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Abstract—This article address a Multiagent Metaheuristic
Optimization Framework. In this proposal, each agent acts
independently in the search space of a combinatorial optimization
problem. The Framework allows the simultaneous execution of
various agents, in a cooperative way. The coalition concept of
cooperation is adopted. The agents have auto-learning abilities,
based on reinforcement learning. The ability of cooperation and
its influence on the quality of solutions provided by the agents are
confirmed by performed experiments. In addition, experiments
show that influence is greater when the number of agents is
increased.

Keywords—Multi-agent Systems; Frameworks; Combinatorial
Optimization; Metaheuristics.

I. Introduction

Multi-agent approach has been applied to the processing
of combinatorial optimization problems in several works. The
strong economic relevance and impact in real life generated
by many of these issues justifies the growing interest in
the application of new techniques for their solution. Thus,
the search for better ways of solution becomes important,
especially in developing techniques that lead to flexibility
in incorporating new methods without requiring the effort to
remake its implementation.

This article aims to introduce a Multi-Agent Framework for
Optimization using Metaheuristics. This proposed framework
encapsulates metaheuristics in agents which cooperate in order
to solve optimization problems.

Several frameworks for metaheuristics can be found in
the literature [1]–[6],most of them with similar characteristics
and proposals. OptFrame is a framework proposed in [4].
Its main characteristic is an interface for common elements
of population-based metaheuristics and of trajectory-based
metaheuristics. jMetal is a object-oriented framework based
on the Java language [5]. It includes a significant number of
classic and modern methods for multi-objective optimization
problems and a wide range of issues instances. ParadisEO
is a global framework composed by four connected modules
[6]–[8]. These modules treat population and trajectory me-
taheuristics, multi-objective evolutionary techniques as well as

parallel and distributed implementations. In [9], [10] are used
Asynchronous Teams (A-Teams). In this structure there is a
set of autonomous agents that communicate through shared
memories. A bibliographical review and a comparative study
with major available frameworks can be found in [11].

According to [11], the existing frameworks do not exploit
the benefits of combining metaheuristic methods. In conse-
quence, hybridization or any kind of interaction between the
involved metaheuristics are not important characteristics of
these existing frameworks. Thus, we propose in this article a
structure that will favor the interaction between metaheuristics
in a framework, in order to facilitate hybridization and to allow
the development of generic structures, regardless of which
metaheuristics are used as well as the problem to be treated.

Like other frameworks available in the literature, this
proposal presents common features such as: (i) metaheuris-
tics are pre-implemented to test and reuse; (ii) support the
evaluation and comparison of different methods; (iii) ease
in the development of a particular metaheuristic and their
suitability to the treated problem. In addition to these features,
the framework presented here has the strength of hybridization
of metaheuristics through the parallel cooperative approach
managed by Multi-Agent Systems (MAS). MAS are used
here as a liaison between different metaheuristics for solving
optimization problems. Each agent is responsible for perfor-
ming its own task and, at same time, for using the solutions
provided by other agents to improve their own solutions. In
this approach, agents interact and work together to achieve a
pre-defined objective.

The agents have self-adaptive capabilities based on rein-
forcement learning, from which modify their actions based on
their experience of interaction with the environment.

The performed experiments use the concept of cooperation
by coalition, in which identical agents are instantiated and
cooperate to resolve the addressed issue. As an example, in
this article the framework is applied for solving the Vehicle
Routing Problem with Time Windows (VRPTW).

The remainder of this article is organized as follows. Sec-
tion II shows concepts related to metaheuristic hybridization,
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focusing on cooperatives and parallel approaches. Section III
describes the proposed framework and its main components.
Section IV reports experiments carried out on the VRPTW.
Finally, the last section is devoted to the conclusions.

II. An Overview of Hybridization

Currently, the hybridization of metaheuristics is present
in much of the work done for the solution of Optimization
Problems. The main reason for the increased use of this
technique is the good results that have been obtained [12]-
[13].

In much of the literature, a hybrid metaheuristic is defined
as the combination of metaheuristics with other metaheuristics
and/or with other methods, usually from the various areas
of computational intelligence and operational research. This
combination of methods aims synergy benefit from combining
the features of each algorithm, obtaining therefore a better
performance. However, how these methods are combined
varies greatly and may involve advanced strategies, such as
cooperation, parallelism, multi-agent systems, decomposition
of the search space.

