
A mathematical formulation and
heuristic algorithms for minimizing the

makespan and energy cost under
time-of-use electricity price in an

unrelated parallel machine scheduling
problem

Universidade Federal de Ouro Preto

Instituto de Ciências Exatas e Biológicas

Marcelo Ferreira Rego

Ouro Preto, Brazil

February 2022

ii

A mathematical formulation and
heuristic algorithms for minimizing the

makespan and energy cost under
time-of-use electricity price in an

unrelated parallel machine scheduling
problem

Marcelo Ferreira Rego

Advisor: Ph.D. Marcone Jamilson Freitas Souza

Co-advisor: Ph.D. Luciano Perdigão Cota

Thesis presented to the Univer-

sidade Federal de Ouro Preto in

partial fulfillment of the require-

ments for the Degree of Doctor of

Philosophy in Computer Science

Ouro Preto, Brazil

February 2022

ii

Rego, Marcelo Ferreira.
RegA mathematical formulation and heuristic algorithms for minimizing
the makespan and energy cost under time-of-use electricity price in an
unrelated parallel machine scheduling problem. [manuscrito] / Marcelo
Ferreira Rego. - 2022.
Reg72 f.

RegOrientador: Prof. Dr. Marcone Jamilson Freitas Souza.
RegCoorientador: Dr. Luciano Perdigão Cota.
RegTese (Doutorado). Universidade Federal de Ouro Preto. Departamento
de Computação. Programa de Pós-Graduação em Ciência da
Computação.
RegÁrea de Concentração: Ciência da Computação.

Reg1. Unrelated parallel machine. 2. Total energy cost. 3. Makespan. 4.
Mixed-Integer Linear Programming. 5. MOVNS. 6. NSGA-II. 7. Multi-
objective optimization. I. Cota, Luciano Perdigão. II. Souza, Marcone
Jamilson Freitas. III. Universidade Federal de Ouro Preto. IV. Título.

Bibliotecário(a) Responsável: Luciana De Oliveira - SIAPE: 1.937.800

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

R343m

CDU 004

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA

INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS

DEPARTAMENTO DE COMPUTACAO

PROGRAMA DE POS-GRADUACAO EM CIENCIA DA

COMPUTACAO

FOLHA DE APROVAÇÃO

Marcelo Ferreira Rego

A mathematical formulation and heuristic algorithms for minimizing the makespan and energy cost under time-of-use

electricity price in an unrelated parallel machine scheduling problem

Tese apresentada ao Programa de Pós-Graduação em Ciência da Computação da Universidade Federal
de Ouro Preto como requisito parcial para obtenção do título de Doutor em Ciência da Computação

Aprovada em 18 de fevereiro de 2022

Membros da banca

Prof. Dr. Marcone Jamilson Freitas Souza - Orientador - Universidade Federal de Ouro Preto
Prof. Dr. - Luciano Perdigão Cota - Co-Orientador - Instituto Tecnológico Vale

Prof. Dr. Puca Huachi Vaz Penna - Universidade Federal de Ouro Preto
Prof. Dr. Igor Machado Coelho - Universidade Federal Fluminense

Prof. Dr. José Elias Cláudio Arroyo - Universidade Federal de Viçosa
Prof. Dr. Lucas de Souza Batista - Universidade Federal de Minas Gerais

Marcone Jamilson Freitas Souza, orientador do trabalho, aprovou a versão final e autorizou seu depósito no Repositório

Institucional da UFOP em 17/04/2022

Documento assinado eletronicamente por Puca Huachi Vaz Penna, COORDENADOR(A) DE CURSO DE PÓS-
GRADUACÃO EM CIÊNCIA DA COMPUTAÇÃO, em 17/05/2022, às 19:18, conforme horário oficial de
Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0327565 e o código CRC
44637EE9.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.006210/2022-12 SEI nº 0327565

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000

Telefone: (31)3559-1641 - www.ufop.br

vii

Dedico este trabalho aos meus pais Mario Borges (in memoriam) e Maria Deuzilene, à

minha esposa Carol e à minha filha Alice.

viii

ix

Resumo

Em muitos páıses, o preço da energia varia de acordo com a poĺıtica time-of-

use. Como regra geral, é vantajoso financeiramente para as indústrias planejarem sua

produção considerando essa poĺıtica. Esta tese apresenta um novo problema de sequen-

ciamento de máquinas paralelas não-relacionadas bi-objetivo com tempos de preparação

dependentes da sequência, no qual os objetivos são minimizar o makespan e o custo total

de energia considerando máquinas com diferentes modos de operação e que o preço da

eletricidade segue a poĺıtica time-of-use. Introduzimos uma formulação de programação

linear inteira mista e aplicamos o método da soma ponderada para obter uma fron-

teira Pareto. Também desenvolvemos métodos de otimização multiobjetivo, baseados

no Multi-objective Variable Neighborhood Search com procedimento de intensificação

(chamado MOVNS2) e o Non-dominated Sorting Genetic Algorithm II (NSGA-II), para

tratar instâncias grandes, com pelo menos 50 tarefas, uma vez que a formulação não

pode resolvê-las em um tempo computacional aceitável para a tomada de decisão. Com-

paramos o desempenho dos algoritmos NSGA-II e MOVNS2 com dois algoritmos de

otimização multiobjetivo da literatura, o MOVNS1 e o NSGA-I, em relação às métricas

de hipervolume e hierarchical cluster counting (HCC). Os resultados mostraram que

os métodos propostos são capazes de encontrar uma boa aproximação para a fronteira

Pareto comparado com os resultados do método de soma ponderada em instâncias peque-

nas, de até 10 tarefas. Quando consideramos apenas as instâncias grandes, o MOVNS2

é superior ao MOVNS1, o NSGA-I e o NSGA-II em relação à métrica de hipervol-

ume. Além disso, o NSGA-II supera os métodos de otimização multiobjetivo NSGA-I,

MOVNS1 e MOVNS2 em relação à métrica HCC. Ambos os resultados apresentam um

ńıvel de confiança de 95%. Assim, o MOVNS2 proposto é capaz de encontrar soluções

não-dominadas com boa convergência e o NSGA-II com boa diversidade.

Palavras-chave: Máquinas paralelas não-relacionadas, custo total de energia,

makespan, Programação linear inteira mista, MOVNS, NSGA-II, Otimização multiobje-

tivo.

x

xi

Abstract

In many countries, energy pricing varies according to the time-of-use policy. As a

general rule, it is financially advantageous for the industries to plan their production con-

sidering this policy. This thesis introduces a new bi-objective unrelated parallel machine

scheduling problem with sequence-dependent setup times, in which the objectives are to

minimize the makespan and the total energy cost under machines with different oper-

ating modes and the time-of-use electricity price policy. We introduced a mixed-integer

linear programming formulation and applied the weighted sum method to obtain the

Pareto front. We also developed multi-objective methods, based on the Multi-objective

Variable Neighborhood Search with intensification procedure (named MOVNS2) and

Non-dominated Sorting Genetic Algorithm II (NSGA-II), to address large instances

with at least 50 jobs since the formulation cannot solve it in acceptable computational

time for decision-making. We compared the performance of the NSGA-II and MOVNS2

algorithms with two multi-objective algorithms of the literature, MOVNS1, and NSGA-

I, concerning the hypervolume and hierarchical cluster counting (HCC) metrics. The

results showed that the proposed methods are able to find a good approximation for the

Pareto front compared with the presented results by the weighted sum method in small

instances with up to 10 jobs. Considering only large instances, MOVNS2 is superior

to MOVNS1, NSGA-I, and NSGA-II in the hypervolume metric. In addition, NSGA-II

outperforms the NSGA-I, MOVNS1, and MOVNS2 multi-objective techniques concern-

ing the HCC metric. Both results are with a 95% confidence level. Thus, the proposed

MOVNS2 finds non-dominated solutions with good convergence and NSGA-II with good

diversity.

Keywords: Unrelated parallel machine, total energy cost, makespan, Mixed-Integer

Linear Programming, MOVNS, NSGA-II, Multi-objective optimization.

xii

xiii

Acknowledgements

I am grateful to God for everything in my life. Some of them were blessings, and

some were lessons. I thank you for every single thing sent my way.

My thanks to my mother, father (in memoriam), brother, sister, grandmother (in

memoriam), and other relatives for their support and encouragement in my life.

My gratitude to my wife Caroline, a person I love and who accompanied me on this

journey, always ready to help me.

I am grateful to my daughter Alice who always gives me reasons to smile and looking

for happiness in this life.

My thanks to Professor Marcone for the excellent advice during the development

of this work. I appreciate for friendship and encouragement, and especially for life

teachings.

My thanks Professor Luciano for his valuable advice that made work a lot.

I am grateful UFVJM and UFOP for the opportunity to qualify.

My gratitude to lady Herćılia, who provided me with a home in Ouro Preto.

My thanks to my friends who always encouraged me.

