future

avenues for research are given in the conclusion in Section

VI.

II. LITERATURE REVIEW

There are in the literature some works about similar prob-

lems to the UPMSP-ST. A few of those ones are described

here. Genetic Algorithm (GA), Simulated Annealing (SA)

and Tabu Search (TS) were applied in [17] to solve a problem

without setup times. A TS method was also proposed in [18]

to solve that same problem. A problem with dependent setup

time for jobs only, and minimizing the weighted makespan as

objective was studied in [19]. In that work, seven constructive

heuristics were proposed. SA was used by [20], [21] to deal

with a problem with dependent setup time for jobs only,

and minimizing the total delay. Six different versions of a

TS were proposed by [22] to minimize the total delay in a

problem with dependent setup time for jobs only.

With regard to the UPMSP-ST, some works are presented

as follows. A partitioning heuristic was defined in [23],

which combines a constructive heuristic, a local search, and

a heuristic inspired by the asymmetric traveling salesman

problem. A heuristic to Randomized Priority Search (Meta-

RaPS), a mathematical model and a set of instances were

developed by [2]. Those instances are available in [13]. An

Ant Colony Optimization (ACO) algorithm was presented in

[15]. A Restricted Simulated Annealing (RSA) was defined

by [24], and is based on eliminating inefficient job moves.

Two GAs were proposed by [25], and a mathematical model

quite similar to [2] was also defined. Besides, a new set of

instances were made available in [26]. A Bee Colony opti-

mization algorithm was presented in [27]. The mathematical

model defined in [25] was improved by [28], [8]. The change

allowed to solve instances up to 60 jobs optimally in two to

three hours in average. An improvement of ACO presented

in [15] was proposed by [16]. That new algorithm is called

ACOII, and performs better than a set of other algorithms

in the literature for those instances available in [13]. In the

works of [29], [14], [30], [31], different algorithms were

proposed based on the combination of Iterated Local Search

(ILS) [32] and VND metaheuristics. The algorithm defined in

[14], namely AIRP, has shown better performance for those

instances available in [26].

The goal of this work is to develop an ALNS and in-

corporate Learning Automata to adapt the probabilities of

removal and insertion heuristics. One of the main insertion

methods proposed here is based on the Hungarian algorithm,

which is applied to solve subproblems optimally. As far as

we know, Learning Automata has never been applied to the

adaptive phase of ALNS. Moreover, the use of the Hungarian



algorithm as an heuristic in the UPMSP-ST is also one nov-

elty of this work. We intend to propose an algorithm that is

able to automatically choose the most suitable heuristics for

the instance of the problem, through adaptation and learning

in Learning Automata. Besides, this work motivates new

research about ALNS, Learning Automata and Hungarian

algorithm, and their application to the machine scheduling

problem with setup times.

III. BACKGROUND

This section describes the Hungarian algorithm and the

Learning Automata process.

A. Hungarian algorithm

The Hungarian algorithm has been initially defined by [33]

[34]. This algorithm attempts to solve assignment problems,

which are known in graph theory as an optimal correlation

for a bipartite graph. The Hungarian algorithm is based on

König and Egerváry ideas [35]. König theorem presents that

in a bipartite graph, the maximum cardinality of a correlation

is also the minimum number of nodes that cover all edges.

Given a bipartite graph with a weight function w, the cost

of optimal correlation of K is defined as γ(K) =
∑K

e γ(e),
in which the cost γ(e) of edge e is represented by γ(e) =
C − w(e), wherein C is the maximum weight of all edges.

Thus, the optimal correlation in a bipartite graph with regard

to the weight function is equivalent to solving the assignment

problem for a matrix M , in which mij = C − wij , where

wij is the weight of the edges between nodes i and j. This

corresponds to finding an optimal correlation with minimal

cost.

The method requires a square matrix n× n and a conver-

sion from the maximum assignment problem to the minimum

one is initially done by replacing each wij by C −wij . The

method consists of five steps, given as follows.

1) Subtract the smallest input from each line from all

inputs on the same line. Thereby, each line will have

at least one zero entry and all other entries are non-

negative.

2) Subtract the smallest input from each column from all

inputs on the same column. Thereby, each column will

have at least one zero entry and all other entries are

nonnegative.

