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Abstract—This work deals with the Unrelated Parallel Ma-
chine Scheduling Problem with Setup Times, with the objective
of minimizing the makespan. It is proposed an Adaptive Large
Neighborhood Search (ALNS) metaheuristic using Learning
Automata (LA) to adapt the probabilities of using removal
and insertion heuristics and methods. A computable function in
the LA updates the probability vector for selecting the actions,
corresponding to six removal and six insertion methods. We also
propose a new insertion method based on Hungarian algorithm,
which is applied to solve subproblems optimally. Computational
experiments are performed to verify the performance of the
proposed method. A set of instances available in the literature
with problems up to 150 jobs and 10 machines is employed in
the experiments. The proposed LA-ALNS is compared against
three other algorithms from the literature. The results suggest
that our algorithm has better performance in most of cases
(88%) under the defined conditions of experiments. Statistical
tests also suggest that LA-ALNS is better than the other
algorithms from the literature. The proposed method is able
to automatically choose the most suitable heuristics for the
instance of the problem, through adaptation and learning in
the Learning Automata.

I. INTRODUCTION

Parallel machine scheduling problems with sequence-
dependent setup times are relevant to many manufacturing
and industrial processes, attracting a special interest of
several researchers [1]. Many real world problems can be
approached with a parallel machine scheduling model, since
in a more abstract sense, it deals with the efficient allocation
of resources, generally called machines, to different tasks,
usually called jobs, optimizing a given cost function. Many
problems in airport management and hospital allocation of
resources can be viewed as a parallel machine scheduling
problem. The efficient allocation of resources to jobs in
these applications can result in significant cost reduction
and productivity increase. Figure 1 illustrates a scenario of
machine scheduling in an industrial context. In that scenario,
two machines are making different products. The aim is
related to minimizing the makespan, which in turn results
in the maximization of production.

In this paper we focus on the Unrelated Parallel Ma-
chine Scheduling Problem with Setup Times (UPMSP-ST).
UPMSP-ST is relevant to several industrial processes and
segments, such as textile, chemical, semiconductor and paper
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Fig. 1: An example of machine scheduling in an industrial
process.

[2], [3]. This problem is also studied in the literature due to
its theoretical relevance. It belongs to the A/P-hard class [4]
and is a generalization of the Parallel Machine Scheduling
Problem with Identical Machines and without Setup Times.
The proof is presented in [5], [6].

In UPMSP-ST, there is a set of jobs N = {1,...,n} and a
set of machines M = {1, ..., m}, with the following features:
1) each job 5 € N is allocated to only one machine ¢ € M;
17) the time to process 7 € N on a machine ¢ € M is defined
by pi; (processing time); i4¢) there is a setup time S;j;; to
process job k € N after job j € N on machine ¢ € M, in that
order. The objective is to allocate all IV jobs on M machines
and minimizing the makespan. Based on this description, the
UPMPS-ST is defined as Ras|Sijx|Cmax [7]. Ras indicates
unrelated machines, S;j;, indicates that the setup times are
sequence-dependent and C\,.x defines the objective function
as the makespan.

An example with six jobs and two machines is presented
as follows. The processing times on machines M1 and M2
are given below. Setup times of those machines are shown
in Table I.

M1 : py; = {1,87,28,32,38,9}

M2 : po; = {4,21,68,17,43, 48}

Figure 2 illustrates a solution for this example. Shading
lines represent the setup times. Jobs 3, 5 and 1 are allocated
in machine M1 and jobs 4, 2 and 6 are allocated in machine
M2, in this order.