Contents

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

Nomenclature xxv

1 Introduction 1

1.1 Contextualization . 1

1.2 Motivations . 2

1.3 Objective . 3

1.3.1 General Objective . 3

1.3.2 Specific Objectives . 3

1.4 Contributions . 3

1.5 Work structure . 4

2 Literature Review 5

2.1 Scheduling problems . 5

2.2 Time-of-use electricity price . 7

2.3 Related works . 8

xv

xvi CONTENTS

3 Proposed Mathematical Model 15

3.1 Notation . 15

3.2 Formulation . 17

3.3 Numerical Example . 19

4 Proposed Algorithms 23

4.1 Weighted Sum Method . 23

4.2 Representation and evaluation of the solution 25

4.3 NSGA-II . 26

4.3.1 Fast non-dominated sorting . 27

4.3.2 Crowding Distance . 28

4.3.3 Initial Population . 29

4.3.4 Crossover . 30

4.3.5 Mutation . 31

4.4 MOVNS . 34

4.4.1 Initial solution . 36

4.4.2 Neighborhood Structures . 37

4.4.3 Shaking procedure . 38

4.4.4 Intensification of Arroyo et al. (2011) 38

5 Computational Experiments 41

5.1 Instances Generation . 41

5.2 Metric description . 42

5.2.1 Hypervolume . 43

5.2.2 HCC . 44

5.3 Tuning of algorithms’ parameters . 46

CONTENTS xvii

5.4 Results . 47

5.4.1 Results in the set1 . 47

5.4.2 Results in the set2 . 50

5.4.3 Statistical Analysis . 55

6 Conclusions 61

A Publications 63

Bibliography 65

xviii

List of Figures

3.1 Example to illustrate the calculation of the energy cost on a machine . . 20

3.2 Schedule example for case 6 . 21

4.1 Representation of the solution . 25

4.2 Crossover adapted from Vallada and Ruiz (2011) 32

4.3 Swap move between jobs j1 and j2 . 33

4.4 Insertion operator of job j1 on machine i2 34

4.5 Example of the mode change operator 34

5.1 Hypervolume for set A . 43

5.2 Example of how to calculate the HCC metric (Guimarães et al., 2009) . . 45

5.3 Example of Fronts found by NSGA-II, MOVNS2 and Exact methods . . 51

5.4 Example of the Pareto front obtained from each algorithm 56

5.5 Boxplots of the results . 57

xix

xx

List of Tables

2.1 Summary of characteristics addressed by our work compared to literature

studies. 13

3.1 Decision and auxiliary variables for the problem 16

3.2 Energy cost by job in the Example of Figure 3.1 21

5.1 Instance characteristics . 42

5.2 Test scenarios for algorithms’ parameters 46

5.3 Summary of reference set data in the set1 48

5.4 Summary of RPDHV and runtime of the proposed methods in the set1.

The best average values are highlighted in bold. 48

5.5 Summary of HCC value and runtime of proposed the methods in the set1.

The best average values are highlighted in bold. 49

5.6 Summary of reference set data in the set2 52

5.7 Summary of RPDHV and runtime to the instances of set2 in the proposed

algorithms. The best average values are highlighted in bold. 52

5.8 Summary of HCC and runtime to the instances of set2 in the proposed

algorithms. The best average values are highlighted in bold. 53

5.9 Average RPDHV to the instances of set2 in the tested algorithms. The

best values are highlighted in bold. 54

5.10 Average HCC to the instances of set2 in the tested algorithms. The best

values are highlighted in bold. 55

xxi

xxii LIST OF TABLES

5.11 p-values of the Shapiro-Wilk normality test concerning RPDHV and HCC

values . 58

5.12 p-values of the paired Wilcoxon signed-rank test concerning RPDHV and

HCC values (α = 0.05). 59

List of Algorithms

4.1 Weighted Sum Method . 24

4.2 NSGA-II . 26

4.3 Fast Non-Dominated Sorting . 28

4.4 crowding distance . 29

4.5 Greedy Constructive Heuristic . 30

4.6 Basic VNS . 35

4.7 MOVNS2 . 36

4.8 Greedy Constructive Heuristic Weighted 37

4.9 Intensification of Arroyo et al. (2011) . 39

xxiii

xxiv

Nomenclature

ACO Ant Colony Optimization

ACO-ATC Ant Colony Optimization with Apparent Tardiness Cost

CEA Combinatorial Evolutionary Algorithm

CPP Critical Peak Pricing

DE Differential Evolution

DR Demand Response

EIA Energy Information Administration

ET Energy Tariff

GA Genetic Algorithm

GRAPS Greedy Randomized Adaptive Search Procedure

HV Hypervolume

HCC Hierarchical Cluster Counting

MILP Mixed Integer Linear Programming

MO-ALNS Multi-objective Adaptive Large Neighborhood Search

MO-ALNS/D Multi-objective Adaptive Large Neighborhood Search with Decom-

position

MDE Memetic Differential Evolution

MOEA/D Multi-objective Evolutionary Algorithm with Decomposition

MOPSO Multi-objective Particle Swarm Optimization

MOSA Multi-objective Simulated Annealing

MOVNS Multi-objective Variable Neighborhood Search

xxv

xxvi Nomenclature

NDS Non-dominated set

NNIA Nondominated Neighbor Immune Algorithm

NSGA-I Non-dominated Sorting Genetic Algorithm I

NSGA-II Non-dominated Sorting Genetic Algorithm II

NUPMSP

PEC Partial Energy Cost

RTP Real-time Pricing

RPD Relative Percentage Deviation

SPEA-2 Strength Pareto Evolutionary Algorithm 2

TEC Total Energy Cost

TOU Time-of-use

UPMSP Unrelated Parallel Machine Scheduling Problem

UPMSP-SDS Unrelated Parallel Machine Scheduling Problem with Sequence-

dependent Setup Times

VNS Variable Neighborhood Search

Chapter 1

Introduction

In this chapter, we introduce the contextualization of the problem addressed in Section

1.1. The motivations are in Section 1.2, while the objectives and contributions are in

Section 1.3. Finally, the work structure is in Section 1.5.

1.1 Contextualization

The industrial sector is one of the largest energy consumers in the world. According

to EIA (2016), this sector consumes around 54% of the total energy delivered globally.

The energy used in this sector comes in many forms, such as liquid fuels, natural gas,

coal, electricity, and others.

The manufacturing industry transforms materials, energy, and information into goods

and products (Fysikopoulos et al., 2014). Among the various forms of energy, electricity

has been one of the most consumed by this sector. In China, for example, it consumes

about 50% of the electricity produced in that country (Liu et al., 2014).

In recent years, electricity prices have continuously increased for manufacturing com-

panies in industrialized countries (Willeke et al., 2016). In Norway, the industrial elec-

tricity price, including taxes, increased by 47% between 2017 and 2018 (BEIS, 2020).

This rise impacts production costs and can reduce the competitiveness of companies.

In countries that implement a pricing policy so that the energy price depends on the

time-of-use, the reduction of electricity costs can occur through production planning

that prioritizes periods when energy is less expensive.

1

2 Introduction

Few studies address scheduling problems in which the energy price depends on the

time-of-use tariffs. Among them, we mention Ebrahimi et al. (2020), Zeng et al. (2018),

Wang et al. (2016), Shrouf et al. (2014), and Zhang et al. (2014), where the objective

includes minimizing the total energy cost.

The variable operating mode is present in many real applications. For example, Fang

et al. (2011) describe a manufacturing industry that cast iron plates with slots. In this

example, the machines that cut the plates operate at different speeds.

On the other hand, among several scheduling environments, the unrelated parallel

machine one has received much attention recently, given its wide applicability in the

industry (Cota et al., 2019). In terms of performance measures, makespan minimization

is one of the most common because this criterion aims at the good utilization of the

machines (Pinedo, 2016). Lastly, the sequence-dependent setup times appear in many

industrial and service applications (Kopanos et al., 2009). However, we found only work

of Keshavarz et al. (2021) reported in the literature addressing the unrelated parallel

machine scheduling problem with sequence-dependent setup times (UPMSP-SDS), con-

sidering reducing the makespan and the total energy cost. However, the previously cited

work does not assume that the machines can operate at different speeds, nor that the

machine power is part of the calculation of the energy cost of each job.

This thesis focuses on the problem of unrelated parallel machines with sequence-

dependent setup time, considering the TOU and the machine operating mode to fill this

gap in the literature.

We propose the weighted sum method to solve small instances and heuristic multi-

objective optimization methods to treat large problem instances. The heuristic methods

developed are based on NSGA-II and MOVNS, given the wide use and efficiency of

these methods in related problems (Bektur, 2021; Afzalirad and Rezaeian, 2017; Bandy-

opadhyay and Bhattacharya, 2013; Arroyo et al., 2011; Sun et al., 2019; Wu and Che,

2020).

1.2 Motivations

Introduction 3

The present study is motivated by at least two aspects: The first is the practical

interest since there are several applications of this class of problem, for example, in the

manufacturing industry (Deng et al., 2019; Ruiz et al., 2019; Shen et al., 2018), comput-

ing (Gotoda et al., 2012; Park and Dally, 2010; Wolf et al., 2008), or services (Hong et al.,

2021; Senbel, 2019; Pour et al., 2018). Another relevant aspect is the theoretical interest

since this problem belongs to the NP-hard class because it is a generalization of the

identical parallel machine scheduling problem, which is NP-hard (Garey and Johnson,

1979).

1.3 Objective

1.3.1 General Objective

This work has as objective to present a mathematical model and heuristic algorithms to

address the unrelated parallel machine scheduling problem to minimize the makespan

and the total energy cost.

1.3.2 Specific Objectives

The specific objectives are the following:

� Present a new mathematical model for the unrelated parallel machine scheduling

problem to minimize the makespan and the total energy cost.