Here, we emphasize the parallel cooperative approach.
Its importance lies in the fact that it adds, to the applied
metaheuristics, parallel computational resources and possibility
of information exchange. The cooperative metaheuristics are
highlighted by several authors in the literature. [14] defines
cooperative search as an optimization problem solving process,
performed by various algorithms (or instances of the same
algorithm), who share information about the search space, such
as their status, solutions and sub-problems.

The cooperative metaheuristics facilitate parallelization
process. In this case, different algorithms (or instances of a
same algorithm) are executed independently exploring different
regions of the search space concurrently. From there, it is up to
the designer to determine how to control the solution process
and how information is exchanged between the methods.

III. Multi-AgentMetaheuristic Optimization Framework

A framework is a computational structure that provides
generic functionalities for solving problems in a particular area
by the junction of several common codes. A Metaheuristic Op-
timization Frameworks (MOF), as named in [11], is a software
tool that provides implementations of the main metaheuristics,
via reusable codes, facilitating the development of applications
for solving optimization problems.

This paper presents a Multi-Agent MOF, based on the
model proposed in [15], [16]. In this proposal, each agent
encapsulates a heuristic/metaheuristic and has the function of
seeking the solution for a given Combinatorial Optimization
problem. The strength of the proposed framework is the
hybridization capacity of metaheuristics through multi-agent
approach, using concepts of cooperation and parallelism.

During the search process of the solution, the agents in
this framework should go through the multi-agent system
environment. In this case, the multi-agent environment is
defined by the search space of the addressed problem. The
search space of an optimization problem is the set generated
by all their feasible solutions, i.e., those that complies with
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Fig. 1. Interaction between Agent and Environment.

the objective and satisfy the set of predefined constraints. The
perception capabilities and action of the agent are defined in
this environment as (see Figure 1):

• Perception of the environment: access to information
concerning the problem and required for solving it;

• Positioning: the agent defines its position in the en-
vironment, either by building a new solution or the
choice of an already available solution;

• Movement: mobility of the Agent by the environment,
from one solution to another solution. The movement
here comprises all types of modifications of a solu-
tion (neighborhood structure, operators) that allow the
agent to move from one solution to another.

• Cooperation: to provide solutions for the other agents
of the system (see Section III-A).

Each agent acts with mechanisms of action available to it,
having thus a vision of the environment region which these
mechanisms give it access. Therefore, its representation is
partial in relation the environment. The goal is to apply, at
the same time, the strengths of each metaheuristic through the
cooperative work of the agents.

The cooperation takes place through the exchange of search
space information between those involved in problem solving.
The shared information are stored in a Pool Solutions. After
each iteration of the search process, this Pool is updated.

Agents still have individual capacities of learning [17],
[18]. Each agent uses a reinforcement learning technique
(based on its previous experience) in selecting the neighboring
structure to be used to improve a solution.

The Object Oriented Programming paradigm is used to
facilitate the development of the framework, allowing reduce
the effort used in the implementation of the methods and in
adapting these to a specific problem. Therefore, a generic struc-
ture that allows the definition of the problem characteristics is
used. This structure consists of three main components:

• Problem: component that provides the characteristics
of the problem to be solved;

• Solution: defines the representation of the solution to
be used;

• Movement: provides the interface between metaheu-
ristics and solutions, allowing the construction, modi-
fication and combination of solutions.
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Receiver
- id_receiver: Arrays
- time_receiver: Arrays
- size: int

+ Receiver(size: int): void
+ copyValuesReceiver(r: Receiver): void

Sender
- id_sender: Arrays
- time_sender: Arrays

+ copyValuesSender(r: Sender): void

Solution
- objective_function: Arrays
- fitness_function: Arrays
- sender: Sender

+ Solution(receiver_size: int): void

+ copyValuesSolution(s: Solution, p: Problem): void

- receiver: Receiver
- search_time: float

+ calculateObjectiveFunction(p: Problem): void

<<abstract>>

+ showSolution(p: Problem): void
+ writeSolution(file_name: String): void

Movement
- move_type: String

+ Movement(move_type: String): void
+ movement(s: Solution, receiver_size: int, p: Problem): void

<<abstract>>

Problem
- instance_name: String

+ readProblem(instance: String): void
+ copyValuesProblem(p: Problem): void
+ showProblem(): void

<<abstract>>

modify

has
has

Environment

Fig. 2. Structure of the Environment of a Multi-agent System.