TABLE I: Setup times of machines M; and M,

My |1 2 3 4 5 6] M2 |1 2 3 4 5 6
T [3 T 8 1 3 o I |8 5 1 6 1 7
2 |4 3 7 3 7 8| 2|6 1 7 7 6 2
3 /7 3 1 2 3 5 3|7 6 3 9 6 9
4 [3 8 3 2 5 2 4 [3 7 3 2 1 7
508 3 7 9 1 5| 5|5 8 5 6 1 9
6 |8 8 1 2 2 3| 6 |7 4 1 7 9 2

Time | | | | Ll L1
0 20 40 60 79 80 97 100

Fig. 2: A solution for the example problem

The cost of machine M1 is given by Cas1 = S103+p13+
S135+p15+S151 +pi1 = 79, and the cost of machine M2 is
given by Caro = Sa04 + P24 + Saa2 + paz + Sa26 + pas = 97.
The makespan of the solution is given by the completion time
for the machine that finishes last. In that case, that machine
is M2 and the makespan is thus 97.

Mathematical models are not able to solve large instances
of the UPMPS-ST. In a recent work presented by [8],
mathematical models are developed to solve instances up to
60 jobs optimally in two to three hours. Therefore, heuristic
methods are still a practical approach to deal with instances
with more than 60 jobs efficiently and in a few minutes.
In this paper we propose an Adaptive Large Neighborhood
Search (ALNS) [9] using Learning Automata for adjusting
the probabilities of removal and insertion heuristics that are
essential in ALNS. The algorithm operates as follows: 7) an
initial solution is created by means of a semi-greedy heuristic
inspired on the constructive phase of the Greedy Randomized
Adaptive Search Procedures (GRASP) metaheuristic [10]. i7)
ALNS iterations are performed until the stopping criterion is
met. On each iteration, a method to remove jobs and another
one to insert jobs into the solution are applied to explore
the search space in an efficient manner. A roulette method is
used to select those methods according to their probabilities.
Among the heuristics used, we include a new insertion
heuristic based on the Hungarian method, which is able to
solve quadratic assignment problems in polynomial time. #7z)
After removal and insertion operation, the Random Variable
Neighborhood Descent (RVND) is used as a local search
[11]. Local searches are operated randomly in RVND, which
is different from Variable Neighborhood Descent (VND)
[12]. 4v) In the end of each iteration, the performance of
removal and insertion processes is evaluated and used by the
Learning Automata (LA) to adapt probabilities.

A set of instances available in [13] is used herein to
evaluate the performance of the proposed LA-ALNS. The
results are compared with the metaheuristic AIRP [14], and
the ant colony based methods ACO [15] and ACOII [16] (an
updated version of ACO). The ACOII proposed in [16] has

been compared with a number of different metaheuristics
including genetic algorithms, providing better results than
other methods in the literature for the instances in [13].

The rest of this paper is organized as follows. Section
II presents a literature review of UPMPS-ST. Learning Au-
tomata and Hungarian method are found in Section III. The
proposed algorithm is presented in Section IV. Section V
reports the computational experiments and results. Future
avenues for research are given in the conclusion in Section
VL

II. LITERATURE REVIEW

There are in the literature some works about similar prob-
lems to the UPMSP-ST. A few of those ones are described
here. Genetic Algorithm (GA), Simulated Annealing (SA)
and Tabu Search (TS) were applied in [17] to solve a problem
without setup times. A TS method was also proposed in [18]
to solve that same problem. A problem with dependent setup
time for jobs only, and minimizing the weighted makespan as
objective was studied in [19]. In that work, seven constructive
heuristics were proposed. SA was used by [20], [21] to deal
with a problem with dependent setup time for jobs only,
and minimizing the total delay. Six different versions of a
TS were proposed by [22] to minimize the total delay in a
problem with dependent setup time for jobs only.

