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Abstract This work presents a local search approach to the High School Timetabling Prob-
lem. The addressed timetablingmodel is the one stated in the Third International Timetabling
Competition (ITC 2011), which considered many instances from educational institutions
around the world and attracted seventeen competitors. Our team, named GOAL (Group of
Optimization and Algorithms), developed a solver built upon the Kingston High School
Timetabling Engine. Several neighborhood structures were developed and used in a hybrid
metaheuristic based on Simulated Annealing and Iterated Local Search. The developed algo-
rithm was the winner of the competition and produced the best known solutions for almost
all instances.

Keywords Third International Timetabling Competition · High School Timetabling
Problem · Simulated Annealing · Iterated Local Search · Metaheuristics

1 Introduction

The High School Timetabling Problem, also denoted as the Class×Teacher Timetabling
Problem, consists of the assignment of timeslots and resources (e.g. rooms) to teachers×class
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meetings. These meetings are are also called events or lessons. The assignments must be
scheduled in such a way that no teacher or class attends more than one event at the same
time. Many other constraints can be considered, like limited availability of teachers and
pre-allocations.

The automated construction of high school schedules has been the subject ofmuch research
in Computer Science and Operations Research. Surveys Schaerf (1999) and Pillay (2013)
present some reasons for this interest:

Hardness to solve finding a timetable that satisfies the interest of all involved elements
is a hard task; moreover, often the simple construction of a valid
timetable is already a very complicated task;

Practical importance a good timetable can improve the staff satisfaction and allow the
school to be more efficient in managing its resources; moreover a
good schedule can improve the students performance;

Theoretical importance the problem addressed is classified asNP-Hard (Even et al. 1976)
and progress in solving such problems is a major goal in Computer
Science and Mathematics.

Exact methods based in Integer Programming were proposed by Santos et al. (2012), but
they can only deal with a subset of instances in restricted processing times. Nowadays,
metaheuristic approaches are commonly applied to the problem (Muller 2009; Lú and Hao
2010; Souza et al. 2003; Santos et al. 2005).

The diversity of School Timetabling models encountered around the world (Schaerf 1999;
Kingston 2013; Kristiansen and Stidsen 2013) motivated the definition of an XML format to
express different entities and constraints considered when building timetables. The format
evolved and a public repository1 with a rich set of instances was built (Post et al. 2014).
To stimulate the research in this area, the Third International Timetabling Competition (ITC
2011) was organized. The event took place on the Internet and the results were announced in
Norway on 2012. This paper presents the algorithms of the solver that won the competition.

The remaining of this work is organized as follows: in Sect. 2 the model of High School
Timetabling Problem proposed by the ITC 2011 is presented. Section 3 presents the compe-
tition itself. In Sect. 4 the solution approach developed is detailed. Section 5 shows compu-
tational experiments and, finally, concluding remarks are presented in Sect. 6.

2 High school timetabling problem

It is well known that formulations of High School timetabling in different institutions are
usually quite diverse in terms of decisions and constraints. Some papers describe problems
commonly found in different parts of the world: Australia (Kingston 2005), Brazil (Santos
et al. 2012), England (Wright 1996), Finland (Nurmi and Kyngas 2007), Greece (Valourix
and Housos 2003) and The Netherlands (de Haan et al. 2007). Thus, to precisely formulate
a representative set of problems described in literature, a domain specific language, XHSTT
(Post et al. 2010, 2014), was used to encode problem instances in ITC 2011. XHSTT is
powerful enough to specify problems with different sets of constraints, objective functions
and decision variables.

The model in XHSTT is split in three main entities: (1) Time and Resources, (2) Events
and (3) Constraints. A solution consists of a set of assignments of times and resources to the
events.

1 http://www.utwente.nl/ctit/hstt/, accessed on 30th April, 2013.
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2.1 Times and resources

The time entity consists of a timeslot or a set of timeslots (time group). The resources are
divided in three categories: students, teachers and rooms (Post et al. 2010):

Class a group of students attends to an event (lesson); important constraints associ-
ated with students are the control of their idle times and the number of lessons
scheduled per day;

Teachers the schedule of teachers must be built considering workload limits and qualifi-
cation constraints, while respecting pre-assignments;

Rooms most events take place on a room, and each room has a capacity and a set of
available features.

2.2 Events

An event is the basic unit of assignment, representing a simple lesson or a set of lessons (event
group). We refer to an assignment of a timeslot to an event as a meet, and to an assignment
of a resource to an event as a task. The term course is used to designate a group of students
who attend to the same events. Other kinds of events, like meetings, are also allowed by the
model (Post et al. 2010). An event has the following attributes:

Duration represents the number of timeslots which have to be assigned to the
event;

Pre-assigned resources some resources can be pre-assigned to attend the event (optional);
Workload amount of workload that the event will contribute to its resources

total workload (optional);
Pre-assigned timeslots some events have pre-assigned timeslots and therefore must be

assigned to that specific timeslot (optional).

2.3 Constraints

Post et al. (2010) groups the constraints in three categories: basic constraints of scheduling,
constraints of events and constraints of resources. The objective function f (.) is calculated in
terms of the violations of the constraints. Each violation is penalized according to its weight
(so this is a minimization problem). The constraints are also divided in hard constraints,
whose satisfaction is mandatory; and soft constraints, whose satisfaction is desirable but not
obligatory. Each instance can define whether a constraint is hard or soft.