3) Make a dash along rows and columns such that all zero

entries of the cost-matrix are crossed-out. To do this,

use a minimum number of dashes.

4) Optimization test

• Let n be the total number of rows or columns of

the cost-matrix. If the minimum number of dashes

needed to cover the zeros is n, then an optimal

allocation of zeros is possible and we close the

procedure.

• If the minimum number of dashes needed to cover

the zeros is less than n, then an optimal zeros

allocation is not yet possible. In this case, go to

step 5.

5) Determine the smallest unmarked entry. Subtract this

value from all unmarked entries and add it to all inputs

with dash. Return to step 3.

The solution of assignment problems by means of brute-

force search has factorial time complexity. Meanwhile, the

Hungarian algorithm might solve those problems in polyno-

mial time, more precisely θ(n3).

B. Learning Automata

A Learning Automata is an adaptive decision unit that

improves its performance by learning to choose a better

action from a finite set of allowed actions by means of

repeated interactions in a random environment [36]. The

action is randomly chosen with a probability distribution in a

set of actions. At each interaction, the selected action is used

as input to the random environment for further learning.

Basically, an LA is defined as (φ, α, β,A, π, p) [37], where

φ is a set of internal states; α is a set of outputs or actions

of learning automata; β is a set of responses from the

environment; A is a Learning Automaton; π : φ 7→ α is a

function that maps the current state into a current output; p
is a vector that defines a selection probability of an action on

each stage. Figure 3 illustrates the relation between Learning

Automata and its random environment.

Fig. 3: Relation between Learning Automata and its random

environment [38].

When an action is applied to the random environment,

it responds back to the LA with a noise signal. LA uses

that response to adjust the probabilities of internal action

through its learning algorithm. Let β be a response from the

environment in step k with β ∈ {0, 1}, in which responses

0 and 1 mean “agreeable” and “disagreeable”, respectively.

If the response is “agreeable”, the probability of internal

action might be updated with Equation (1). Otherwise, if the

response is “disagreeable”, the probability is updated with

Equation (2) [39].

pj(k + 1) =

{

pj(k) + a(1− pj(k)) if i = j
pj(k)(1− a) if i 6= j

(1)

pj(k + 1) =

{

pj(k)(1− b) if i = j
b

r−1 + pj(k)(1− b) if i 6= j
(2)

For Eq. (1) and (2), a and b are named reward and penalty

parameters, respectively. The number of actions that might

be chosen by the automaton is defined by r = |α|. When

a = b, the learning algorithm is named linear reward-penalty



(LR−P ). When a << b, it is named reward-ǫ linear penalty

(LRǫP ), and when b is equal to zero, the learning algorithm

is named linear reward-inaction LR−I [39].

IV. THE PROPOSED LA-ALNS ALGORITHM

A. Representation and solution evaluation

A solution is represented as an array of integers with m
positions, in which m is the number of machines. On each

position of array, a list is associated and defines the allocated

jobs for each machine. Figure 4 represents a solution for an

instance with six jobs and two machines. Jobs 3, 5 and 1

are allocated to machine 1 in that order. Jobs 4, 2 and 6 are

allocated to machine 2, in that order.

Fig. 4: Representation for a solution.

A solution is evaluated by its makespan, which is the

completion time of the machine that finishes last.

B. ALNS algorithm

The proposed algorithm to solve the UPMPS-ST is based

on the Adaptive Large Neighborhood Search metaheuristic

[9], using Learning Automata for the adaptive phases of

removal and insertion methods. A− is the automaton defined

for the removal process and A+ for the insertion one. The

removal and insertion heuristics represent the set of actions

for each LA, α− and α+, respectively. An initial solution

is generated by means of a semi-greedy heuristic based on

constructive phase of GRASP. Local search is performed by

applying RVND. The pseudocode is shown in Algorithm 1.

The proposed LA-ALNS performs as follows. At first, an

initial solution is created using semi-greedy heuristic with

time limit of 1% of the total execution time. The initial tem-

perature is set such that there is 50% of chance of acceptance

of a solution that is 10% worse than the initial solution. The

probabilities of removal and insertion methods in the LA are

updated every K iterations, according to the parameter K.