With regard to the UPMSP-ST, some works are presented
as follows. A partitioning heuristic was defined in [23],
which combines a constructive heuristic, a local search, and
a heuristic inspired by the asymmetric traveling salesman
problem. A heuristic to Randomized Priority Search (Meta-
RaPS), a mathematical model and a set of instances were
developed by [2]. Those instances are available in [13]. An
Ant Colony Optimization (ACO) algorithm was presented in
[15]. A Restricted Simulated Annealing (RSA) was defined
by [24], and is based on eliminating inefficient job moves.
Two GAs were proposed by [25], and a mathematical model
quite similar to [2] was also defined. Besides, a new set of
instances were made available in [26]. A Bee Colony opti-
mization algorithm was presented in [27]. The mathematical
model defined in [25] was improved by [28], [8]. The change
allowed to solve instances up to 60 jobs optimally in two to
three hours in average. An improvement of ACO presented
in [15] was proposed by [16]. That new algorithm is called
ACOII, and performs better than a set of other algorithms
in the literature for those instances available in [13]. In the
works of [29], [14], [30], [31], different algorithms were
proposed based on the combination of Iterated Local Search
(ILS) [32] and VND metaheuristics. The algorithm defined in
[14], namely AIRP, has shown better performance for those
instances available in [26].

The goal of this work is to develop an ALNS and in-
corporate Learning Automata to adapt the probabilities of
removal and insertion heuristics. One of the main insertion
methods proposed here is based on the Hungarian algorithm,
which is applied to solve subproblems optimally. As far as
we know, Learning Automata has never been applied to the
adaptive phase of ALNS. Moreover, the use of the Hungarian



algorithm as an heuristic in the UPMSP-ST is also one nov-
elty of this work. We intend to propose an algorithm that is
able to automatically choose the most suitable heuristics for
the instance of the problem, through adaptation and learning
in Learning Automata. Besides, this work motivates new
research about ALNS, Learning Automata and Hungarian
algorithm, and their application to the machine scheduling
problem with setup times.

III. BACKGROUND

This section describes the Hungarian algorithm and the
Learning Automata process.

A. Hungarian algorithm

The Hungarian algorithm has been initially defined by [33]
[34]. This algorithm attempts to solve assignment problems,
which are known in graph theory as an optimal correlation
for a bipartite graph. The Hungarian algorithm is based on
Konig and Egervéry ideas [35]. Konig theorem presents that
in a bipartite graph, the maximum cardinality of a correlation
is also the minimum number of nodes that cover all edges.

Given a bipartite graph with a weight function w, the cost
of optimal correlation of K is defined as v(K) = Zf ~(e),
in which the cost y(e) of edge e is represented by v(e) =
C — w(e), wherein C' is the maximum weight of all edges.
Thus, the optimal correlation in a bipartite graph with regard
to the weight function is equivalent to solving the assignment
problem for a matrix M, in which m;; = C — w;;, where
w;; is the weight of the edges between nodes ¢ and j. This
corresponds to finding an optimal correlation with minimal
cost.

The method requires a square matrix n X n and a conver-
sion from the maximum assignment problem to the minimum
one is initially done by replacing each w;; by C' — w;;. The
method consists of five steps, given as follows.

1) Subtract the smallest input from each line from all
inputs on the same line. Thereby, each line will have
at least one zero entry and all other entries are non-
negative.

2) Subtract the smallest input from each column from all
inputs on the same column. Thereby, each column will
have at least one zero entry and all other entries are
nonnegative.

3) Make a dash along rows and columns such that all zero
entries of the cost-matrix are crossed-out. To do this,
use a minimum number of dashes.

4) Optimization test

e Let n be the total number of rows or columns of
the cost-matrix. If the minimum number of dashes
needed to cover the zeros is m, then an optimal
allocation of zeros is possible and we close the
procedure.

o If the minimum number of dashes needed to cover
the zeros is less than n, then an optimal zeros
allocation is not yet possible. In this case, go to
step S.

5) Determine the smallest unmarked entry. Subtract this
value from all unmarked entries and add it to all inputs
with dash. Return to step 3.

The solution of assignment problems by means of brute-
force search has factorial time complexity. Meanwhile, the
Hungarian algorithm might solve those problems in polyno-
mial time, more precisely 6(n?).

B. Learning Automata

A Learning Automata is an adaptive decision unit that
improves its performance by learning to choose a better
action from a finite set of allowed actions by means of
repeated interactions in a random environment [36]. The
action is randomly chosen with a probability distribution in a
set of actions. At each interaction, the selected action is used
as input to the random environment for further learning.