� Implement a method based on the mathematical model able to find Pareto-optimal

solutions for this problem.

� Build a procedure based on NSGA-II to treat large instances of the problem.

� Develop a method based on MOVNS to handle large instances of the problem.

� Compare the results of the proposed methods with literature methods.

1.4 Contributions

The main contributions of this work are the following:

4 Introduction

� Introducing a new bi-objective unrelated parallel machine scheduling problem.

� Introducing a new mixed-integer linear programming formulation able to solve

small instances of this problem.

� Proposing adapted versions of the NSGA-II and the MOVNS algorithms to treat

large instances of this problem.

� Creating a set of instances for this problem.

� Performing an experimental study of the proposed methods.

1.5 Work structure

We organized the remainder of this thesis as follows: in Chapter 2, we review the

literature. In Chapter 3, we detail the problem addressed, and introduce the proposed

mathematical model. In Chapter 4, we show the adaptation of the NSGA-II and the

MOVNS algorithms to the problem. In Chapter 5, we report the computational results,

which include a comparison of the results of the proposed algorithms with the exact

method on small instances and a comparison with other multi-objective algorithms on

large instances. Finally, we present the conclusions and directions for future work in

Chapter 6.

Chapter 2

Literature Review

Here, we provide basic concepts about scheduling problems and time-of-use policy in

Sections 2.1 and 2.2, respectively. Then, in Section 2.3, we reviewed the main works

found in the literature related to the problem addressed.

2.1 Scheduling problems

“Scheduling is a decision-making process that is used on a regular basis in many man-

ufacturing and services industries. It deals with the allocation of resources” (Pinedo,

2016). They are applicable in several scenarios. For example, to allocate machines in

a production system to execute a job (Deng et al., 2019; Ruiz et al., 2019; Shen et al.,

2018), allocate the processors of the computing system to perform specific calculations

(Gotoda et al., 2012; Park and Dally, 2010; Wolf et al., 2008), or allocate workers to

perform services according to customer demand (Hong et al., 2021; Senbel, 2019; Pour

et al., 2018).

We can describe scheduling problems by three fields notation (α | β | γ) introduced by

Graham et al. (1979), where the field α describes the machine environment and contains

only one entry. The field β provides details of processing characteristics and restrictions.

This field can contain one, several, or no entries. The field γ describes the objective to

be minimized.

Next, we present some examples for each field. According to Pinedo (2016), we can

cite some machine environments (α):

5

6 Literature Review

Single machine: There is a single machine to process each job j;

Identical Parallel machine: There are m identical machines in parallel. Job j re-

quires a single operation and can be processed on any of the m machines.

Unrelated Parallel machine: This environment is a generalization of the previous

one. There are m different machines in parallel. For each machine i, job j has a

processing time pij.

Flow shop: There are m machines. Each job j requires one operation in each machine,

to be processed. All jobs follow the same route, that is, they be processed first on

machine 1, then on machine 2, and so on.

Parallel machine with different speeds: There are m machines in parallel with dif-

ferent speeds. The speed of each machine i is denoted by vi . The processing time

pj of job j on machine i is equal to pj/vi.

In addition, we quote above some processing restrictions (β):

Release dates: Job j cannot start processing before its release date.

Preemptions: The job processing can stop at any time. In this way, it is possible to

stop processing a job at any time and swap to another machine.

Sequence dependent setup times: It is the time required after job j to prepare the

machine to process job k. This time depends on the sequence in which the jobs

are allocated on machine.

Also according to Pinedo (2016); Chiaraviglio et al. (2011), we can list some objectives

for the scheduling problems (γ):

Makespan: It is equal to the completion time of the last job, assuming that the com-

pletion time of any job is when it finishes;

Total weighted tardiness: This objective indicates the total tardiness generated by

scheduling;

Total weighted earliness: It indicates the total earliness obtained by scheduling;

Literature Review 7

Maximum Lateness: Lateness measures whether given scheduling conforms to due

dates and takes negative values to early jobs.

Energy consumption: The sum of energy consumed by machines to execute the jobs.

Energy cost: The sum of energy consumed by machines to execute the jobs multiplied

by the energy tariff.

Following this notation, the problem addressed in this thesis is denoted by:

Rm | Sijk, TOU | Cmax, TEC. The field Rm identifies that the machines are parallel

and unrelated. Sijk means that the setup time is sequence-dependent. TOU indicates

that the problem considers time-of-use policy. Lastly, the field < Cmax, TEC > denotes

that the objectives are makespan and total energy cost, respectively.

A relevant characteristic of the problem considered in this work, and found in real-

world applications, is sequence-dependent setup time. For example, in the printing

industry, a printer receives various orders (an order is considered a job). Each order has

different colors, sizes, or paper types. Printers (machines) must be cleaned and reset

when the color, size, or paper type of the following order to be processed is different

from the current order. In this case, setup times depend on the processing sequence of

the jobs (Huang et al., 2010).

Another characteristic of the problem, also found in real-world applications, is energy

pricing under the time-of-use policy. For example, Wang et al. (2016) present the case

in a ceramic glass industry located in Shanghai, China. This company uses a furnace

for heating and handling the glass. The primary energy used to heat the furnace is

electricity, and its price varies according to the hour of the day.

2.2 Time-of-use electricity price

We can define Demand Response (DR) as the changes in electricity use by final con-

sumers from their standard consumption profiles in response to changes in the price of

electricity over time. Typically, the consumers are encouraged to reduce electricity usage

at high wholesale market prices or when system reliability is compromised (Albadi and

El-Saadany, 2007).

In the DR program, the customer signs a contract with the local utility to reduce

their demand as and when requested. The advantage of this program for the utility

8 Literature Review

is the reduction of peak load, thus saving on expensive generation reserves. For the

customer, the benefit is the cost-reducing provided by the local utility (Aalami et al.,

2015).

DR programs are classified into one of two categories: price-based and incentive-

based DR programs. The first category refers to change in electricity consumption

by the end-use customer in response to dynamic prices. This category includes the

TOU (time-of-use) rate, RTP (real-time pricing), and CPP (critical peak pricing), and

they are entirely voluntary. The second category is designed by operators and includes

Direct Load Control, Interruptible/Curtailable service, Demand Bidding, Emergency

DR, Capacity Market, and Ancillary services market program. These programs give

participating customers incentive payments and consider penalties for customers who

enroll but do not respond in the needed time, depending on the program types and

conditions (Falsafi et al., 2014). This thesis focuses on the TOU program, which is

briefly introduced in the following.

The TOU is the most popular pricing method among DR strategies (Ding et al.,

2016). It is a method of demand-side management in which the price varies hourly on

the day. It is an alternative to the traditional time-invariant rate because it encourages

consumers to change their electricity usage patterns. It serves as a cost-effective way to

realize electricity demand response and reduce peak demand (Wang and Li, 2015).

We can divide the TOU into two groups based on the hour of the day, on-peak and

off-peak. On-peak is the time of day when energy demand is highest. Off-peak rates are

during the time of day when energy demand is lowest. Usually, the DR program offers a

high price of electricity during on-peak periods and lower prices during off-peak periods

(Cheng et al., 2019).

2.3 Related works

Here, we present a literature review with previous research that addressed scheduling

problems and also considered objectives related to this work.

Some studies address the scheduling problem only to minimize energy consumption.

Shrouf et al. (2014) proposed a mathematical model for the single machine scheduling

problem to minimize the total costs of energy considering continuous changes in energy

prices (time-of-use), and preemption is not allowed. The planning horizon is divided

Literature Review 9

into several segments of equal length (called periods). However, the model cannot solve

large instances within a reasonable computational time for decision-making. For this

reason, they also proposed a genetic algorithm. The computational results indicated

the possibility of reducing energy consumption by up to 30% when they compared the

genetic algorithm solution and the “as soon as possible” heuristic solution.

Tsao et al. (2020) presented a fuzzy model integrated into a genetic algorithm for

a single machine problem to minimize the total costs of energy, considering constraint

carbon footprint, constraint makespan, variable electricity prices (time-of-use), and pre-

emption is allowed. The processing time of the jobs depends on the allocation of sources.

To deal with uncertainty related to resource allocation costs, they adopted a fuzzy ap-

proach combined with a Genetic Algorithm to decide machine status (“on” or “idle”),

processing time, and jobs sequence. They tested the method in instances of up to 200

jobs. The results indicated a 4.20% reduction in total energy consumption compared to

the traditional genetic algorithm.

Other studies address the scheduling problem aim minimizing energy consumption

combined with a second objective.

Cota et al. (2018) proposed a mathematical model and applied a mathematical heuris-

tic called multi-objective smart pool search for the UPMSP-SDS. The objective functions

are to minimize the makespan and the total energy consumption. This study assumed

operating mode on machines. In the experiments, they used a set of instances with up to

fifteen jobs and five machines randomly generated. They adopted hypervolume and set

coverage metrics to compare the proposed algorithm with the ε-constraint exact method.

They concluded that the objectives are conflicting and that energy consumption is very

important since it represents a cost for the industry.

Cota et al. (2019) introduced the MO-ALNS and MO-ALNS/D algorithms to treat

instances of up to 250 jobs and 30 machines of the same problem described previously.