This structure is implemented based on the Factory Design
Pattern that encapsulates the creation of objects, letting the
subclasses decide which objects will be created.

A specific application can be developed with the customiza-
tion of the framework, based on the definition of subclasses of
the pre-defined classes. Thus, the framework user shall develop
the specific elements of the problem you want to solve.

A. Adaptive Capabilities of Individual Agents

As mentioned above, the agents have individual adaptive
capabilities [17], [18]. The concept of Reinforcement Learning
is used to define the application order of the neighborhood
structures of local search. The Variable Neighborhood Descent
(VND) [19] is the local search method used by the agent.
VND is a refinement method which explores the search space
using several neighborhood structures. In the conventional
format, VND uses a predetermined sequence of application of
neighborhood structures. When a better solution is found, the
method returns to the first neighborhood structure. The VND
ends when it encounters a local optimum with respect to all
neighborhood structures.

In the present article, the order of the neighborhoods is
chosen by applying an operator similar to the “roulette wheel”
selection operator of Genetic Algorithms. For each possible
pair of neighborhood structures (m1,m2), a probability of
choice is assigned. Initially, all pairs of sequences have the
same probability value. The probability of choice of the
sequence (m1,m2) is updated by a reinforcement factor w if
a movement of the neighborhood structure m2 applied after
another movement of the neighborhood structure m1 improves
the current solution. This agent learning process is described
in Algorithm 1.

B. Cooperation

The cooperation between agents occurs through the ex-
change of information in the search space of the problem. The
available solutions are stored in a Pool of Solutions in the
multi-agent system environment. All agents have access to the

Algorithm 1 Adaptation of the agent behavior by Reinforce-
ment Learning [20]
1: procedure ReinforcementLearning(perception)
2: perception � action (movement) which resulted in a

better solution than the previously obtained
3: memory � is the memory that the agent has already

applied movements
4: r f � reinforcement factor
5: Memory← upgrade_Memory(memory, perception, r f )
6: Action← choose_Best_Action(memory) � next move

to be applied
7: Memory← upgrade_Memory(memory, action)
8: return action
9: end procedure

solutions available in the Pool. The agents share, at the end of
the iteration, the best solutions found so far.

The purpose of this cooperative structure is to guide agents
in the solutions space toward the most promising areas, and
thus, improve the final result and reduce the time needed to
solve the problem.

The maximum size of the Pool of Solutions is predefi-
ned and the insertion of new solutions is regulated by the
function si. This function estimates the solution density in
the neighborhood of the i solution by means of the distance
between the solutions contained in the pool. The distance
between two solutions i and j, given by di j, is evaluated
considering how much they are similar or not and depends
fundamentally on the problem being treated. As an example,
considering the case of VRPTW described in Section IV, the
distance between two solutions is calculated in relation to the
number of common arcs to these solutions.

The evaluation function si is given by the sum of distances
of a solution i for all the other pool solutions:

si =
N∑

j=1

s(di j) (1)

where s(di j) is defined as:

s(di j) =

⎧⎪⎪⎨⎪⎪⎩
1 − di j

r
, di j ≤ r

0 , di j > r
(2)

The factor r is the pool radius, and controls the dispersion
degree of the solutions. It should be calculated according to
the treated instance.

When a solution needs to be inserted into the pool and this
has no available space, the existing solutions are evaluated
according to the function si. As a consequence, the solution
with the worst evaluation is excluded for inserting the new
solution in the pool. The main objective of this evaluation
function is to maintain the diversity of the pool, avoiding
to keep very similar solutions, or even equal. At the same
time, the best existing solution in the pool is always stored
in a specific attribute of the environment and updated at every
insertion, thus preventing the found best solution be eliminated.