Basically, an LA is defined as (¢, «, 3, A, 7, p) [37], where
¢ is a set of internal states; « is a set of outputs or actions
of learning automata; [ is a set of responses from the
environment; A is a Learning Automaton; 7 : ¢ — « is a
function that maps the current state into a current output; p
is a vector that defines a selection probability of an action on
each stage. Figure 3 illustrates the relation between Learning
Automata and its random environment.

a(n)

P Random Environment

Learning Automata

B(n)

Fig. 3: Relation between Learning Automata and its random
environment [38].

When an action is applied to the random environment,
it responds back to the LA with a noise signal. LA uses
that response to adjust the probabilities of internal action
through its learning algorithm. Let /3 be a response from the
environment in step k with 8 € {0,1}, in which responses
0 and 1 mean “agreeable” and “disagreeable”, respectively.
If the response is “agreeable”, the probability of internal
action might be updated with Equation (1). Otherwise, if the
response is ‘“disagreeable”, the probability is updated with
Equation (2) [39].

pj(k:-l-l):{ p"(k;j(kggig(k» gj;j )
SR —b)  ifi=
pﬂ'(’””:{ w0y gy @

For Eq. (1) and (2), a and b are named reward and penalty
parameters, respectively. The number of actions that might
be chosen by the automaton is defined by r = |a|. When
a = b, the learning algorithm is named linear reward-penalty



(Lr—p). When a << b, it is named reward-¢ linear penalty
(Lgep), and when b is equal to zero, the learning algorithm
is named linear reward-inaction Lr_; [39].

IV. THE PROPOSED LA-ALNS ALGORITHM
A. Representation and solution evaluation

A solution is represented as an array of integers with m
positions, in which m is the number of machines. On each
position of array, a list is associated and defines the allocated
jobs for each machine. Figure 4 represents a solution for an
instance with six jobs and two machines. Jobs 3, 5 and 1
are allocated to machine 1 in that order. Jobs 4, 2 and 6 are
allocated to machine 2, in that order.

Fig. 4: Representation for a solution.

A solution is evaluated by its makespan, which is the
completion time of the machine that finishes last.

B. ALNS algorithm

The proposed algorithm to solve the UPMPS-ST is based
on the Adaptive Large Neighborhood Search metaheuristic
[9], using Learning Automata for the adaptive phases of
removal and insertion methods. A~ is the automaton defined
for the removal process and AT for the insertion one. The
removal and insertion heuristics represent the set of actions
for each LA, o~ and a™, respectively. An initial solution
is generated by means of a semi-greedy heuristic based on
constructive phase of GRASP. Local search is performed by
applying RVND. The pseudocode is shown in Algorithm 1.

The proposed LA-ALNS performs as follows. At first, an
initial solution is created using semi-greedy heuristic with
time limit of 1% of the total execution time. The initial tem-
perature is set such that there is 50% of chance of acceptance
of a solution that is 10% worse than the initial solution. The
probabilities of removal and insertion methods in the LA are
updated every K iterations, according to the parameter K.
This parameter was defined by 6 x max(|a~|, |a*]), obtained
previously by empirical tests.

These steps are performed on each iteration:

1) A removal method o; € o~ and an insertion method
a;r € at are selected by means of a roulette method
according to their probabilities;

2) g jobs are removed from the current solution (s’) using
«; method and then inserted using ozj method. The
parameter ¢ was defined as 5% of the total number of
jobs using empirical tests. The pair of a removal and
insertion heuristic acts as a biased perturbation applied
to the current solution;

3) The RV N D method is applied on solution s" as local
search;

Algorithm 1: Proposed ALNS
input : tmaxa K7 q,ai, az,as, bl
output: Spest

1 Define LA (¢~ ,a 8, A", n,p7);

2 Define LA (¢, a™, 8, AT, 7+, pT);

3 s constructive procedure ();