2.3.1 Basic constraints of scheduling

1. Assign Time: assigns timeslots to each event;
2. Assign Resource: assigns the resources to each event;
3. Prefer Times: indicates that some events have preference for a particular timeslot(s);
4. Prefer Resources: indicates that some event have preference for a particular

resource(s).

2.3.2 Constraints to events

1. Link Events: to schedule a set of events in the same starting time;
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2. Spread Events: specifies the allowed number of occurrences for event groups in time
groups between a minimum a maximum number of times; this constraint can be used,
for example, to define a daily limit of lessons;

3. Avoid Split Assignments: for each event, assigns a particular resource to all of its
meets;

4. Distribute Split Events: for each event, assigns between aminimum and amaximum
number of meets of a given duration;

5. Split Events: places limits on the number of non-consecutive meets created for an
event and their duration.

2.3.3 Constraints to resources

1. Avoid Clashes: to assign resources without clashes (i.e. without assigning the same
resource to more than one event per timeslot);

2. Avoid Unavailable Times: states that certain resources are unavailable to attend any
events at certain times;

3. Limit Workload Constraint: restricts the workload of the resources between a
minimum and a maximum bound;

4. Limit Idle Times: the number of idle times in each time group must lie between a
minimum and a maximum bound for each resource; typically, a time group consists of
all timeslots of a given week day;

5. Limit Busy Times: the number of busy times in each time group should lie between a
minimum and a maximum bound for each resource;

6. Cluster Busy Times: forces the allocations of activities of a given resource to be
grouped in specific timegroups; this can be used, for example, to avoid excessive spread-
ing of teacher’s activities in the whole timetable.

3 Third international timetabling competition

Following the first and the second International Timetabling Competition (ITC 20022 and
ITC 2007,3 respectively), the third edition (ITC 2011)4 aimed at stimulating the timetabling
research. More specifically, it aimed to encourage the alignment of research with practice
by offering real-world instances of timetabling problems to the research community. The
competition was composed by three separate rounds. Post et al. (2013) presents detailed
information about the competition.

3.1 Competition rounds

The first round focused on generating the best solutions to a public instance set. In this round,
solvers could be executedwithout time restrictions. Also, competitors could use any available
technology to improve the solutions.

In the second round, organizers ran the solvers on the same conditions for 1,000s using a
hidden instance set. The solvers sent for evaluation on this round should respect rules about the
inclusion of proprietary software libraries. The best five teams were classified to the second

2 http://www.idsia.ch/Files/ttcomp2002/, accessed on 30th April, 2013.
3 http://www.cs.qub.ac.uk/itc2007/, accessed on 30th April, 2013.
4 http://www.utwente.nl/ctit/hstt/itc2011/welcome/, accessed on 30th April, 2013.
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Fig. 1 Solution approach scheme

round. To classify, the competitors had to run their solvers on the public instance set and
send the obtained solutions to the organizers. Ten independent executions were considered
for each instance. Each solution for each instance from all solvers were compared and ranked
from 1 (best) to 5 (worst), according to their quality. The team with the smallest average rank
was claimed the winner of this round.

In the third round, competitors ran their solvers in the hidden instance set (that became
public) and sent their solutions to the organizers. Like in the first round, time and technology
restrictions were not imposed to the solvers. The solutions from all competitors were com-
pared and ranked from 1 (best) to 5 (worst). Again, the team with the smaller average rank
was claimed winner of the round.

The competition presented a wide range of instances, but some of them were provided by
competitors. To make the competition fair, results obtained by the competitors on their own
instances were not considered for the ranking.

4 Solution approach

Our approach employed the Kingston High School Timetabling Engine (KHE) school time-
tabling engine (Kingston 2012) as a platform to efficiently manage instances and solutions.
One of its best features is the incremental cost recalculation, which speeds up the compu-
tation of cost changes when modifying solutions using our local search methods. We also
used KHE to quickly produce an initial solution. Following, Simulated Annealing is used to
improve this solution. Finally, Iterated Local Search is applied to further polish the solution.
Figure 1 presents a summary of our approach. Its elements are explained in the following
subsections.

4.1 Constructive algorithm

KHE is a platform for handling instances of the addressed problem. It also provides a
routine to quickly build an initial solution, called KheGeneralSolve. We used this
routine because it produces a solution quickly even for harder instances (see Table 5).
As expected, for harder instances these solutions are usually infeasible and very poor
in terms of cost. This construction method is based on the concept of Hierarchical
Timetabling (Kingston 2006), where smaller allocations are combined to generate big-
ger blocks of allocations until a complete solution is produced. Hierarchical Timeta-
bling is supported by the Layer Tree data structure. It consists of nodes that rep-
resent the required meet and task allocations. An allocation may appear in at most
one node. A layer is a subset of nodes with the property that none of them can
be overlapped in time. Commonly, nodes are grouped in a layer when they share
resources.