The MO-ALNS algorithm is a multi-objective version of the Adaptive Large Neighbor-

hood Search – ALNS (Ropke and Pisinger, 2006), in its turn, the MO-ALNS/D algorithm

combines the multi-objective MOEA/D (Zhang and Li, 2007) with ALNS. The results

show that the MO-ALNS/D algorithm was able to find better results than MO-ALNS

in most instances in the hypervolume, set coverage, and Hierarchical Cluster Counting

(HCC) (Guimarães et al., 2009) metrics.

Wu and Che (2019) proposed a memetic differential evolution (MDE) algorithm

for the UPMSP in which the objectives are also to minimize the makespan and the

10 Literature Review

total energy consumption. They considered the operating mode but did not consider

sequence-dependent setup times. The problem involves assigning jobs to machines and

selecting an appropriate processing speed level for each job. They proposed a local

search approach integrated with the DE algorithm to improve it. The computational

results showed that the proposed approach significantly improves the basic DE. Also,

the MDE outperforms the SPEA-2 and NSGA-II algorithms.

Liang et al. (2015) presented the Ant Colony Optimization algorithm with the Appar-

ent Tardiness Cost (ACO-ATC) rule for the UPMSP, aiming to minimize the weighted

sum of the total tardiness and the energy consumption. In this problem, machines need

to wait until jobs are ready. However, it is necessary to decide whether the machine

remains on or off during the wait. Turning off the machine and waiting until the job is

ready saves energy. On the other hand, keeping the machine turned on and waiting for

the next job saves the setup time required when turning on the machine. This problem

considers setup time to the jobs, but it is not sequence-dependent. In the experiments,

they compared the ACO-ATC results with the classic ACO and a GRASP-based al-

gorithm (Feo and Resende, 1995) on 91 instances, with 5 runs for each instance. The

proposed algorithm was better than the other approaches in most tested instances.

We found studies that only address the minimization of the total energy cost.

Ding et al. (2016) presented two approaches to UPMSP: the first introduces a time-

interval-based Mixed Integer Linear Programming (MILP) formulation. The second is a

reformulation of the problem using the Dantzig-Wolfe decomposition and a column gen-

eration heuristic. They considered the operating mode but did not consider the setup

time for the problem. The objective is to minimize total energy cost. According to

the results, the MILP formulation overcame the column generation method concerning

solution quality and execution time when electricity prices stay stable for a relatively

long period. On the other hand, the column generation method performed better when

the electricity price frequently changed (i.e., every half hour). They performed compu-

tational experiments with 120 randomly generated instances.

Cheng et al. (2018) improved the formulation by Ding et al. (2016) by significantly

reducing the number of decision variables. They performed computational experiments

with 120 randomly generated instances as they could not obtain the instances of Ding

et al. (2016). They reformulated some constraints such as job completion, machine

availability, and non-preemption. They proposed a tighter and more compact model.

The results showed that the new formulation achieves better results concerning the

Literature Review 11

solution quality and execution time.

Saberi-Aliabad et al. (2020) proposed the fix-and-relax heuristic algorithm in two

stages for the same problem previously described. In the first stage of the algorithm,

jobs are assigned to the machines, and the second one solves a scheduling problem on

single machines. They tested their method in 360 instances randomly generated following

the same parameter values as previous studies. They compared the proposed method

with the algorithms of Che et al. (2017) and Cheng et al. (2018). The results showed

that the fix-and-relax algorithm overcame the others.

Finally, we present studies that address the scheduling problem considering minimiz-

ing the energy cost combined with another objective.

Zeng et al. (2018) dealt with the bi-objective uniform parallel machine scheduling to

minimize the total energy cost and the number of machines under the TOU electricity

pricing. They considered the operating mode on machines. They proposed a new math-

ematical model and a heuristic algorithm for it. They adapted the heuristic proposed by

Che et al. (2016) to the single machine problem. In this heuristic, the jobs are inserted

in non-decreasing order of their processing time. In the mathematical formulation, it

was used the number of machines m as a constraint. In this way, it is possible to ob-

tain the Pareto front by changing the value of m. They compared the heuristic and

the mathematical model results in instances with up to 60 jobs. Moreover, they tested

the heuristic algorithm in instances with up to 5000 jobs, randomly generated, and in

instances from a manufacturing company in Shaanxi Province, China. They concluded

that the heuristic algorithm generates high-quality solutions within a reasonable time

limit.

Moon et al. (2013) addressed the UPMSP under the TOU electricity pricing to mini-

mize the weighted sum of makespan and energy cost. The problem does not consider the

machine setup time. They present a hybrid genetic insertion algorithm. Computational

tests indicate that the proposed algorithm reduces the total energy cost compared to the

classical genetic algorithm. Cheng et al. (2019) presented a mathematical formulation

and a genetic algorithm for a problem similar to described previously. The proposed

model can solve the instances of Moon et al. (2013) quickly . They randomly generated

instances with 2 to 3 machines and 5 to 9 jobs to verify the effectiveness of the pro-

posed model. The results presented by their formulation overcome that of the genetic

algorithm in terms of solution quality. Kurniawan et al. (2017) proposed a genetic algo-

rithm with a delay mechanism for the same problem addressed by Moon et al. (2013).

12 Literature Review

The job delay mechanism improves the schedule since delaying the start of jobs avoids

the high electricity price period. The proposed algorithm uses a probabilistic method

to determine which jobs must be delayed and how long to delay. The proposed algo-

rithm handled instances of up to 30 jobs and 15 machines. The results showed that the

proposed method provided better solutions than the classical genetic algorithm.

Kurniawan et al. (2020) proposed a triple-chromosome genetic algorithm for the same

problem described previously. The triple-chromosome represents the job sequencing, the

job assignment, and the starting time of the job. The results showed that the proposed

method performs better than other methods tested: classical genetic algorithm, double-

chromosome genetic algorithm, and single-chromosome genetic algorithm.

Zhang et al. (2021) approached the unrelated parallel machine scheduling prob-

lem with sequence and machine-dependent setup times (UPMSP-SMDST) with limited

worker resources and learning effect, denoted by NUPMSP. In this problem, the workers

who perform the machine setup have different skill levels. Due to the learning effect,

this skill will increase until it reaches the maximum level. Also, the number of workers

is limited. The objective is to minimize makespan and total energy cost. They proposed

a new combinatorial evolutionary algorithm (CEA) and compared it to the neighbor im-

mune algorithm (NNIA) and the NSGA-II. Based on the result obtained in 72 instances,

they concluded that CEA outperformed the other algorithms in almost all instances.

Keshavarz et al. (2021) addressed UPMSP with sequence-dependent setup times to

minimize makespan and energy consumption under TOU electricity pricing. They pre-

sented a mixed-integer bi-objective mathematical model and applied the ε-constraint

method to solve small with up to 10 jobs and medium-sized instances with 12 to 45 jobs.

They applied the Multiple Objective Particle Swarm Optimization algorithm (MOPSO)

and the Multiple Objective Simulated Annealing algorithm (MOSA) to large-sized in-

stances with 60 to 250 jobs. The results indicated that the MOSA performs better than

the MOPSO.

The problem addressed in this work is similar to that defined in the study of Ke-

shavarz et al. (2021). However, there are some differences. In the present work, we

assume that the machine can operate in different modes to process a job. The operating

mode affects the processing time and consequently the energy cost. In addition, we use

the power of the machine to calculate the energy cost of a job. Table 2.1 summarizes

the characteristics of scheduling problems treated by our work compared to literature

references.

Literature Review 13

T
ab

le
2.

1:
S
u
m

m
ar

y
of

ch
ar

ac
te

ri
st

ic
s

ad
d
re

ss
ed

b
y

ou
r

w
or

k
co

m
p
ar

ed
to

li
te

ra
tu

re
st

u
d
ie

s.

R
ef

er
en

ce
U

n
re

la
te

d
p
ar

al
le

l
m

ac
h
in

es

S
eq

u
en

ce
-

d
ep

en
d
en

t
se

tu
p

M
ak

es
p
an

T
ot

al
en

er
gy

co
st

ti
m

e-
of

-
u
se

M
u
lt

i-
ob

je
ct

iv
e

E
x
ac

t
m

et
h
o
d

M
et

ah
eu

ri
st

ic
m

et
h
o
d

O
p

er
at

in
g

m
o
d
e

M
o
on

et
al

.
(2

01
3)

X
X

X
X

X
X

S
h
ro

u
f

et
al

.
(2

01
4)

X
X

X
X

L
ia

n
g

et
al

.
(2

01
5)

X
X

X
X

D
in

g
et

al
.

(2
01

6)
X

X
X

X
X

K
u
rn

ia
w

an
et

al
.

(2
01

7)
X

X
X

X
X

X

C
ot

a
et

al
.

(2
01

8)
X

X
X

X
X

X

C
h
en

g
et

al
.

(2
01

8)
X

X
X

X

Z
en

g
et

al
.

(2
01

8)
X

X
X

X
X

X

C
ot

a
et

al
.

(2
01

9)
X

X
X

X
X

X

W
u

an
d

C
h
e

(2
01

9)
X

X
X

X
X

C
h
en

g
et

al
.

(2
01

9)
X

X
X

X
X

X

T
sa

o
et

al
.

(2
02

0)
X

X
X

X

S
ab

er
i-

A
li
ab

ad
et

al
.

(2
02

0)
X

X
X

X
X

K
u
rn

ia
w

an
et

al
.

(2
02

0)
X

X
X

X
X

X
X

X

Z
h
an

g
et

al
.