For evaluating the effectiveness of cooperation performed
by the agents, two structures linked to the solution were defined
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(see Figure 2): (i) Sender: stores the identifier of the agent that
sent the solution to the Pool; (ii) Receiver: stores the identifiers
of the agents who used the solution in the Pool. For each access
solution, the time instant is also recorded.

For the evaluation of the Multi-agent Framework intro-
duced here, the experiments presented in the following have
used the concept of coalition according to [17]. This author
describes “coalition” as “an organization where agents have
the same capacities and cooperate by the mean of direct
interactions”. The implementation details are given in the next
section.

IV. Computational Experiments

The Multi-Agent MOF introduced here has flexibility both
in solving many combinatorial optimization problems as in
including new forms of cooperation and communication among
agents. The experiment presented in the sequel, as already
mentioned in Section III-B, is based on the concept of coalition
proposed in [17]. The main objective is to improve and
evaluate the cooperation between the agents of the Framework.

The agent used in this experiment implements a variation
of the Iterated Local Search (ILS) metaheuristic [21]. This
method is shown in Algorithm 2. In this algorithm, the
perturbation of the solution, performed from changes in the
current solution, is implemented at levels, i.e., at each iteration
the perturbation function is changed if there is no improvement
in the solution (line 12), and returns to its first level (line 10),
if a better solution is found.

Algorithm 2 ILS
1: procedure ILS_VND_RL
2: s0 ← generateInitialS olution_GreedyRandom()
3: s← localS earchVND_RL(s0, agent_memory)
4: level_perturbation← 1
5: while stopping_criterion_is_not_reached do
6: s′ ← perturbation(s, level_perturbation)
7: s”← localS earchVND_RL(s′, agent_memory) �

uses Reinforcement Learning (RL)
8: if f (s”) < f (s) then
9: s← s”

10: level_perturbation← 1
11: else
12: level_perturbation← level_perturbation + 1
13: end if
14: end while
15: end procedure

Identical ILS agents are used to solve the chosen problem.
In this context, three test scenarios are proposed to evaluate
the Framework: (i) a single agent ILS; (ii) two identical ILS
agents; and (iii) four identical ILS agents. The scenarios with
more than one agent make use of the cooperation environment
during the search process.

For the tests presented here, the Framework has been
customized to solve the Vehicle Routing Problem with Time
Windows (VRPTW) [22]. In this problem a set of vehicles is
located at a single depot and must serve a set of customers.
Each vehicle has a given capacity. Each costumer has a given
demand and must be served within in a specified time window.

The objective is to determine a set of routes in order to
minimize the involved total cost with this operation. The
routes must start and end in the depot. In our case, the cost
is calculated hierarchically. The priority is to minimize the
number of vehicles (or routes). In case of a tie in the number
of vehicles, it tries to minimize the total distance traveled.

In order to test the proposed framework, the 56 instan-
ces of VRPTW with 100 customers proposed by [23] were
used. These instances are formed by three different sets of
customers (C-Cluster; R-Random; and RC-Random-Cluster)
in accordance with the geographic distribution considered.
The proposed framework was implemented in Java with JDK
1.6, and the results were obtained using a personal computer
with Intel i7- 4500U with 1.8 GHz, 16 GB of DDR3 RAM
and Windows 7 Home Premium environment. It is worthy
mentioning that competing with the best literature results for
these instances of VRPTW is out the scope of this experiment.
The data acquired from experiments are analyzed in two ways:

(a) Comparison between the distances obtained in the
three presented scenarios: 1 ILS agent, 2 ILS agents
and 4 ILS agents. This comparison aims to verify if
the use of agents in a cooperative environment has
effect on the results. These experiments demonstrate
the scalability of the framework, that is, its ability to
add new agents without computational effort.

(b) Analysis of the trajectory of the solutions in the
process of cooperation among agents. This evaluation
is performed from the solutions stored in the Pool
Solutions. For each solution in the pool, the following
information are known: (i) the agent who sent it to
the pool and (ii) the agents who used it in their search
process. For each one these accesses, the time instant
is also recorded, in order to determine the trajectory
of the solutions.