This parameter was defined by 6×max(|α−|, |α+|), obtained

previously by empirical tests.

These steps are performed on each iteration:

1) A removal method α−

i ∈ α− and an insertion method

α+
j ∈ α+ are selected by means of a roulette method

according to their probabilities;

2) q jobs are removed from the current solution (s′) using

α−

i method and then inserted using α+
j method. The

parameter q was defined as 5% of the total number of

jobs using empirical tests. The pair of a removal and

insertion heuristic acts as a biased perturbation applied

to the current solution;

3) The RV ND method is applied on solution s′ as local

search;

Algorithm 1: Proposed ALNS

input : tmax,K, q, a1, a2, a3, b1
output: sbest

1 Define LA (φ−, α−, β, A−, π−, p−);
2 Define LA (φ+, α+, β, A+, π+, p+);
3 s← constructive procedure ();

4 sbest ← s;

5 T ← (0.1× f(s))/ ln 2;

6 while currentT ime ≤ tmax do

7 Select α−

i using roulette method;

8 Select α+
j using roulette method;

9 Remove q jobs from s using α−

i ;

10 Insert the removed jobs on s using α+
j ;

11 s′ ← RVND(s);

12 if f(s′) < f(sbest) then

13 sbest ← s′; s← s′;
14 a = a1; b = 0;

15 Update p− and p+ using Eq. (1)-(2);

16 end

17 else if f(s′) < f(s) then

18 s← s′;
19 a = a2; b = 0;

20 Update p− and p+ using Eq. (1)-(2);

21 end

22 else if random < e− (f(s′)−f(s))
T

then

23 s← s′;
24 a = a3; b = 0;

25 Update p− and p+ using Eq. (1)-(2);

26 end

27 else

28 a = 0; b = b1;

29 Update p− and p+ using Eq. (1)-(2);

30 end

31 if k mod K = 0 then

32 updateLA(A−, A+, p−, p+);
33 end

34 T ← 0.99× T ;

35 end

36 return sbest

4) After that, the probabilities p− and p+ are updated

using Equation (1), if the solution s′ is accepted, or

Equation (2) if the solution is not accepted.

5) At every K iterations, the probabilities of removal and

insertion methods are updated into the LA. In other

words, learning occurs every iteration but only after

K iterations the probability values are updated into the

LA. This is done to give time to the LA to experiment

some actions in the environment before updating the

selection probabilities;

6) At the end of LA-ALNS, the best solution found is

returned.

A solution s′ might be accepted in three different situ-

ations: i) if it is better than the best solution; ii) if it is



better than the current solution; iii) if it is worse than the

current solution, with probability given by the temperature

parameter. For each case of solution acceptance, a different

reward parameter (a) is applied to update LA. Otherwise, if

a solution is not accepted, a penalty parameter (b) is used in

updating process. Those parameter values were defined as:

i) a1 = 0.2; ii) a2 = 0.1; iii) a3 = 0.05; iv) b1 = 0.02,

inspired by discussions in [39].

C. Constructive heuristic

The initial solution is generated with a procedure similar

to the constructive phase of GRASP. A number of initial

solutions are generated by using the semi-greedy constructive

method from [14], which is based on the rule Adaptive Short-

est Processing Time (ASPT) [40]. This method evaluates

jobs insertion at the end of a machine, see [14] for details.

The best solution among those is kept as the initial solution.

The number of times the semi-greedy heuristic is used is

given by the time limit afforded to the generation of the

initial solution. In our experiments, we set this as 1% of the

maximum time budget allowed to LA-ALNS, which is the

input parameter tmax.

D. Insertion and removal heuristics

This section describes the removal and insertion methods

performed by ALNS. There are six removal heuristics and

six insertion heuristics, which are described next. Before each

insertion method, the q removed jobs are shuffled.

1) Random removal: This method removes q jobs ran-

domly from the current solution.

2) Greedy expensive cost removal: This method examines

all allocations and stores in a set Y the sum of processing

cost and setup time of allocated jobs in current solution. After

that, the q most expensive jobs are removed.

3) Semi-greedy expensive cost removal: This method cre-

ates a set as defined in the previous method. Then, q jobs

are randomly removed from the subset of 20% with highest

cost.