4 Spest < S5

5 T+ (0.1x f(s))/In2;

6 while currentTime < t.x do

7 Select «; using roulette method;

8 Select a;r using roulette method;

9 Remove ¢ jobs from s using o ;

10 Insert the removed jobs on s using aj;
1 s’ < RVND (s);

12 if f(s') < f(spest) then

13 Spest < 83 8 <+ §';

14 a=ay; b=0;

15 Update p~ and p* using Eq. (1)-(2);
16 end

17 else if f(s') < f(s) then

18 5+ s';

19 a=as; b=0;

20 Update p~ and p* using Eq. (1)-(2);
21 end

22 else if random < e_(f(sl)%f(s)) then
23 s+ &

24 a=a3; b=0;

25 Update p~ and p* using Eq. (1)-(2);
26 end

27 else

28 a=0;b="by;

29 Update p~ and p* using Eq. (1)-(2);
30 end

31 if £ mod K = 0 then

32 updateLA(A~, AT, p~,p");

33 end

34 T+ 099 x T,

35 end

36 return Speg;

4) After that, the probabilities p~ and p* are updated
using Equation (1), if the solution s’ is accepted, or
Equation (2) if the solution is not accepted.

5) Atevery K iterations, the probabilities of removal and
insertion methods are updated into the LA. In other
words, learning occurs every iteration but only after
K iterations the probability values are updated into the
LA. This is done to give time to the LA to experiment
some actions in the environment before updating the
selection probabilities;

6) At the end of LA-ALNS, the best solution found is
returned.

A solution s’ might be accepted in three different situ-
ations: 7) if it is better than the best solution; %) if it is



better than the current solution; 4i7) if it is worse than the
current solution, with probability given by the temperature
parameter. For each case of solution acceptance, a different
reward parameter (a) is applied to update LA. Otherwise, if
a solution is not accepted, a penalty parameter (b) is used in
updating process. Those parameter values were defined as:
1) a1 = 0.2; 1) ag = 0.1; 422) az = 0.05; iv) by = 0.02,
inspired by discussions in [39].

C. Constructive heuristic

The initial solution is generated with a procedure similar
to the constructive phase of GRASP. A number of initial
solutions are generated by using the semi-greedy constructive
method from [14], which is based on the rule Adaptive Short-
est Processing Time (ASPT) [40]. This method evaluates
jobs insertion at the end of a machine, see [14] for details.
The best solution among those is kept as the initial solution.
The number of times the semi-greedy heuristic is used is
given by the time limit afforded to the generation of the
initial solution. In our experiments, we set this as 1% of the
maximum time budget allowed to LA-ALNS, which is the
input parameter t,,x.

D. Insertion and removal heuristics

This section describes the removal and insertion methods
performed by ALNS. There are six removal heuristics and
six insertion heuristics, which are described next. Before each
insertion method, the ¢ removed jobs are shuffled.

1) Random removal: This method removes ¢ jobs ran-
domly from the current solution.

2) Greedy expensive cost removal: This method examines
all allocations and stores in a set Y the sum of processing
cost and setup time of allocated jobs in current solution. After
that, the ¢ most expensive jobs are removed.

3) Semi-greedy expensive cost removal: This method cre-
ates a set as defined in the previous method. Then, ¢ jobs
are randomly removed from the subset of 20% with highest
cost.

4) Random machine removal: This method selects a ma-
chine randomly, and then removes the first ¢ jobs from that
machine. If the number of jobs on the selected machines is
less than ¢, another machine is chosen randomly until it has
q jobs removed.

5) Highest cost machine removal: The machine with the
highest cost is selected, and the first ¢ jobs are removed. If
the number of jobs on the selected machines is less than g,
the next machine with higher cost is selected until the ¢ jobs
are removed.