The hard constraints of the problem aremodeled by this data structure and then amatching
problem is solved to assign times and resources to event allocations. The matching is solved
by connecting each node to a timeslot or resource respecting the property of layer. For further
details, see Kingston (2006, 2012).
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Fig. 2 Example of an event swap

Fig. 3 Example of an event move

4.2 Neighborhood structure

The neighborhood N (s) of a solution s is defined as the set of all solutions which can be
reached using one of our move types. The neighborhood considering one specific move
type k is denoted by Nk(s). The following subsections present each one of the seven move
types used, as well as the procedures which explore these neighborhoods. Moves described
in Sects. 4.2.1 to 4.2.5 are intend to quickly perform small changes in the solution and
correspond to operations in KHE. Moves Kempe Chain (Sect. 4.2.6) and Reassign Resource
Times (Sect. 4.2.7) perform larger changes and were implemented from scratch.

4.2.1 Event swap (ES)

In this move, two lessons l1 and l2 are selected and have their timeslots t1 and t2 swapped.
Figure 2 presents an example of this move, where the timeslots of lessons Geog3 and Eng5
are swapped.

4.2.2 Event move (EM)

In this move, a lesson l1 is selected and moved from its original timeslot t1 to a new timeslot
t2. Figure 3 presents an example of this move, in which lesson Chem3 moves from the last
timeslot of tuesday to the last timeslot of friday.

4.2.3 Event block swap (EBS)

Similarly to themove es, themove ebs changes the timeslot of two lessons l1 and l2. However,
if involved lessons are in adjacent timeslots and have different durations, l1 is moved to the
timeslot immediately after the last timeslot assigned to l2. This move allows changes in the
timetable without losing the contiguity of allocations. Figure 4 presents an example of this
move, where the positions of Span1 and Math1 are swapped.
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Fig. 4 Example of an event block swap

Fig. 5 Example of a resource swap

4.2.4 Resource swap (RS)

In this move, two lessons l1 and l2 have their resources r1 and r2 of a specific role changed.
Figure 5 presents an example of this move, where lessons Geog3 andHis4 have their teachers,
Kate and Arnald, swapped.

4.2.5 Resource move (RM)

In this move a lesson l1 is assigned to a new resource r2 instead of the previously assigned
resource r1. Figure 6 presents an example of this move, where lesson Span1 had its teacher
changed from Mark to Jane.

4.2.6 Kempe chain (KC)

The application of the previously presented moves is likely to produce infeasible solutions,
specially in very constrained instances. Consider for example moving only one meeting of a
teacher which has a full schedule to a different timeslot. In this case the selection of any other
timeslot will produce a conflict. The resolution of conflicts may require a chain of moves
where each conflict produced by a move is solved with another move. We implemented a
method which searches for these chains of moves involving two timeslots. Our implementa-
tion was inspired by the Kempe Chain Interchanges (KCI), proposed by Johnson et al. (1991)
to the vertex coloring problem.

The search for the best the chain of moves in timeslots t1 and t2 starts with the creation
of an undirected bipartite conflict graph G = (V, E). The set of vertices V = V1 ∪ V2 for
the first (V1) and second (V2) partitions are created for meetings which are, respectively, in
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Fig. 6 Example of a resource move

timeslots t1 and t2. The set E of edges is created by linking vertices from V1 to V2 which
share some resource (e.g. meetings of the same class or which use the same room). Since
our method does not assumes that the current solution is feasible (differently from the KCI
implementation), conflicts among vertices in the same partition may exist but are ignored in
order to keep the graph bipartite.

For each vertex vi ∈ V1 we execute a depth-first search (DFS) in this conflict graph and
compute the longest path starting at vi , denoted here as Pi . In order to precisely evaluate the
final result in terms of solution cost of applying the sequence of moves corresponding to Pi , a
new solution with all these moves applied is generated and evaluated. The method continues
for all vertices of the first partition and returns the best of these long chains found. We opted
to consider only large chains so that this move has also an important role in diversification.

We present an example in Fig. 7 where the conflict graph for timeslotsMon2 andWed4 is
shown at left (assuming that all lessons of a subject are taught by the same teacher). In this
example there are two maximal paths starting with meeting Eng4 : Eng4 → Eng3 → Phis3
and Eng4 → Span4 → Span5 → Math5. The latter one is selected as the path to be
evaluated for vertex Eng4, since it is the largest one starting at it. If this is the best path from
all evaluated in this conflict graph then the corresponding chain of moves is selected and the
resulting solution is presented at the right side.

4.2.7 Reassign resource times (RRT)

In this move, a resource r1 and the events that use this resource are selected. Each permutation
of the timeslots of these events is a neighbor in this neighborhood. All possible permutations
are analyzed and the best one—the one that incurs the biggest decrease/smallest increase in the
solution—is returned. Our implementation limits the number of events in this neighborhood,
for each resource, since there are n! possible permutations for a set of n elements. The size
of n is limited such that n ≤ 7 (n! ≤ 5,040). If there is more than seven events related to a
resource, we randomly take seven events.