(2
02

1)
X

X
X

X
X

X
X

K
es

h
av

ar
z

et
al

.
(2

02
1)

X
X

X
X

X
X

X
X

O
u
r

p
ro

p
os

al
X

X
X

X
X

X
X

X
X

14

Chapter 3

Proposed Mathematical Model

In this chapter, we detail, in Section 3.1, the notation used to describe the problem. The

mathematical formulation is in Section 3.2. Finally, we present a numerical example with

dummy data for the problem addressed in Section 3.3.

3.1 Notation

To define the UPMSP-SDS, we characterize the problem in this section and introduce a

MILP formulation to solve it.

The following are the characteristics of the problem addressed in this work:

� There are a set N = {1, . . . , n} of jobs, a set M = {1, . . . ,m} of machines, and

a set L = {1, . . . , o} of different operating modes, such that each operating mode

l ∈ L is associated with a multiplication factor of speed vl and a multiplication

factor of power λl;

� The machines are unrelated parallel. In other words, the processing time of job

j ∈ N can be different on each machine i ∈M ;

� There is a planning horizon that consists of a set H = {0, . . . , |H|} of time instants,

and we must execute all jobs within this horizon;

� All jobs are available to be processed at the beginning of the planning horizon

h = 0;

15

16 Problem Statement

� Each job j ∈ N must be allocated to exactly one machine i ∈M ;

� There is a processing time Pij to execute a job j ∈ N on a machine i ∈M ;

� There is a sequence-dependent setup time Sijk to execute a job k ∈ N after another

job j ∈ N on a machine i ∈M ;

� Each machine i ∈M has a power πi at normal operating speed;

� The operating mode l ∈ L of each job determines the multiplication factor of power

(λl). It also determines the multiplication factor of speed (Vl), which, in turn, is

related to the processing time of each job;

� There is a set D of days on the planning horizon H;

� Each day is discretized into sizeD time intervals. For example, for discretizing a

day in minutes, sizeD = 1440; for the discretization of one day in hours, sizeD =

24;

� To each day t ∈ H, we have a peak hour, which starts at the time startpt ∈ H
and ends at the time endpt ∈ H;

� EToff and ETon represent the energy tariff ($/KWh) in off-peak and on-peak hours,

respectively.

Table 3.1 presents the decision and auxiliary variables needed to model the problem.

Table 3.1: Decision and auxiliary variables for the problem

Name Description

Xijhl Binary variable that assumes value 1 if the job j is allocated on
the machine i at time h and in the operating mode l, and value 0,
otherwise

PECon
t Partial Energy Cost ($) during the on-peak in day t ∈ D

PECoff
t Partial Energy Cost ($) during the off-peak in day t ∈ D

Cmax The maximum completion time of the jobs, also known as
makespan

TEC Total Energy Cost ($)

Problem Statement 17

3.2 Formulation

Based on the formulation of Pinto et al. (2019), we can define the problem through

Equations (3.1) - (3.12).

min Cmax (3.1)

min TEC (3.2)

Subject to:

m∑
i=1

o∑
l=1

|H|−
⌈

Pij
Vl

⌉∑
h=0

Xijhl = 1 ∀j ∈ N (3.3)

Xijhl +

min

(
h+

⌈
Pij
Vl

⌉
+Sijk−1,|H|

)∑
u=h

o∑
l1=1

Xikul1
≤ 1 ∀i ∈M, j ∈ N, k ∈ N, l ∈ L, j 6= k (3.4)

Cmax ≥ Xijhl ×
[
h+

⌈
Pij

Vl

⌉]
, ∀i ∈M, j ∈ N, h ∈ H, l ∈ L (3.5)

PECoff
t ≥

m∑
i=1

n∑
j=1

o∑
l=1

λl × πi × EToff × 24

sizeD
× (3.6)


startpt−1∑

h=sizeD×(t−1)

Xijhl×

[
min

(
h+

⌈
Pij

Vl

⌉
, startpt

)
− h+ max

(
0, h+

⌈
Pij

Vl

⌉
− endpt − 1

)]

+

endpt−1∑
h=startpt

Xijhl ×
[
max

(
0, h+

⌈
Pij

Vl

⌉
− endpt − 1

)]

+

|H|−1∑
h=endpt

Xijhl ×
⌈
Pij

Vl

⌉ ∀t ∈ D

18 Problem Statement

PECon
t ≥

m∑
i=1

n∑
j=1

o∑
l=1

λl × πi × ETon × 24

sizeD
× (3.7)


startpt−1∑

h=sizeD×(t−1)

Xijhl×

[
max

(
0,min

(
h+

⌈
Pij

Vl

⌉
− 1, endpt

)
− (startpt − 1)

)]

+

endpt−1∑
h=startpt

Xijhl ×
[
min

(
h+

⌈
Pij

Vl

⌉
, endpt + 1

)
− h
] ∀t ∈ D

TEC ≥
sizeD∑
t=1

(
PECoff

t + PECon
t

)
(3.8)

Xijhl ∈ {0, 1} ∀i ∈M, j ∈ N, h ∈ H, l ∈ L (3.9)

Cmax ≥ 0 (3.10)

PECoff
t ≥ 0 ∀t ∈ D (3.11)

PECon
t ≥ 0 ∀t ∈ D (3.12)

The objectives of the problem are to minimize, simultaneously, the makespan and

the total energy cost, defined by Equations (3.1) and (3.2), respectively. The constraint

set (3.3) ensures that every job j ∈ N is allocated on a machine with a single operating

mode and ends its execution inside the planning horizon. Constraints (3.4) define that

if the job k is assigned to machine i immediately after the job j, then the start time

of the job k must be greater than the sum of the end time of the job j and the setup

time between them. It is important to highlight that the setup and processing times

must satisfy the triangular inequality for the previous model to be valid (Rosa and

Souza, 2009). The constraint set (3.5) determines a lower bound for the makespan.

Constraints (3.6) and (3.7) define a lower bound in the partial energy cost for off-peak

hours (PECoff) and in the partial energy cost for on-peak hours (PECon), respectively.

Note that a job can be partially executed in the on-peak hours and partially in the

off-peak hours and that the total energy cost is directly related to the energy price and

the job execution time. Constraint (3.8) ensures a lower bound for the total energy cost.

Problem Statement 19

Constraints (3.9)-(3.12) define the domain of the decision and auxiliary variables of the

problem.

We generalize the model proposed by Pinto et al. (2019) in the present work to solve

planning horizons with more than one day. Furthermore, our model makes it possible

to discretize the day in any time interval and not only in 10-minute intervals.

The calculation of the energy cost of a job j depends on its execution time during

the on-peak and off-peak time. Thus, there are six possible cases:

Case 1: The job j starts and ends before the on-peak hours;

Case 2: The job j starts before the on-peak hours and ends in the on-peak hours;

Case 3: The job j starts and ends in the on-peak hours;

Case 4: The job j starts during the on-peak hours and ends after the on-peak hours;

Case 5: The job j starts and ends after the on-peak hours;

Case 6: The job j starts before the on-peak hours and ends after the on-peak hours.

3.3 Numerical Example

To illustrate cases 1 to 5, let Figure 3.1. It shows the execution of five jobs N =

{2, 4, 1, 5, 3} in the scheduling of a single machine i = 1 in a single operating mode

l = 1 on day t = 1 of the planning horizon. Let the start of the on-peak hours (startp1)

equal to 18; the end of the on-peak hours (endp1) equal to 21; the multiplication factor

of power (λl) equal to 1; the energy consumption of machine at normal operating (π1)

equal to 100; the energy tariff in the on-peak hours (ET on) equal to 0.10$/KWh and

in the off-peak hours (ET off) equal to 0.05$/KWh; the multiplication factor of speed vl

equal to 1. In this example, we consider discretization in hours. This figure shows that

jobs 4, 1, and 5 are performed in the on-peak hours, partially or totally, and jobs 2 and

3, in turn, in the off-peak hours.

For this example, Eqs. (3.7) and (3.6) are reduced to Eqs. (3.13) and (3.14) below:

20 Problem Statement

0

startp1 endp1

h
2 4 6 8 10 12 14 16 18 20 22 24

2 4 1 5 3

Figure 3.1: Example to illustrate the calculation of the energy cost on a machine

PECon
1 =

n∑
j=1

1× 100× 0.10× 24

24︸ ︷︷ ︸
Parcel 1(a)

× (3.13)

{
18−1∑
h=0

X1jh1×
[
max

(
0,min

(
h+

⌈
P1j

1

⌉
− 1, 21

)
− (18− 1)

)]
︸ ︷︷ ︸

Parcel 2(b)

+
21−1∑
h=18

X1jh1 ×
[
min

(
h+

⌈
P1j

1

⌉
, 21 + 1

)
− h
]}

︸ ︷︷ ︸
Parcel 3(c)

PECoff
1 =

n∑
j=1

1× 100× 5× 24

24︸ ︷︷ ︸
Parcel 1(d)

× (3.14)

{
18−1∑
h=0

X1jh1×
[
min

(
h+

⌈
P1j

1

⌉
, 18

)
− h+ max

(
0, h+

⌈
P1j

1

⌉
− 21− 1

)]
︸ ︷︷ ︸

Parcel 2(e)

+
21−1∑
h=18

X1jh1 ×
[
max

(
0, h+

⌈
P1j

1

⌉
− 21− 1

)]
︸ ︷︷ ︸

Parcel 3(f)

+
24−1∑
h=21

X1jh1 ×
⌈
P1j

1

⌉}
︸ ︷︷ ︸

Parcel 4(g)

Table 3.2 illustrates the contribution of each job to the total energy cost, according to

Problem Statement 21

the example in Figure 3.1. The column “# Job” represents the job, the column “Case”

shows the contemplated case, and the columns “Contr. on-peak” and “Contr. off-peak”

show the contributions of the job to the energy cost of each job in the on-peak and

off-peak hours, respectively.