6) Shaw removal: This method is inspired on [41]. Jobs
that are considered similar and whose reinsertion might reach
to better solutions are removed. The similarity criterion used
in this work is the sum of processing and setup costs of
a job in its position on the machine. At first, a job ;' is
randomly selected from a random machine. Then, a relation
R(j’,7) between job j' and all the other j jobs allocated on
all machines is calculated. Then, ¢ similar jobs to job j’ are
removed.

7) Greedy insertion: This method inserts g jobs in the
current solution in a greedy way. On each step, the first job
is selected from ¢ removed ones. The cost of its insertion in
all positions of all machines is evaluated. Then, the job is
inserted in the position on the machine with least cost. These
steps are executed until all ¢ jobs are allocated.

8) Semi-greedy insertion: This method is similar to the
previous one, but instead of inserting the jobs in the best
position (greedy), a random position is selected in a pool of
the 20% best locations to insert the current job.

9) Lambda insertion: This method inserts 50% of ¢ jobs
randomly using all positions of all machines. The other 50%
are inserted by means of greedy insertion.

10) ILS insertion: This method is inspired on the pertur-
bation strategy from AIRP algorithm [14]. For each job j in
q set, the following steps are performed: ¢) a machine ¢ is
selected randomly; i¢) job j is inserted on the best position
of machine ¢, which means the best position is the one with
least cost to that machine.

11) Regretting insertion: This method is based on insert-
ing first those jobs with higher regretting cost. The regretting
cost is given by the difference between the cost of the best
position to allocate a job in all machines and the cost of the
second best position. For all ¢ removed jobs, the regretting
cost is performed for all positions on all machines. After that,
jobs with higher regretting cost are the first to be inserted.

12) Hungarian insertion: This method uses the Hungarian
algorithm [33] to allocate the ¢ removed jobs by means
of solving subproblems optimally. The process is operated
as follows: 7) for a current solution with m machines, the
first m removed jobs are selected; i¢) the better position to
allocate each of those jobs in all m machines is calculated;
111) the best costs of allocating in each machine for each
jobs are stored in a square matrix. ¢v) that matrix is used by
Hungarian algorithm to define the optimal allocation. These
processes are repeated until it has m jobs without allocation.
The remaining jobs are inserted by means of greedy insertion.

E. Local search procedure: RVND

A Random Variable Neighborhood Descent (RVND)
method is used as local search procedure [11]. RVND oper-
ates local searches randomly, which is different from Variable
Neighborhood Descent (VND) [12]. The three neighborhood
structures used in RVND are described below.

« Multiple insertion — NS (s): this move reallocates
a job from a machine to another position in the same
machine, or reallocates a job in any position in another
machine. An example of this move is presented in
Figure 5, in which job 4 on machine 2 is transferred
to the second position in machine 1.

o Swap in the same machine — N.S%%M(s): this move
changes two jobs in the same machine.

« Swap between different machines — N SPM (s): this
move changes two jobs from different machines.

RVND uses three local search methods randomly (<1,
Flssy, Flspy) to exploit the search space. Each local
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Fig. 5: Example of Multiple insertion

search makes use of the neighborhood structures described
previously. Local search operations are presented as follows.

o Local search F'I,;;: this local search is the same one
proposed in [14] named FI3,,. This operation uses
NSMI(s) neighborhood structure and first improve-
ment strategy.

e Local search F'Isp,,: this local search is the same
one proposed in [29] named Local Search with Swaps
Between Different Machines in Section 3.4.2. This
operation uses NS (s) neighborhood structure and
first improvement strategy.

e Local search Flggp;: this local search applies
NSS9M (5) neighborhood structure and first improve-
ment strategy. It operates as follows. At first, machines
are sorted in descending order by the completion time.
Machines are selected from higher to lower completion
time. Then, for each machine all changes between
its jobs are evaluated. A neighbor s’ € NSSSM(s)
is accepted if the completion time of a machine is
reduced. The process stops when a solution is accepted;
otherwise, it continues.