Figure 8 shows an example of this move. In this example Adam (resource of type teacher)
is considered. Five new solutions are produced from the permutations of the events associated
with Adam. The best one of these permutations, highlighted in bold, is selected.
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Fig. 7 Example of a Kempe chain

Fig. 8 Example of a reassign resource times

4.2.8 Neighborhood exploration

Due to the large size of N (s), which comprises every solution which can be reached by the
application of any of the previously presented move types, N (s) is explored by sampling.
After performing an initial set of experiments, we observed that better results were produced
when the exploration of some neighborhoods was more extensive than others. Also, some
move types can be disabled for some instances,which is the specific case of instanceswhich do
not have resource assignment tasks. Thus, if the instance requires some resource assignment
(i.e. has an AssignResourceConstraint constraint), the probabilities of selecting each
one of the move types are defined as: ES = 20%, EM = 38%, EBS = 10%, RS = 20%,
RM = 10% and KC = 2%. Otherwise, the moves RS and RM can be ignored and the
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following probabilities were used: ES = 40%, EM = 38%, EBS = 20% and KC = 2%.
The move RRT is used only in the perturbation phase of the Iterated Local Search algorithm.

4.3 Simulated annealing implementation

Proposed by Kirkpatrick et al. (1983), the metaheuristic Simulated Annealing (SA) is a
probabilistic method based on an analogy of thermodynamics simulating the cooling of a set
of heated atoms. This technique starts its search from an initial solution and improvements
are made by local search. The main procedure consists of a loop that randomly generates, at
each iteration, one neighbor s′ of the current solution s by applying one moment.

Each move has an associated cost variation, denoted here as � (� = f (s′) − f (s)).
Improvement and sideway moves, i.e., those with � ≤ 0, are unconditionally accepted. If
� > 0, the neighbor can also be accepted, but in this case, with a probability of e−�/T ,
where T is a parameter called temperature. The temperature regulates the probability of
accepting worse solutions. The higher the value of T , the higher the chance of accepting a
worse solution. Thus, the exploratory behavior of the search can be controlled by setting T
to high values (emphasis on diversification) or low values (emphasis on intensification).

A common setup is to assign initially a high value T0. After a fixed number of iterations
SAmax , which represents the number of iterations needed for the system to reach the thermal
equilibrium at a given temperature, the temperature is lowered by a cooling rate α ∈ (0, 1],
such that for a given iteration k, Tk ← α × Tk−1. With this procedure, a greater chance
of escaping from local optima occurs at the initial iteration and as T approaches zero, the
algorithmbehaves like a descentmethod (Gendreau and Potvin 2010;Kirkpatrick et al. 1983).
When the system reaches the thermal equilibrium (T → 0), the algorithm ends. It is also
possible to reheat the system to continue the exploration. The implemented algorithm in this
work reheats the system up to SAreheats times.

The developed implementation of Simulated Annealing is described in Algorithm 1.

Algorithm 1: Developed implementation of Simulated Annealing
Input: f (.), N (.), α, SAmax, T0, SAreheats, s, t imeout
Output: Best solution s∗ found.
s∗ ← s; I terT ← 0; T ← T0; reheats ← 0;
while reheats < SAreheats and elapsedT ime < timeout do

while I terT < SAmax do
I terT ← I terT + 1;
k ← select Neighborhood();
Generate a random neighbor s′ ∈ Nk (s);
Δ = f (s′) − f (s);
if Δ < 0 then

s ← s′;
if f (s′) < f (s∗) then s∗ ← s′

else
Take a random x , x ∈ [0, 1];
if x < e−Δ/T then s ← s′

T ← α × T ;
I terT ← 0;
if T < 0.1 then

reheats ← reheats + 1;
T ← T0

return s∗;
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4.4 Iterated local search implementation

The Iterated Local Search (ILS) method, proposed by Lourenco et al. (2003), is based on the
idea that a local search procedure can achieve better results by optimizing different solutions
generated through perturbations on the local optimum solution.

The ILS algorithm implemented in this work starts from an initial solution s0, obtained by
the Simulated Annealing procedure. Then, it makes perturbations of size psize on s0, creating
a new solution s′. After that, a descent method is applied on s′. A perturbation consists of
the unconditional acceptance of a neighbor generated by neighborhoods RRT or KC, each
one with 50% of probability.

The descent phase uses a Randomic Non-Ascendant Method, which accepts only neigh-
bors if they are better than or match the current solution. Differently from our SA implemen-
tation, where the composition of N (s) could change based on probabilities, in this phase we
systematically enumerate all neighbors in N (s), changing only its exploration order.

The local search runs until I LSlsMax iterations without improvement are reached. It
produces a solution s′ which will be accepted if it is better than the best solution s∗ found.
In such case, the perturbation size psize gets back to the initial size p0. If the iteration I ter
reaches a limit I LSmax , the perturbation size is increased. Yet if the perturbation size reaches
a bound of pmax , it is reset to the initial size p0. This process is repeated until the timeout is
reached. Algorithm 2 presents the developed implementation of ILS.

Algorithm 2: Developed implementation of ILS
Input: f (.), N (.), ILSmax , ILSlsMax , , p0, pmax , s, timeout
Output: Best solution s∗ found.
s ← descent Phase(s, I LSlsMax ); s

∗ ← s;
psize ← p0; I ter ← 0;
while timeout not reached do

for j ← 0 until psi ze do
s ← random neighbor sp ∈ NKC(s) ∪ NRRT(s);

s′ ← descent Phase(s, I LSlsMax );
if f (s′) < f (s∗) then

s ← s′; s∗ ← s′;
I ter ← 0; psize ← p0;

else
s ← s∗;
I ter ← I ter + 1;

if I ter = I LSmax then
I ter ← 0;
psize ← (psize + p0)mod pmax ;

return s∗;