4) Random machine removal: This method selects a ma-

chine randomly, and then removes the first q jobs from that

machine. If the number of jobs on the selected machines is

less than q, another machine is chosen randomly until it has

q jobs removed.

5) Highest cost machine removal: The machine with the

highest cost is selected, and the first q jobs are removed. If

the number of jobs on the selected machines is less than q,

the next machine with higher cost is selected until the q jobs

are removed.

6) Shaw removal: This method is inspired on [41]. Jobs

that are considered similar and whose reinsertion might reach

to better solutions are removed. The similarity criterion used

in this work is the sum of processing and setup costs of

a job in its position on the machine. At first, a job j′ is

randomly selected from a random machine. Then, a relation

R(j′, j) between job j′ and all the other j jobs allocated on

all machines is calculated. Then, q similar jobs to job j′ are

removed.

7) Greedy insertion: This method inserts q jobs in the

current solution in a greedy way. On each step, the first job

is selected from q removed ones. The cost of its insertion in

all positions of all machines is evaluated. Then, the job is

inserted in the position on the machine with least cost. These

steps are executed until all q jobs are allocated.

8) Semi-greedy insertion: This method is similar to the

previous one, but instead of inserting the jobs in the best

position (greedy), a random position is selected in a pool of

the 20% best locations to insert the current job.

9) Lambda insertion: This method inserts 50% of q jobs

randomly using all positions of all machines. The other 50%

are inserted by means of greedy insertion.

10) ILS insertion: This method is inspired on the pertur-

bation strategy from AIRP algorithm [14]. For each job j in

q set, the following steps are performed: i) a machine i is

selected randomly; ii) job j is inserted on the best position

of machine i, which means the best position is the one with

least cost to that machine.

11) Regretting insertion: This method is based on insert-

ing first those jobs with higher regretting cost. The regretting

cost is given by the difference between the cost of the best

position to allocate a job in all machines and the cost of the

second best position. For all q removed jobs, the regretting

cost is performed for all positions on all machines. After that,

jobs with higher regretting cost are the first to be inserted.

12) Hungarian insertion: This method uses the Hungarian

algorithm [33] to allocate the q removed jobs by means

of solving subproblems optimally. The process is operated

as follows: i) for a current solution with m machines, the

first m removed jobs are selected; ii) the better position to

allocate each of those jobs in all m machines is calculated;

iii) the best costs of allocating in each machine for each

jobs are stored in a square matrix. iv) that matrix is used by

Hungarian algorithm to define the optimal allocation. These

processes are repeated until it has m jobs without allocation.

The remaining jobs are inserted by means of greedy insertion.

E. Local search procedure: RVND

A Random Variable Neighborhood Descent (RVND)

method is used as local search procedure [11]. RVND oper-

ates local searches randomly, which is different from Variable

Neighborhood Descent (VND) [12]. The three neighborhood

structures used in RVND are described below.

• Multiple insertion – NSMI(s): this move reallocates

a job from a machine to another position in the same

machine, or reallocates a job in any position in another

machine. An example of this move is presented in

Figure 5, in which job 4 on machine 2 is transferred

to the second position in machine 1.

• Swap in the same machine – NSSSM (s): this move

changes two jobs in the same machine.

• Swap between different machines – NSSDM (s): this

move changes two jobs from different machines.

RVND uses three local search methods randomly (FIMI ,

FISSM , FISDM ) to exploit the search space. Each local



Fig. 5: Example of Multiple insertion

search makes use of the neighborhood structures described

previously. Local search operations are presented as follows.

• Local search FIMI : this local search is the same one

proposed in [14] named FI1MI . This operation uses

NSMI(s) neighborhood structure and first improve-

ment strategy.

• Local search FISDM : this local search is the same

one proposed in [29] named Local Search with Swaps

Between Different Machines in Section 3.4.2. This

operation uses NSSDM (s) neighborhood structure and

first improvement strategy.

• Local search FISSM : this local search applies

NSSSM (s) neighborhood structure and first improve-

ment strategy. It operates as follows. At first, machines

are sorted in descending order by the completion time.