V. COMPUTATIONAL EXPERIMENTS

Computational experiments are presented in this section.
The results of our proposed LA-ALNS are compared to AIRP
[14], ACO [15] and ACOII [16]. A subset of 540 large-
scale instances was used to compare these algorithms. Theses
instances contain problems with 80, 100 and 120 jobs, and
2,4, 6 and 10 machines. They are divided into three domain-
level groups, defined as follows: i) in Balanced group,
completion and setup times are balanced; i¢) in Process
Domain group, the completion times are dominant; ¢¢¢) in
Setup Domain group, the setup times are dominant.

The proposed algorithm has been implemented in Java
language with Netbeans 8.0.2 IDE. LA-ALNS and AIRP
were executed in a computer with Core i7 processor, 1.9
GHz of clock speed and 6 GB of RAM under Windows 7
operating system. For ACO and ACOII algorithms, it was
used the results reported in [16], which were performed in a
computer Pentium 4 processor with 2 GB of RAM.

As stopping criterion of LA-ALNS and AIPR, the average
execution time of ACOII in [16] was applied. The time was
divided by 2.18. This factor was obtained in [42] and it means

95% family-wise confidence level

- M Pt

R —

Agoritms Difrences in mean levels o stacao

(a) Box plot of results (b) Tukey HSD test results.

Fig. 6: Computational results

that our computer is approximately 2.18 times faster than
the computer used in [16] for sequential applications. As the
clock speed is not available in [16], it was assumed 3.0 GHz
to perform comparison because that was compatible with the
computer model of the age of the paper.

The comparison of all algorithms was done using the
Relative Percentage Deviation (RPD) and is defined by
Eq. (3). The result obtained by algorithm Alg in instance
1 is represented by ff’g, and f7 is the best solution found
in instance ¢ previously. To obtain f, the LA-ALNS was
executed five times for each instance using the same param-
eters and stop criterion described in section IV. And the best
solution out of five runs was stored as f;*.

FAlg *
RPD; = % % 100 3)

Due to the stochastic feature of algorithms, LA-ALNS
and AIRP were executed five times for each instance, and
only the mean value is considered. With regard to ACO
and ACOII, it was used the results available in [16]. Those
algorithms were executed only once for each instance.

Table II presents the mean results of RPD for all al-
gorithms. Each combination of machines and jobs has 15
instances. The values are divided for Balanced, Process
Domain and Setup Domain groups, which represents the
domain-level of instances.

The best results are highlighted in bold. Negative values
indicate that the results of the algorithm were better than the
reference value f;*. It is clear that the LA-ALNS results were
better in most cases, which represents 88% approximately.
A box plot of these results is shown in Figure 6a.

Next we present the statistical tests to verify if exists a
significant difference between the algorithms. At first, an
Analysis of Variance (ANOVA) was performed [43] with
95% of confidence level (threshold = 0.05). The value ob-
tained for p-value is equal to 3.32x 10~ ', therefore it means
that exists a significant difference between the algorithms.
The assumptions of the test were validated. The Tukey HSD



TABLE II: Results for LA-ALNS, AIRP, ACO and ACOIIL.

TABLE III: Average probabilities of the insertion methods.