5 Computational experiments

In this section we report the computational experiments with our solver. At first we focus in
the results obtained in ITC 2011. These results are detailed in Sects. 5.1 and 5.2. Following,
in Sect. 5.3, we provide an additional set of post competition experiments: these include an

123



88 Ann Oper Res (2016) 239:77–97

Table 1 Features of public instances from ITC 2011

Instance Timeslots Teachers Rooms Classes Lessons

AustraliaBGHS98 40 56 45 30 1,564

AustraliaSAHS96 60 43 36 20 1,876

AustraliaTES99 30 37 26 13 806

BrazilInstance1 25 8 – 3 75

BrazilInstance4 25 23 – 12 300

BrazilInstance5 25 31 – 13 325

BrazilInstance6 25 30 – 14 350

BrazilInstance7 25 33 – 20 500

EnglandStPaul 27 68 67 67 1,227

FinlandArtificialSchool 20 22 12 13 200

FinlandCollege 40 46 34 31 854

FinlandHighSchool 35 18 13 10 297

SecondarySchool 35 25 25 14 306

GreeceHighSchool1 35 29 – 66 372

GreecePatras3rdHS2010 35 29 – 84 340

GreecePreveza3rdHS2008 35 29 – 68 340

ItalyInstance1 36 13 – 3 133

NetherlandsGEPRO 44 132 80 44 2,675

NetherlandsKottenpark2003 38 75 41 18 1,203

NetherlandsKottenpark2005 37 78 42 26 1,272

SouthAfricaLewitt2009 148 19 2 16 838

extensive parameter tuning considering the recently released new set of instances XHSTT-
2013.

All experiments ran on an Intel® i5 2.4GHz computer with 4GB of RAM running Linux
Ubuntu 11.10 operating system. The algorithms were coded on C++ and compiled with
GCC 4.6.1. Our results were validated by the HSEval validator.5 The presented results are
expressed by pairs x/y, where x contains the sum of feasibility penalties and y the sum of
quality penalties.

Our solver, as well as our solutions and reports can be found in our website: http://www.
goal.ufop.br/hstt. We invite the interested readers to experiment and possibly even improve
our solver.

5.1 Datasets from third ITC

The set of instances6 available from ITC 2011 was originated from many countries and
ranges from small instances to huge, challenging ones. Table 1 presents the main features of
the public instances and Table 2 presents the main features of the hidden instances.

5 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi, accessed on April, 2013.
6 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012, accessed on April, 2013.
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Table 2 Features of hidden instances from ITC 2011

Instance Timeslots Teachers Rooms Classes Lessons

BrazilInstance2 25 14 – 6 150

BrazilInstance3 25 16 – 8 200

BrazilInstance4 25 23 – 12 300

BrazilInstance6 25 30 – 14 350

FinlandElementarySchool 35 22 21 291 445

FinlandSecondarySchool2 40 22 21 469 566

Aigio1stHighSchool2010–2011 35 37 – 208 532

Italy_Instance4 36 61 – 38 1,101

KosovaInstance1 62 101 – 63 1,912

Kottenpark2003 38 75 41 18 1,203

Kottenpark2005A 37 78 42 26 1,272

Kottenpark2008 40 81 11 34 1,118

Kottenpark2009 38 93 53 48 1,301

Woodlands2009 42 40 – – 1,353

Spanishschool 35 66 4 21 439

WesternGreeceUniversity3 35 19 – 6 210

WesternGreeceUniversity4 35 19 – 12 262

WesternGreeceUniversity5 35 18 – 6 184

5.2 Competition results

The solver sent to the competition was previously tuned with the following parameters for
SimulatedAnnealing: SAmax = 10,000, T0 = 5,α = 0.5 and SAreheats = 5. Iterated Local
Search used: ILSlsMax = 10,000, ILSmax = 50, p0 = 1 and pmax = 10. Note that Simulated
Annealing runs until it reaches five reheats and the remaining time, if any, is dedicated to the
ILS algorithm.

5.2.1 First round

In the first round of ITC 2011 solvers had no time limit to run nor technology restrictions.
In this round we executed our solver considering as initial solution the best known solutions
stored in the XHSTT archives7 and set an 1,000s timeout for our solver. Whenever an
improvement was achieved, we ran the solver again, taking the improved solution as input.
Figure 9 presents how we ran our solver in this round.

Table 3 presents the results obtained by our solver in the first round, where ITC 2011
f (s∗) denotes the provided solution at the beginning of the competition and GOAL f (s∗)
denotes the improved solution produced by our solver. Table 4 presents the winners for each
instance of round 1.