Table 3.2: Energy cost by job in the Example of Figure 3.1

Job Case Contr. on-peak hours Contr. off-peak hours

2 1 10︸︷︷︸
(a)

×(0︸︷︷︸
(b)

+ 0︸︷︷︸
(c)

) = 0 5︸︷︷︸
(d)

×(11︸︷︷︸
(e)

+ 0︸︷︷︸
(f)

+ 0︸︷︷︸
(g)

) = 55

4 2 10︸︷︷︸
(a)

×(1︸︷︷︸
(b)

+ 0︸︷︷︸
(c)

) = 10 5︸︷︷︸
(d)

×(2︸︷︷︸
(e)

+ 0︸︷︷︸
(f)

+ 0︸︷︷︸
(g)

) = 10

1 3 10︸︷︷︸
(a)

×(0︸︷︷︸
(b)

+ 1︸︷︷︸
(c)

) = 10 5︸︷︷︸
(d)

×(0︸︷︷︸
(e)

+ 0︸︷︷︸
(f)

+ 0︸︷︷︸
(g)

) = 0

5 4 10︸︷︷︸
(a)

×(0︸︷︷︸
(b)

+ 1︸︷︷︸
(c)

) = 10 5︸︷︷︸
(d)

×(0︸︷︷︸
(e)

+ 1︸︷︷︸
(f)

+ 0︸︷︷︸
(g)

) = 5

3 5 10︸︷︷︸
(a)

×(0︸︷︷︸
(b)

+ 0︸︷︷︸
(c)

) = 5︸︷︷︸
(d)

×(0︸︷︷︸
(e)

+ 0︸︷︷︸
(f)

+ 1︸︷︷︸
(g)

) = 5

The total energy cost found to the schedule shown in Figure 3.1 is 105.

To illustrate case 6, consider Figure 3.2. It shows the execution of three jobs N =

{2, 1, 3} on a single machine i = 1 in operating mode l = 1 during day t = 1 of the

planning horizon. Let also the start of the on-peak hours (startp1) equal to 18; the end

of the on-peak hours (endp1) equal to 21; the multiplication factor of power (λl) equal

to 1; the energy consumption of machines at normal operation (π1) equal to 100; the

energy tariff in the on-peak hours (ET on) equal to 0.10 $/KWh and in the off-peak

hours (ET off) equal to 0.05 $/KWh; and the multiplication factor of speed equal to 1.

Such as in the previous example, we consider discretization in hours. This figure shows

that job 1 is performed in the on-peak hours and jobs 2 and 3, in turn, in the off-peak

hours.

2 1

0

startp1 endp1

h

3

2 4 6 8 10 12 14 16 18 20 22 24

Figure 3.2: Schedule example for case 6

22 Problem Statement

The contribution of job 1 to the energy cost in the on-peak hours is 30, and the

contribution to the cost in the off-peak hours is 50.

Thus, calculating similarly to the previous example, we conclude that the total energy

cost for the schedule shown in Figure 3.2 is 155.

Chapter 4

Proposed Algorithms

In this chapter, we present the algorithms to treat the problem in this study. In Section

4.1, we detail the Weighted Sum Method. In Section 4.2, we show the representation

and evaluation of the solution used by metaheuristics algorithms. In Sections 4.3 and

4.4, we present the NSGA-II and MOVNS algorithms, respectively.

4.1 Weighted Sum Method

We used the weighted sum method (Marler and Arora, 2004) to solve the multi-

objective optimization problem addressed using a mathematical programming solver.

This method converts the multi-objective problem into a single objective problem using

the weighted sum of the objectives.

For this, consider Equation (4.1):

(4.1)min z(X) =

[
α×

(
Cmax(X)

|H|

)
+ (1− α)×

(
TEC(X)

Costmax

)]

where:

� α: Real number in range [0, 1];

23

24 Methodology

� |H|: Represents the cardinality of the set H;

� Costmax: It is the estimate for the maximum energy cost used to normalize the

total energy cost.

and:

Costmax = n×max

(
Pij

Vl

)
× PECon ×max(πi)

The problem constraints are those defined by Equations (3.3)-(3.12).

Algorithm 4.1 describes all the steps of the weighted sum method implemented.

Algorithm 4.1: Weighted Sum Method

input: ∆ = {α1, α2, · · · , αsv}, time limit

1 NDS← ∅
2 foreach αi ∈ ∆ do

3 model result← RunWeightedSumModel(αi, time limit)

4 s.Makespan← GetMakespan(model result)

5 s.TEC← GetTEC(model result)

6 NDS← AddSolution(s)

7 end

8 return NDS

Algorithm 4.1 receives the set ∆ with the values for α and the time limit as input.

In line 1, we initialize the non-dominated set (NDS) as empty. Then, we execute the

loop defined between lines 2-7 for each value α. In line 3, we obtain the result from the

execution of the model. Then, we get the Makespan and TEC values resulting from the

model execution. Then, in line 6, we add the solution obtained to the NDS. Finally, in

line 8, the method returns the generated non-dominated set.

In the weighted sum method, the decision-maker must define a weight for each objec-

tive function. The value of this weight reflects the relative importance of each objective

in the overall solution. We adopted several combinations of weights to find the most

significant number of optimal Pareto solutions to the problem addressed.

We used the following parameters for Algorithm 4.1:

� The set ∆ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} with the possible values

Methodology 25

for α;

� The time limit for each execution of the mathematical model, defined as

time limit = 800 × n × ln(m) seconds for each α value, where m is the number

of machines, and n is the number of jobs;

� sizeD = 144: To discretize the day at intervals of 10 minutes each.

Since the problem addressed is a generalization of the identical parallel machine

scheduling problem, which is NP-hard (Garey and Johnson, 1979), we can conclude that

it also belongs to this problem class. For this reason, we used heuristic multi-objective

algorithms to treat it. In this chapter, we present the proposed NSGA-II in Section 4.3

and the MOVNS2 in Section 4.4.

4.2 Representation and evaluation of the solution

We represent a solution by m lists. In each position of these lists, we have a pair of

keys. The first value indicates the job, and the second is associated with the operating

mode. We exemplify in Figure 4.1 the representation of a solution for an instance with

two machines and six jobs. We allocate jobs 6, 4, and 2 on machine M1 and define the

operating modes 3, 1, and 1 in this order. In addition, we have allocated jobs 3, 5, and

1 on machine M2 and set the operating modes 2, 3, and 1 in this order. Note that the

rectangles represent the jobs, and the circles represent the operating modes.

M1 6 4 2

M2 3 5 1

3 1 1

2 3 1

Figure 4.1: Representation of the solution

We evaluate a solution according the Equations (3.1) and (3.2).

26 Methodology

4.3 NSGA-II

The NSGA-II algorithm was proposed by Deb et al. (2002). There are in literature many

reports of successful use of this algorithm (Deb et al., 2007; Liu et al., 2014; Wang et al.,

2017; Babazadeh et al., 2018). This algorithm is an alternative to the exact method

described in the previous section to find an approximation of the Pareto-optimal front

in large instances in an adequate computational time for decision-making.

Algorithm 4.2 describes how the implemented NSGA-II works.

Algorithm 4.2: NSGA-II

input: sizepop, probmut, stopping criterion

1 P0 ← Generate initial population of sizepop individuals

2 Q0 ← ∅
3 t← 0

4 while stopping criterion not satisfied do

5 Rt ← Pt ∪ Qt

6 F ← Fast non-dominated sorting (Rt)

7 Pt+1 ← ∅
8 i← 1

9 while |Pt+1|+|Fi|≤ sizepop do

10 Compute Crowding Distance (Fi)

11 Pt+1 ← Pt+1 ∪ Fi

12 i← i+ 1

13 end

14 if |Pt+1|< sizepop then

15 Sort (Fi,≺obj)

16 j = 1

17 while |Pt+1|< sizepop do

18 Pt+1 ← Pt+1 ∪ Fi[j]

19 j ← j + 1

20 end

21 end

22 Qt+1 ← Crossover(Pt+1)

23 Qt+1 ← Mutation(Qt+1, probmut)

24 t← t+ 1

25 end

26 NDS← non-dominated solutions of Pt

27 return NDS

Methodology 27

Algorithm 4.2 receives the following input parameters: the population size (sizepop),

the probability of mutation (probmut), and the stopping criterion. In line 1, we create an

initial population P0. Then, in the main loop (lines 4–25), we combine the parent Pt

and offspring Qt to generate a new population Rt (line 5). In line 6, we apply the fast

non-dominated sorting method to divide the population Rt into non-dominated sets,

called fronts, F1,F2, . . . ,Fk. A front Fi dominates another Fj, if and only if, i < j

and Rt = F1 ∪ F2 . . .Fk. In lines 9–13, we select the best fronts of F to include in

the population Pt+1. We repeat this procedure as long as it is possible to include a

new front in Pt+1 without exceeding the population size. Then we check the size of the

population obtained. If it is not exactly sizepop, we sort the next front i of F that has

not yet been included in Pt+1, according to the crowding distance, and we select the first

sizepop−|Pt+1| individuals to population Pt+1. In lines 22 and 23, we apply the crossover

and mutation operators to generate the new population Qt+1, with sizepop individuals.