The comparison between the three presented scenarios is
performed using the ANOVA test and boxplot graphics. The
ANOVA test confirms the improvement of the performance
with the addition of agents in 80 % of cases. In some instances,
for example, the C101 instance, there is no difference in the
values obtained in three scenarios. This occurs in instances
where the optimum value, or the best known value, is reached
or by a single agent or by the agents working together.

The boxplot graphics are used to evaluate the empirical
distribution of found values in the results, its variability, and
especially for the visual comparison between the data groups.
Two points are evaluated in Figures 3 to 5 for each proposed
scenario:

(i) number of vehicles: for the instances, the number of
vehicles is not the same in all executions;

(ii) cost: distance traveled.

Figures 3, 4 and 5 present the values found in executions
for instances C203, R201 and RC101, respectively. Three sce-
narios are shown: One Agent, Two Agents and Four Agents. In
these three figures, we observe that the executions performed
with two and four agents have outperformed executions with
a single agent.
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Fig. 5. Comparison scenarios in relation to the distance traveled - RC201
instance

Figures 6 and 7 present the vehicle numbers obtained in
the execution of instances RC201 and R101, respectively. We
observed that the number of used vehicles is also reduced
with the use of resources of the cooperative environment. The
scenario with four agents has obtained smaller and with less
variability values.

Cooperation is evaluated using the trajectory of the soluti-
ons in the Pool Solutions as basis. Figure 8 shows the solutions
submitted by two agents in Solution Pool for instance C102.
In this figure, we observe that each agent perform, at the same
time, its path to solve the problem, acting independently. We
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Fig. 6. Comparison scenarios in relation to the number of vehicles - RC101
instance.
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Fig. 7. Comparison scenarios in relation to the number of vehicles - RC201
instance.

highlighted that the solutions that have been shared by the
agents in the pool and that really influenced the search are
identified with red circles. A good example is the solution A2
with total distance 1034.00, which was found by the Agent 2
and inserted into the pool (at 31 seconds). Then, this solution,
named A1, is accessed by Agent 1 (at 34 seconds) and used to
pursue its search. From this cooperation between the agents,
Agent 1 can achieve, as a final solution, the value of the best
solution for this instance.
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Fig. 8. Trajectory of solutions in the pool with two agents - inserting solutions
- instance C102.

Figure 9 shows the same analysis for instance C207. The
trajectory generated by the solutions inserted in the pool for
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each agent is presented. In this run, as in the previous, we
notice that each agent performs its search independently, by
tracing different paths. Red circles indicate the points where
cooperation has occurred. The second solution found by the
Agent 3, named A3, is an example of cooperative action. It
was initially obtained in the pool, after having been shared
by the Agent 2 (as the A2 solution). Another example of the
cooperative effect is the solution with total distance 606.50
(inserted by Agent 4 in the pool at the instant 1.42 seconds
and named the A4 solution). This solution is, at time 2.58
seconds, used by Agent 2, as the A2 solution, which then will
find the final solution (the best solution among the agents).
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Fig. 9. Trajectory of solutions in the pool with two agents - inserting solutions
- instance C207.

V. Conclusion

A new Multiagent Metaheuristic Optimization Framework
is presented in this paper. In this approach, each agent acts
independently in the search space of a combinatorial opti-
mization problem. The agents have shared information and
have collaborated with other agents through the multi-agent
environment. This cooperation and influence ability on the
quality of the solutions of the agents involved is confirmed by
the realized experiments. The results demonstrate a reduction
in costs with the use of cooperating agents. This reduction is
even better when increasing the number of agents.
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[19] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[20] S. Russell and P. Norvig, Artificial Intelligence: a Modern Approach.
Prentice-Hall, 1995.

[21] H. R. Lourenço, O. Martin, and T. Stützle, “A beginner’s introduction to
Iterated Local Search,” in Proc. of the 4th Metaheuristics International
Conf. (MIC 2001), Porto, Portugal, 2001, pp. 1–11.

[22] P. Toth and D. Vigo, The Vehicle Routing Problem. Philadelphia, USA:
SIAM - Society for Industrial and Applied Mathematics, 2002.

[23] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations Research, vol. 2,
no. 35, pp. 254–264, 1987.

109