7 On instances AustraliaSAHS96 and AustraliaTES99, the initial solution generated by KHE was better than
the provided solution, so KHE was used in these cases.
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Fig. 9 Solver adaption to the first round of ITC 2011

Table 3 Results obtained with
GOAL solver in the first round of
ITC 2011. Values in bold indicate
improved solutions

Instance ITC 2011 f (s∗) GOAL f (s∗)

AustraliaBGHS98 7/433 4/367

AustraliaSAHS96 23/44 10/12

AustraliaTES99 26/134 5/148

BrazilInstance1 0/24 0/15

BrazilInstance4 0/112 0/103

BrazilInstance5 0/225 0/198

BrazilInstance6 0/209 0/156

BrazilInstance7 0/330 0/294

EnglandStPaul 0/18,444 0/11,732

FinlandArtificialSchool 0/0 0/0

FinlandCollege 0/0 0/0

FinlandHighSchool 0/1 0/1

FinlandSecondarySchool 0/106 0/102

GreeceHighSchool1 0/0 0/0

GreecePatras3rdHS2010 0/0 0/0

GreecePreveza3rdHS2008 0/0 0/0

ItalyInstance1 0/28 0/23

NetherlandsGEPRO 1/566 1/382

NetherlandsKottenpark2003 0/1410 0/1,189

NetherlandsKottenpark2005 0/1078 0/963

SouthAfricaLewitt2009 0/58 0/0

5.2.2 Second round

In the second round organizers ran each solver ten times on each instance with a time limit
of 1,000s. We reproduced the organizers experiments (considering the provided benchmark)
and the obtained results are shown inTable 5. The second column presents the results obtained
with KHE constructive algorithm, which is deterministic and the third column presents the
results obtained with the improvements of our solver. f (s∗) indicates the best solution found,
f (s) the average and σ the standard deviation of ten executions of the solver.
Table 6 presents the final ordering of competitors in the second round of ITC 2011.

Only four teams participated of this round, so the ranking ranges from 1 (best) to 4 (worst).
It is important to highlight that our team could not compete in instances BrazilInstance2,
BrazilInstance3,BrazilInstance4 andBrazilInstance6 becausewewere the providers of these
instances. Thus, wewere excluded from ranking in these instances and theywere ranked from
1 to 3 in these cases.
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Table 4 Results of first round of ITC 2011

Instance ITC 2011 f (s∗) Best f (s∗) Winner team

AustraliaBGHS98 7/433 3/494 HySTT

AustraliaSAHS96 23/44 8/52 HySTT

AustraliaTES99 26/134 1/140 HySTT

BrazilInstance1 0/24 0/11 VAGOS

BrazilInstance4 0/112 0/44 VAGOS

BrazilInstance5 0/225 0/43 VAGOS

BrazilInstance6 0/209 0/77 VAGOS

BrazilInstance7 0/330 0/122 VAGOS

EnglandStPaul 0/18,444 0/136 Lectio

FinlandArtificialSchool 0/0 – –

FinlandCollege 0/0 – –

FinlandHighSchool 0/1 – –

FinlandSecondarySchool 0/106 0/88 Lectio

GreeceHighSchool1 0/0 – –

GreecePatras3rdHS2010 0/0 – –

GreecePreveza3rdHS2008 0/0 – –

ItalyInstance1 0/28 0/12 VAGOS

NetherlandsGEPRO 1/566 1/382 GOAL

NetherlandsKottenpark2003 0/1,410 0/532 Lectio

NetherlandsKottenpark2005 0/1,078 0/533 Lectio

SouthAfricaLewitt2009 0/58 0/0 VAGOS

5.2.3 Third round

The third round of ITC 2011 was quite similar to the first one, but the hidden instance set
was considered instead of the public ones. Competitors had 1month to produce the solutions.
In this round, the best known solutions for instances were not provided, so we used the
same procedure as shown in Fig. 9, but instead of taking the initial solution from the XHSTT
archive, GOAL solver generated it with KHE. Table 7 presents the results obtained by GOAL
solver in this round.

Table 8 presents the ordering of competitors in this round. Again, GOAL team could not
compete in instancesBrazilInstance2,BrazilInstance3,BrazilInstance4 andBrazilInstance6.
VAGOS team sent solutions only to a few instances, and so they received the worst rank in
instances which they did not sent any solution.

5.3 XHSTT-2013 and parameter tuning

The GOAL solver presented great results in ITC 2011. To provide another validation of the
robustness of our solver, we performed an additional set of experiments with the recently
released XHSTT-20138 set of instances.

Differently from the competition, when a single set of parameters obtained with limited
tuning was used in all executions, in these experiments we performed an extensive parameter

8 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2013/
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Table 5 Results obtained with GOAL solver in the second round of ITC 2011