Machines are selected from higher to lower completion

time. Then, for each machine all changes between

its jobs are evaluated. A neighbor s′ ∈ NSSSM (s)
is accepted if the completion time of a machine is

reduced. The process stops when a solution is accepted;

otherwise, it continues.

V. COMPUTATIONAL EXPERIMENTS

Computational experiments are presented in this section.

The results of our proposed LA-ALNS are compared to AIRP

[14], ACO [15] and ACOII [16]. A subset of 540 large-

scale instances was used to compare these algorithms. Theses

instances contain problems with 80, 100 and 120 jobs, and

2, 4, 6 and 10 machines. They are divided into three domain-

level groups, defined as follows: i) in Balanced group,

completion and setup times are balanced; ii) in Process

Domain group, the completion times are dominant; iii) in

Setup Domain group, the setup times are dominant.

The proposed algorithm has been implemented in Java

language with Netbeans 8.0.2 IDE. LA-ALNS and AIRP

were executed in a computer with Core i7 processor, 1.9

GHz of clock speed and 6 GB of RAM under Windows 7

operating system. For ACO and ACOII algorithms, it was

used the results reported in [16], which were performed in a

computer Pentium 4 processor with 2 GB of RAM.

As stopping criterion of LA-ALNS and AIPR, the average

execution time of ACOII in [16] was applied. The time was

divided by 2.18. This factor was obtained in [42] and it means

ACO ACOII AIRP ALNS
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Fig. 6: Computational results

that our computer is approximately 2.18 times faster than

the computer used in [16] for sequential applications. As the

clock speed is not available in [16], it was assumed 3.0 GHz

to perform comparison because that was compatible with the

computer model of the age of the paper.

The comparison of all algorithms was done using the

Relative Percentage Deviation (RPD) and is defined by

Eq. (3). The result obtained by algorithm Alg in instance

i is represented by f̄Alg
i , and f∗

i is the best solution found

in instance i previously. To obtain f∗

i , the LA-ALNS was

executed five times for each instance using the same param-

eters and stop criterion described in section IV. And the best

solution out of five runs was stored as f∗

i .

RPDi =
f̄Alg
i − f∗

i

f∗

i

× 100 (3)

Due to the stochastic feature of algorithms, LA-ALNS

and AIRP were executed five times for each instance, and

only the mean value is considered. With regard to ACO

and ACOII, it was used the results available in [16]. Those

algorithms were executed only once for each instance.

Table II presents the mean results of RPD for all al-

gorithms. Each combination of machines and jobs has 15

instances. The values are divided for Balanced, Process

Domain and Setup Domain groups, which represents the

domain-level of instances.

The best results are highlighted in bold. Negative values

indicate that the results of the algorithm were better than the

reference value f∗

i . It is clear that the LA-ALNS results were

better in most cases, which represents 88% approximately.

A box plot of these results is shown in Figure 6a.

Next we present the statistical tests to verify if exists a

significant difference between the algorithms. At first, an

Analysis of Variance (ANOVA) was performed [43] with

95% of confidence level (threshold = 0.05). The value ob-

tained for p-value is equal to 3.32×10−11, therefore it means

that exists a significant difference between the algorithms.

The assumptions of the test were validated. The Tukey HSD



TABLE II: Results for LA-ALNS, AIRP, ACO and ACOII.