Lambda  Greedy Semi- Hung. ILS Regrett.
Machines  Jobs Balanced Greedy
ACO ACOIl AIRP LA-ALNS 1min 13.07% 19.68% 18.30% 19.82% 12.86%  16.26%
80 -0.19 -0.35 0.44 0.20 2min | 12.18%  23.24% 1821% 19.26% 11.99% 15.13%
2 100 | -0.04 -0.31 0.56 0.12 3min 11.61%  22.67% 16.60% 22.82% 11.88% 14.41%
120 | -0.28 -0.42 0.44 0.01 4min 11.08% 24.78% 1594%  23.87% 11.13% 13.19%
80 1.17 0.75 0.84 0.24
4 100 | 117 074 091 0.18 L
120 | 0.88 042 0.81 0.18 TABLE IV: Average probabilities of the removal methods.
80 2.67 1.68 0.91 0.30
6 igg %gg }gg }g g;g Random  Greedy Semi- Highest ~ Random Shaw
: : : . Greedy Cost Machine
80 | 430 174  1.06 0.47 Machine
10 ool Bt B 0.37 Tmin | 1423% 1479% 14.12% 18.73%  23.69% 1443%
120 | 344 227 139 0.28 2min | 13.44%  1417% 14.03% 2478%  20.28%  13.30%
P D . 3min 13.16% 14.55%  14.34% 27.60% 17.78% 12.57%
i rocess Lomain 4mi 11. 14, 13.49% .13% 17.73% 12
Machines Jobs ACO ACOII AIRP LA-ALNS min 65% 69% 3.49% 30.13% 3% 30%
80 -0.12 -0.23 0.25 0.12
2 100 1.83 0.77 0.37 0.08
182(? 8'22 8'23 g'ig 3'22 probabilities increased over time. Among the removal meth-
4 100 | 073 047 055 011 ods the Highest Cost Machine had the best performance.
120 0.63 0.39 0.34 0.13
80 [ 199 051 044 0.37 VI. CONCLUSIONS
6 100 1 155 122 084 0.19 This work approached the Unrelated Parallel Machine
120 1.08 0.76 0.51 0.16 . . .
30 1 282 090 043 0.26 Scheduling Problem with Setup Times, also defined as
10 100 | 234 185 084 0.25 Rar]Sijk|Cmax, Wwith the objective of minimizing the
120 | 202 149 053 0.17 makespan. An Adaptive Large Neighborhood Search meta-
Machi Setup Domain heuristic using Learning Automata to adapt removal and
achines  Jobs | ycn  AcOIl AIRP  LA-ALNS insertion probabilities was proposed to solve the UPMSP-ST
80 | -006  -0.16  0.22 0.12 efficiently. Six removal methods and six insertion methods
2 100 0.74 0.59 0.34 0.07 . . .
120 | 060 057 032 0.07 were employed to intensify and to exploit the search space,
30 0.85 0.64 044 0.12 including a new insertion method based on the Hungarian
4 100 | 071 045 058 0.13 algorithm. Local searches were performed with a Random
182(;) ?g? 8;3 ggg ggg Variable Neighborhood Descent (RVND) method. The use of
6 00 | 175 127 o082 0.18 Learning Automata on ALNS is an important contribution of
120 1.34 0.57 0.51 0.17 this study,
10 18(% i'gg ?'32 8'% gii Computational experiments were performed to verify the
120 | 176 121 058 017 proposed algorithm, and a set of instances available in [13]

test [43] was done with 95% of confidence level (threshold
= 0.05). This test has as objective to identify a significant
difference between the results of paired algorithms. Figure
6b shows the result of this test.

The result of Tukey HSD test suggests that LA-ALNS is
statistically better than the other algorithms in a pairwise
comparison. This result also suggests the efficiency of the
proposed algorithm under the defined conditions of the
experiment.

Next we present the performance of insertion and removal
methods of LA-ALNS to a set of instances. We used the
instances with 100 jobs and 10 machines of type Balanced
presented in Table II. These instances were executed with
time limit of 4.58 minutes. The probabilities of selection
were stored every minute. The average probabilities over all
instances are shown in Tables III and IV.

It is observed that among the insertion methods the Greedy
and Hungarian heuristics had better performance and their

was applied. LA-ALNS results were compared to AIRP
[14], ACO [15] and ACOII [16]. The experiment suggests
that ALNS has found better mean results in 88% of cases.
Furthermore, statistical tests were applied to verify if there is
a significant difference between the algorithms. The results
also suggest that the proposed ALNS has performed statis-
tically better than AIRP, ACO and ACOII under the defined
conditions of experiments.

As suggestions for future works, we propose a follow-
up study of the application of Learning Automata on the
adaptive phase of ALNS. We also intend to incorporate an
insertion method using a Mixed Integer Programming (MIP)
model to solve subproblems of UPMSP-ST.
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