Instance KHE GOAL

f (s∗) ts f (s∗) f (s) σ

BrazilInstance2 4/90 0 1/54 1.0/63.9 ±0.0/±6.5

BrazilInstance3 3/240 1 0/117 0.0/127.8 ±0.0/±7.9

BrazilInstance4 39/144 1 17/92 17.2/99.6 ±0.4/±5.9

BrazilInstance6 11/291 0 4/207 4.0/223.5 ±0.0/10.4

FinlandElementarySchool 9/30 6 0/3 0.0/4.0 ±0.0/±0.5

FinlandSecondarySchool2 2/1,821 109 0/0 0.0/0.4 ±0.0/±0.7

Aigio1stHighSchool2010-2011 14/757 20 0/4 0.0/15.3 ±0.0/±7.9

Italy_Instance4 39/21,238 28 0/305 0.0/658.4 ±0.0/±280.2

KosovaInstance1 1,333/566 152 0/4,238 14.0/6,934.4 ±10.7/±1,862.4

Kottenpark2003 3/78,440 402 0/41,479 0.6/90,195.8 ±0.7/±17,996.0

Kottenpark2005A 35/23,677 489 33/27,929 33.9/27,480.4 ±0.9/±2,759.2

Kottenpark2008 63/140,083 333 25/27,410 25.7/31,403.7 ±0.7/±3,969.3

Kottenpark2009 55/211,095 229 33/159,895 36.6/154,998.5 ±2.1/±24,265.8

Woodlands2009 19/0 22 2/10 2.0/15.8 ±0.0/±2.8

Spanishschool 1/4,103 17 0/642 0.0/865.2 ±0.0/±177.4

WesternGreeceUniversity3 0/30 126 0/5 0.0/5.6 ±0.0/±0.5

WesternGreeceUniversity4 0/41 92 0/6 0.0/7.4 ±0.0/±1.0

WesternGreeceUniversity5 17/44 50 0/0 0.0/0.0 ±0.0/±0.0

Average 91.5/26,816.1 115.4 6.4/14,577.6 7.5/17,394.4 ±0.9/±2,853.0

tuning. The objective was to verify how sensitive the solver was with respect to parameter
changes, aswell as to determine a newset of improveddefault parameters.Different parameter
settings were evaluated using the same metric of the competition. The results are presented
in Table 9. For each one of the 24 XHSTT-2013 instances, we ran 5 independent executions
for the 37 different parameter settings tested. In total we executed our solver 4,440 times, for
10min each run, adjusted according to the provided benchmark.

Besides searching for sets of fixed parameters, we also invested time trying to determine
parameters that could be defined according to some instance characteristic. T0, which is
a critical Simulated Annealing parameter, was the chosen one for these tests. In the third
column of Table 9, cells with negative values indicate that T0 was decided in run-time. This
negative value, −x , indicates that T0 was set to be x × f ˆ(s), where f ˆ(s) is the cost of the
worst neighbor in a sampling of the neighborhood N (s)9 of the initial solution s. Results
with these tests where not encouraging, as the method behaved better with fixed parameters
than with dynamic ones.

The final evaluation of each parameter setting is displayed in “column av. rank” (column
average rank). No parameter setting dominated every other, and so the best parameter setting
was not ranked with value 1. One interesting result of this test is that we managed to obtain
good results with very different parameter configurations. In fact, among the three best
parameter settings, one had α = 0.5 while another had α = 0.85. We have observed that

9 100 neighbors were considered in our tests.
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Table 6 Results of second round of ITC 2011

Instance GOAL HFT HySST Lectio

BrazilInstance2 – 3 2 1

BrazilInstance3 – 3 1 2

BrazilInstance4 – 3 1.9 1.1

BrazilInstance6 – 3 2 1

FinlandElementarySchool 1.9 4 2.95 1.15

FinlandSecondarySchool2 1 4 2.4 2.6

Aigio1stHighSchool2010-2011 1 4 2.8 2.2

Italy_Instance4 1.1 4 3 1.9

KosovaInstance1 1 3 4 2

Kottenpark2003 1.4 4 1.6 3

Kottenpark2005A 1.4 3.6 1.6 3.4

Kottenpark2008 1 4 2.1 2.9

Kottenpark2009 1 4 2 3

Woodlands2009 1.7 4 2.8 1.5

Spanishschool 1 4 2 3

WesternGreeceUniversity3 1 3 2 4

WesternGreeceUniversity4 1 4 2 3

WesternGreeceUniversity5 1 4 2 3

Average 1.18 3.64 2.23 2.32

Table 7 Results obtained with
GOAL solver in the third round
of ITC 2011

Instance GOAL f (s∗)

BrazilInstance2 0/32

BrazilInstance3 0/101

BrazilInstance4 1/136

BrazilInstance6 0/160

FinlandElementarySchool 0/3

FinlandSecondarySchool2 0/0

Aigio1stHighSchool2010-2011 0/0

Italy_Instance4 0/61

KosovaInstance1 0/3

Kottenpark2003 0/5,355

Kottenpark2005A 24/13,930

Kottenpark2008 8/27,909

Kottenpark2009 19/5,565

Woodlands2009 0/441

Spanishschool 0/12

WesternGreeceUniversity3 0/5

WesternGreeceUniversity4 0/8

WesternGreeceUniversity5 0/0
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Table 8 Results of third round of ITC 2011

Instance GOAL HFT HySST Lectio VAGOS

BrazilInstance2 – 4 3 2 1

BrazilInstance3 – 4 3 2 1

BrazilInstance4 – 4 3 2 1

BrazilInstance6 – 4 3 1 2

FinlandElementarySchool 2.5 2.5 2.5 2.5 –

FinlandSecondarySchool2 2 4 2 2 –

Aigio1stHighSchool2010-2011 1 4 3 2 –

Italy_Instance4 2 4 1 3 –

KosovaInstance1 1 3 2 4 –

Kottenpark2003 3 4 2 1 –

Kottenpark2005A 2 3 1 4 –

Kottenpark2008 1 4 2 3 –

Kottenpark2009 2 4 1 3 –

Woodlands2009 1 4 2 3 –

Spanishschool 1 4 3 2 –

WesternGreeceUniversity3 1.5 4 3 5 1.5

WesternGreeceUniversity4 1 3 2 4 –

WesternGreeceUniversity5 2 4 2 5 2

Average 1.64 3.75 2.25 2.75 3.86

even though our solver has a large number of parameters, it is not hard to find parameter
configurations that perform well.