Machines Jobs
Balanced

ACO ACOII AIRP LA-ALNS

2
80 -0.19 -0.35 0.44 0.20
100 -0.04 -0.31 0.56 0.12
120 -0.28 -0.42 0.44 0.01

4
80 1.17 0.75 0.84 0.24
100 1.17 0.74 0.91 0.18

120 0.88 0.42 0.81 0.18

6
80 2.67 1.68 0.91 0.30

100 2.29 1.48 1.12 0.20

120 1.92 1.02 1.13 0.26

10
80 4.30 1.74 1.06 0.47

100 4.23 2.85 1.28 0.37

120 3.44 2.27 1.39 0.28

Machines Jobs
Process Domain

ACO ACOII AIRP LA-ALNS

2
80 -0.12 -0.23 0.25 0.12
100 1.83 0.77 0.37 0.08

120 0.78 0.62 0.34 0.07

4
80 0.66 0.50 0.49 0.16

100 0.73 0.47 0.55 0.11

120 0.63 0.39 0.34 0.13

6
80 1.99 0.51 0.44 0.37

100 1.55 1.22 0.84 0.19

120 1.08 0.76 0.51 0.16

10
80 2.82 0.90 0.42 0.26

100 2.34 1.85 0.84 0.25

120 2.02 1.49 0.53 0.17

Machines Jobs
Setup Domain

ACO ACOII AIRP LA-ALNS

2
80 -0.06 -0.16 0.22 0.12
100 0.74 0.59 0.34 0.07

120 0.69 0.57 0.32 0.07

4
80 0.85 0.64 0.44 0.12

100 0.71 0.45 0.58 0.13

120 0.47 0.35 0.49 0.09

6
80 1.81 0.79 0.59 0.35

100 1.75 1.27 0.82 0.18

120 1.34 0.57 0.51 0.17

10
80 2.94 0.96 0.65 0.21

100 2.50 1.76 0.79 0.21

120 1.76 1.21 0.58 0.17

test [43] was done with 95% of confidence level (threshold

= 0.05). This test has as objective to identify a significant

difference between the results of paired algorithms. Figure

6b shows the result of this test.

The result of Tukey HSD test suggests that LA-ALNS is

statistically better than the other algorithms in a pairwise

comparison. This result also suggests the efficiency of the

proposed algorithm under the defined conditions of the

experiment.

Next we present the performance of insertion and removal

methods of LA-ALNS to a set of instances. We used the

instances with 100 jobs and 10 machines of type Balanced

presented in Table II. These instances were executed with

time limit of 4.58 minutes. The probabilities of selection

were stored every minute. The average probabilities over all

instances are shown in Tables III and IV.

It is observed that among the insertion methods the Greedy

and Hungarian heuristics had better performance and their

TABLE III: Average probabilities of the insertion methods.

Lambda Greedy Semi- Hung. ILS Regrett.
Greedy

1min 13.07% 19.68% 18.30% 19.82% 12.86% 16.26%
2min 12.18% 23.24% 18.21% 19.26% 11.99% 15.13%
3min 11.61% 22.67% 16.60% 22.82% 11.88% 14.41%
4min 11.08% 24.78% 15.94% 23.87% 11.13% 13.19%

TABLE IV: Average probabilities of the removal methods.

Random Greedy Semi- Highest Random Shaw
Greedy Cost Machine

Machine
1min 14.23% 14.79% 14.12% 18.73% 23.69% 14.43%
2min 13.44% 14.17% 14.03% 24.78% 20.28% 13.30%
3min 13.16% 14.55% 14.34% 27.60% 17.78% 12.57%
4min 11.65% 14.69% 13.49% 30.13% 17.73% 12.30%

probabilities increased over time. Among the removal meth-

ods the Highest Cost Machine had the best performance.

VI. CONCLUSIONS

This work approached the Unrelated Parallel Machine

Scheduling Problem with Setup Times, also defined as

RM |Sijk|Cmax, with the objective of minimizing the

makespan. An Adaptive Large Neighborhood Search meta-

heuristic using Learning Automata to adapt removal and

insertion probabilities was proposed to solve the UPMSP-ST

efficiently. Six removal methods and six insertion methods

were employed to intensify and to exploit the search space,

including a new insertion method based on the Hungarian

algorithm. Local searches were performed with a Random

Variable Neighborhood Descent (RVND) method. The use of

Learning Automata on ALNS is an important contribution of

this study.
Computational experiments were performed to verify the

proposed algorithm, and a set of instances available in [13]

was applied. LA-ALNS results were compared to AIRP

[14], ACO [15] and ACOII [16]. The experiment suggests

that ALNS has found better mean results in 88% of cases.

Furthermore, statistical tests were applied to verify if there is

a significant difference between the algorithms. The results

also suggest that the proposed ALNS has performed statis-

tically better than AIRP, ACO and ACOII under the defined

conditions of experiments.
As suggestions for future works, we propose a follow-

up study of the application of Learning Automata on the

adaptive phase of ALNS. We also intend to incorporate an

insertion method using a Mixed Integer Programming (MIP)

model to solve subproblems of UPMSP-ST.
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