The following subsections describe the Fast non-dominated sorting, the Crowding

Distance procedures, how to generate an initial population, the crossover operators, and

the mutation operators, respectively.

4.3.1 Fast non-dominated sorting

The NSGA-II algorithm uses the Fast Non-Dominated Sorting method to sort a popula-

tion. It has complexity O(n obj × size2pop), where n obj is the number of objectives and

sizepop is the size of the population. This method receives a population P as an input

parameter and returns a set of non-dominated fronts F = (F1,F2, . . . ,Fk).

The Fast Non-Dominated Sorting method is defined by Algorithm 4.3:

In the loop between lines 1 and 15 of Algorithm 4.3, we select each p solution of P .

In the loop between lines 4 and 11, we choose each q solution of P , which q is different

from p. Then, we check if p dominates q. If yes, we insert the solution q into the set Sp.

In contrast, if q dominates p, we increment np by one. Next, we check which solutions

have the value np equal to zero (line 12). The solutions with the value np equal to zero

are non-dominated, so they must be included in the F1 front (line 13).

Then, the algorithm starts another loop (lines 17 – 29) to generate the others fronts.

We create each front Fi in this loop, selecting each q non-dominated solution that is

not yet on another front. We repeat this loop to generate new fronts from P as long as

possible.

28 Methodology

Algorithm 4.3: Fast Non-Dominated Sorting

input: P
1 foreach p ∈ P do
2 Sp ← ∅
3 np = 0
4 foreach q ∈ P do
5 if (p ≺ q) then
6 Sp ← Sp ∪ {q}
7 end
8 else if (q ≺ p) then
9 np ← np + 1

10 end

11 end
12 if (np = 0) then
13 F1 ← F1 ∪ {p}
14 end

15 end
16 i← 1
17 while F 6= ∅ do
18 Q← ∅
19 foreach p ∈ Fi do
20 foreach q ∈ Sp do
21 nq ← nq − 1
22 if (nq = 0) then
23 Q← Q ∪ q
24 end

25 end

26 end
27 i← i+ 1
28 Fi ← Q

29 end
30 return F

4.3.2 Crowding Distance

Crowding distance is an NSGA-II mechanism responsible for preserving the diversity of

the obtained non-dominated set of solutions. The crowding distance value of a solution

estimates the density of solutions around that solution (Raquel and Naval, 2005).

To estimate the density of solutions around a certain point in the population, we

calculate the average distance between its two adjacent points for each objective. The

Methodology 29

distance metric for point i estimates the perimeter of the largest cuboid covering this

point, not including any other points in the population. Solutions located close to regions

with fewer points receive a higher value than those located close to regions with more

points in the objective space (Deb et al., 2002).

The method to calculate the value for the crowding distance of each solution is

presented by Algorithm 4.4.

Algorithm 4.4: crowding distance

input: I
1 l← |I|
2 foreach i ∈ I do

3 I[i]← 0

4 end

5 foreach m ∈M do

6 I ← Sort(I, obj)
7 I[1].distance←∞
8 I[l].distance←∞
9 for i = 2 to (l − 1) do

10 I[i].distance← I[i].distance+ (I[i+ 1].obj − I[i− 1].obj)/(fmax
obj − fmin

obj)

11 end

12 end

13 return I

Algorithm 4.4 takes as input a set of solutions I. This set has size l, and, initially,

we assigned the value zero to the crowding distance of all individuals. Let loop defined

between the lines 5 – 12. First, we sort the solutions of the set I (line 6), considering

each objective obj, then we assign infinity to the crowding distance value of the first

(line 7) and the last solution of the set I (line 8). Next, in the loop defined between

lines 9 – 11, we calculate the crowding distance for other solutions of the set I (line

10). The loop defined between the lines (5 – 12) is repeated for each obj objective. The

method returns the crowding distance value for each solution of the set I.

4.3.3 Initial Population

30 Methodology

The initial population of the NSGA-II contains sizepop individuals. Two of them

are constructed through a greedy strategy, one of which considers only the objective of

minimizing the makespan. In this case, we always choose the operating mode related to

the highest speed factor. The other individual considers only the total energy cost. In

the second case, we choose the operating mode related to the lowest consumption factor.

The other individuals (sizepop - 2) of the initial population are randomly generated.

Algorithm 4.5 describes the greedy strategy used to generate individuals to the initial

population.

Algorithm 4.5: Greedy Constructive Heuristic

input: N, n, obj

1 s← ∅
2 for i = 1 to n do

3 j ← random job ∈ N

4 N← N \ {j}
5 (ibest, posbest)← GreedyChoice(s, j, obj)

6 s← Insert(s, j, ibest, posbest)

7 end

8 return s

Algorithm 4.5 starts with an empty initial individual, that is, without any jobs

allocated (line 1). The loop between lines 2 and 7 allocates each job j ∈ N on the

machines. Therefore, we randomly select a job j, which has not yet been allocated

(line 3). Then, we identified the best machine ibest of the individual s and the best

position posbest to insert this job (line 5). In this case, we consider one to each generated

solution: minimize the makespan or the total energy cost. Then, we allocate job j in

position posbest on machine ibest in individual s (line 6). At the end of the procedure, we

return a feasible individual s (line 8).

4.3.4 Crossover

We used the binary tournament selection method to choose each pair of individuals for

the crossover operator. We run two tournaments with two individuals each and select the

winner of each tournament for the crossover. In our approach, the dominant individual

wins the tournament. If both individuals are non-dominated, we randomly choose an

objective and use it to define the winning individual.

Methodology 31

Figure 4.2 illustrates the crossover between two individuals. Note the following asso-

ciations between the reproduction process and the modeling of the problem addressed:

an individual is associated with a problem solution, and a gene is related to a job in

scheduling.

After selecting two individuals named parent 1 and parent 2, respectively, we ap-

plied the crossover operator to generate new individuals. We adopted the One Point

Order Crossover operator from Vallada and Ruiz (2011) adapted to the parallel machine

problem. We describe its operation below:

1. We define, at random, the crossover points of each machine, as shown in Fig-

ure 4.2(a);

2. We generate two offspring. The first receives the genes to the left of the crossover

point defined on each machine of parent 1. The second gets the genes to the right,

as shown in Figure 4.2(b);

3. We mark in parent 2 the genes present in each offspring, as shown in Figure 4.2(c);

4. We add the unmarked genes of parent 2 to offspring 1 and 2. We add these genes in

the position that results in the lowest value for the objective function, whereas this

problem has two objective functions, so we randomly select one at each crossover.

In the end, we will have two new individuals, as shown in Figure 4.2(d).

The offspring always inherit the parent’s operating modes.

We repeat this procedure until to generate sizepop new individuals.

4.3.5 Mutation

We implemented three mutation operators (Swap, Insert, and Operating mode change),

described below. These operators maintain the population’s genetic diversity and reduce

the chances of the algorithm getting stuck at a local optimum.

Each individual in a given population has a probability of probmut of getting mutated.

The mutation consists of applying an operator to a select individual. We chose the

32 Methodology

1Machine 1

Machine 2

3 4 5 10 11

2 7 6 8 9 12

p1 = 3

p2 = 4

Parent 1

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

5

10 911 12

73 21

4 6 8

(a) Selecting parents and crossover points

1Machine 1

Machine 2

3 4 5 10 11

2 7 6 8 9 12

p1 = 3

p2 = 4

Parent 1

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

5

10 911 12

73 21

4 6 8

(b) Copy part of genes from parent 1 to each offspring

1Machine 1

Machine 2

3 4 5 10 11

2 7 6 8 9 12

p1 = 3

p2 = 4

Parent 1

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

5

10 911 12

73 21

4 6 8

(c) Mark in parent 2 the genes present in each offspring

1Machine 1

Machine 2

3 4 5 10 11

2 7 6 8 9 12

p1 = 3

p2 = 4

Parent 1

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

7Machine 1

Machine 2

3 2 1 5

1110 4 6 9 8 12

Parent 2

1Machine 1

Machine 2

3 4

2 7 6 8

offspring 1

Machine 1

Machine 2

5 10 11

9 12

offspring 2

5

10 911 12

73 21

4 6 8

(d) Complete the genes of each offspring with the genes of parent 2

Figure 4.2: Crossover adapted from Vallada and Ruiz (2011)

Methodology 33

operator to be applied randomly. In this work, we propose the following mutation

operators:

4.3.5.1 Swap

The swap operator works by randomly choosing a job j1, initially allocated in position

a on machine i1 and another job j2 allocated in position b on machine i2. Then, we

allocate job j1 in position b on machine i2. Further, we allocate job j2 in position a on

machine i1.

Figure 4.3 illustrates the swap between two jobs, j1 and j2. They are initially allo-

cated on machines i1 and i2, respectively. After swapping, we allocate job j2 on machine

i1 and job j1 on machine i2.