5.4 Discussion of results

In the first round of ITC 2011 we were able to improve almost all of the best known solutions.
In instance SouthAfricaLewitt2009 we found a solution with same cost as the best solution
generated in this round, but we were not the first team to produce it. Thus, VAGOS got the
prize in this instance. In this round, our performance was below average as our solver was
still in development and some improvements came too late to improve the solutions sent.

The second round was the most important in the competition, since all solvers had their
performance fairly compared in a controlled computational environment. In this round our
solver was the best ranked in twelve out of fourteen10 instances. We were also highly com-
petitive in the two instances for which we did not find the best results. This way, we won this
round by a wide margin. The success of GOAL solver in this round is certainly linked to the
effectiveness of the neighborhood exploration, since the local search procedures were able to
find good solutions, even to huge instances, in a short amount of time. One can observe that
the improvement compared to KHE initial solution and to the competitors results is really
significant.

In the third round of ITC 2011, the GOAL solver was the best ranked in ten out of fourteen
instances and was the winner of the round. Again our solver was also competitive in the other
instances. In this round the final version of our solver was complete, thus we got much better
results than in the first round.

10 Excluding the Brazilian instances, in which we could not compete.
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Table 9 Different parameter configurations and their average ranks considering XHSTT-2013

Simulated annealing Iterated local search Av. rank

SAmax α T0 SAreheats I LSlsMax p0 pmax

10,000 0.85 5.0 1 14, 000 1 10 8.44

10,000 0.85 5.0 1 15, 000 1 10 9.78

10,000 0.50 5.0 5 14, 000 1 10 9.85

10,000 0.85 5.0 1 13, 000 1 10 9.90

10,000 0.50 5.0 5 11, 000 1 10 9.92

10,000 0.90 5.0 1 14, 000 1 10 9.92

10,000 0.50 5.0 5 12, 000 1 10 10.03

11,000 0.85 5.0 1 14, 000 1 10 10.14

10,000 0.95 5.0 1 14, 000 1 10 10.18

10,000 0.80 5.0 1 14, 000 1 10 10.26

17,000 0.50 5.0 3 11, 000 1 10 10.47

11,000 0.50 5.0 5 12, 000 1 10 10.52

10,000 0.80 5.0 3 14, 000 1 9 10.62

10,000 0.50 5.0 5 15, 000 1 10 10.65

10,000 0.50 5.0 4 14, 000 1 10 10.66

10,000 0.70 5.0 5 10, 000 1 10 10.74

10,000 0.80 5.0 1 10, 000 1 10 11.06

10,000 0.50 5.0 4 10, 000 1 10 11.36

10,000 0.50 5.0 5 13, 000 1 10 11.36

10,000 0.60 5.0 5 10, 000 1 10 11.38

10,000 0.50 5.0 5 12, 000 1 9 11.43

10,000 0.70 5.0 2 10, 000 1 10 11.72

10,000 0.50 5.0 5 9, 000 1 10 11.82

10,000 0.50 4.0 5 10, 000 1 10 11.97

11,000 0.50 5.0 5 10, 000 1 10 12.12

9,000 0.50 5.0 5 12, 000 1 10 12.22

10,000 0.50 5.0 6 10, 000 1 10 12.32

10,000 0.50 6.0 5 10, 000 1 10 12.32

10,000 0.40 5.0 5 10, 000 1 10 12.35

7,200 0.50 5.0 7 10, 000 1 10 12.68

10,000 0.50 5.0 5 12, 000 1 11 12.82

10,000 0.50 −1.0 2 10, 000 1 10 12.86

10,000 0.70 −0.7 4 10, 000 1 10 12.88

10,000 0.50 5.0 5 12, 000 2 10 12.91

10,000 0.50 5.0 5 10, 000 1 11 13.03

10,000 0.50 −0.3 5 10, 000 1 10 13.38

10,000 0.50 5.0 5 10, 000 1 9 13.73

For some instances, even the production of feasible solutions is a hard task. These instances
commonly define most of constraints as hard constraints. Therefore, it is not expected for
a solver to always find feasible solutions for the whole set of instances. Therefore, the
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use of the pair infeasibility/quality for describing results was encouraged. Even in the
restricted timeout, our solver was able to reach eleven out of eighteen11 feasible solutions (see
Table 5).Without the time limit constraintwewere able to find thirteen out of eighteen feasible
solutions (see Table 7).

We believe that the success of our solver in ITC 2011 was due to the following factors:
(1) the fast generation of initial solutions by KHE (see Table 5); (2) the diversity of local
search moves, which allowed a comprehensive exploration of the search space and (3) the
controlled application of these moves inside our SA (Algorithm 1) and ILS (Algorithm 2)
implementations.

6 Concluding remarks

Our local search approach was able to find feasible solutions for almost all instances and
won the third International Timetabling Competition. This result, coupled with the result of
the second ITC, where another local search approach won (Muller 2009), indicates that local
search methods may be nowadays the best heuristic approach for timetabling problems.

Nevertheless, we believe that there is still room for improvement in our approach. Some
possible future works are (1) develop new additional neighborhoods in order to make more
significant structural changes on the solution in a single move; (2) develop automatic para-
meter tuning and (3) explore the implementation of other metaheuristics using the already
implemented local search procedures.

Another future work would be the development of a graphical user interface to allow
schools and universities from all around the world to produce their instances and solve them
with our solver.
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