Before

i1
a− 1

j1
a a+ 1

i2
b− 1

j2

b b+ 1

After

i1
a− 1

j2
a a+ 1

i2
b− 1

j1

b b+ 1

Figure 4.3: Swap move between jobs j1 and j2

4.3.5.2 Insertion

The insertion operator consists of randomly choosing a job j1 allocated at position a

on machine i1 and randomly choosing position b of another machine i2. Then job j1 is

removed from machine i1 and inserted into position b on machine i2.

Figure 4.4 illustrates this operator. The left side shows the scheduling before, and

the right side shows it after the insertion.

34 Methodology

Before

i1

a− 1

j1

a a+ 1

i2

b− 1 b b+ 1

After

i1

a− 1 a a+ 1

i2

b− 1

j1

b b+ 1

Figure 4.4: Insertion operator of job j1 on machine i2

4.3.5.3 Operating mode change

In the operating mode change operator, we randomly select a job and change its oper-

ating mode at random.

Figure 4.5 illustrates the application of this operator in a scheduling which involves

3 jobs. As can be seen, job 2, which is in the third position on machine 1, has operating

mode 4. After the application of this operator, the job changes to operating mode 1.

M1 3 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t

0 5 10 15

5 2 4

(a) Before

M1 3 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t

0 5 10 15

5 2 1

(b) After

Figure 4.5: Example of the mode change operator

The algorithms NSGA-I and NSGA-II were implemented by performing a mutation

with a probability equal to probmut.

4.4 MOVNS

The MOVNS was developed by Geiger (2008). It is a multi-objective local search al-

gorithm based on the VNS algorithm (Mladenović and Hansen, 1997). According to

Hansen and Mladenović (2001), the VNS is a metaheuristic simple and effective to com-

Methodology 35

binatorial problems. Its main idea is to apply systematic changes of neighborhoods both

in a descent phase, to find a local minimum, and in a perturbation phase to escape from

the corresponding valley.

We show the basic steps of VNS through Algorithm 4.6:

Algorithm 4.6: Basic VNS

input: N , stopping criterion

1 s← generate an initial solution

2 while stopping criterion not satisfied do

3 for k = 1 to max n do

4 s′ ← Shaking(s,Nk)

5 s′′ ← Local search(s, s′)

6 if f(s′′) < f(s) then

7 s← s′′

8 k ← 1

9 end

10 else

11 k ← k + 1

12 end

13 end

14 end

15 return s

We adapted two versions of the multi-objective local search algorithm MOVNS for

the problem addressed in this work. The first is the basic version with five neighborhood

structures, here named MOVNS1, and the second adds the intensification procedure of

Arroyo et al. (2011) to MOVNS, here called MOVNS2. We present the pseudocode of

the MOVNS2 in Algorithm 4.7.

The MOVNS2 receives as input: the stopping criterion, the neighborhood structures

(N = N1, . . .N5), the initial size of the solution set (sizeset), the destruction size nr, and

the shaking level (shakelevel). It returns the non-dominated set obtained (NDS). Initially,

in line 1 of Algorithm 4.7, we use the method of Scheffé (1958) to create a vector with

sizeset weights. In line 2, we generate an initial solution to each weight Wi, using the

constructive method of Subsection 4.4.1. This set is composed of sizeset solutions. We

repeat the steps defined between lines 3 – 14 as long as the stopping criterion is not

satisfied. In lines 4 and 5, we select, randomly, a solution s of the NDS, apply the

shaking procedure defined in Subsection 4.4.3, and generate a neighbor solution s′. We

36 Methodology

Algorithm 4.7: MOVNS2

Input: stopping criterion,N , sizeset, nr, shakelevel
1 W← generate a vector with sizeset weights by the Scheffé (1958) method

2 NDS← generate an initial solution for each weight Wi

3 while stopping criterion not satisfied do

4 s← random solution from NDS

5 s′ ← Shaking(s, shakelevel)

6 for k = 1 to 5 do

7 foreach s′′ ∈ Nk(s′) do

8 NDS ← AddSolution(s′′)

9 end

10 end

11 s← random solution from NDS

12 NDS′ ← Intensification(s, nr)

13 NDS← non-dominated solutions obtained from NDS ∪ NDS′

14 end

15 return NDS

explore the neighborhood of s′ considering each neighborhood structure k (lines 6 –

10). We update the NDS with each neighbor solution of s′ (line 8). Next, we apply

the intensification procedure described in Subsection 4.4.4 in a random solution of NDS

(line 12). In the end, the MOVNS2 Algorithm returns the non-dominated set obtained.

Next, we detail the initial solution (Subsection 4.4.1), the neighborhood structures

(Subsection 4.4.2), the shaking (Subsection 4.4.3) and intensification procedures (Sub-

section 4.4.4).

4.4.1 Initial solution

We present in Algorithm 4.8 the strategy for generating each solution of the initial set.

Algorithm 4.8 gets as input the weight Wi for the objective function. It starts with

an empty initial solution (line 1). Then, the loop between lines 2 and 7 allocates each

job j on the machines. For this, we randomly select a job j not yet assigned (line 3).

Then, we choose the best machine ibest, position posbest, and operating mode lbest to

insert job j in solution s (line 5). To make this choice, we consider the weighted sum

of the objectives of the problem with weight Wi. Then, we allocate job j in position

Methodology 37

Algorithm 4.8: Greedy Constructive Heuristic Weighted

input: Wi

1 s← ∅
2 for k = 1 to n do

3 j ← random job ∈ N

4 N← N \ {j}
5 (ibest, posbest, lbest)← GreedyChoiceWeighted(s, j,Wi)

6 s← Insert(s, j, ibest, posbest, lbest)

7 end

8 return s

posbest on machine ibest with operating mode lbest in solution s (line 6). At the end of

this procedure, we return a feasible solution s (line 8).

4.4.2 Neighborhood Structures

We describe below the five neighborhood structures used to explore the solution space

of the problem:

Swap on the same machine (N1): In this operator, we select two jobs, j1 and j2,

allocated, respectively, in positions x and y on machine i, and reallocate job j1 in

position y and job j2 in position x on the same machine i.

Swap between different machines (N2): This structure consists of selecting a job j1

allocated on machine i1 in position x and another job j2 that is in position y on

machine i2. Then, we allocate job j1 in position y on machine i2, and we allocate

job j2 on machine i1 in position x.

Insertion on the same machine (N3): It starts selecting job j1 that is initially in

position x on machine i. Then, we choose another position y on the same machine.

Finally, we remove job j1 from the initial position and reinsert it in position y on

machine i.

Insertion between different machines (N4): In this structure, we select job j1 al-

located in position x on machine i1 and select position y on machine i2. Then,

remove job j1 and insert it in position y on machine i2.

38 Methodology

Change operating mode (N5): This neighborhood structure selects job j on ma-

chine i and then changes its operating mode.

4.4.3 Shaking procedure

The shaking procedure is an important phase of a VNS-based algorithm. According

to Hansen et al. (2017), the purpose of this procedure, when used within a VNS heuristic,

is to avoid getting stuck in a local minimum. The simple shaking procedure consists in

selecting a random solution from the k-th neighborhood structure of solution s. In the

shaking procedure of this work, we apply shakelevel moves chosen among those described

in Subsection 4.4.2 to the current solution.

4.4.4 Intensification of Arroyo et al. (2011)

We present, in Algorithm 4.9, the intensification procedure of the MOVNS Algorithm

by Arroyo et al. (2011). It was mentioned in line 12 of Algorithm 4.7.

The input of this procedure is the solution s and the destruction size nr. The output

Methodology 39

is the non-dominated set obtained.

Algorithm 4.9: Intensification of Arroyo et al. (2011)

Input: nr, s

1 sp ← s

2 sr ← ∅
3 for k ← 1 to nr do

4 Remove random job j from the solution sp
5 Insert job j into sr

6 end

7 NDS'← sp
8 foreach job ∈ sr do

9 NDS''← ∅
10 foreach solution sp' ∈ NDS' do

11 Insert the job in all positions of sp'

12 Evaluate each partial solution resulting sp''

13 NDS''← non-dominated solutions obtained of NDS'' ∪ {sp''}
14 end

15 NDS'← NDS''

16 end

17 return NDS'

First, in Algorithm 4.9, we initialize the partial solution (sp) from the current solution

s and initialize as empty the set of removed jobs (sr), in lines 1 and 2, respectively.

Then, we perform the destruction phase (lines 3 – 6), in which we randomly remove

nr jobs from the partial solution sp. Then we insert the jobs removed from the sp in the

set of removed jobs sr and keep the remaining n− nr jobs in sp. At the end, we have the

partial solution sp and set of removed jobs sr generated in the destruction phase.

In line 7, we initialize with sp the non-dominated set of partial solutions NDS'.

Then, between lines 8-16, we insert each job of sr in all positions of the partial

solution sp. To each new partial solution s′′p generated, we update NDS'' (line 13).

At the end (line 15), we have the non-dominated set NDS' with feasible solutions.

40

Chapter 5

Computational Experiments

This section is organized as follows. Subsections 5.1 and 5.2 describe the instances and

the metrics used to assess the quality of the set of non-dominated solutions generated

by the algorithms. Subsection 5.3 shows the parameter calibration of the algorithms.

Subsection 5.4 reports the results.

We coded the algorithms in the C++ language and implemented the mathematical

model with the Gurobi 7.0.2 API (Gurobi Optimization, 2020). We performed the tests

on a microcomputer with the following configurations: Intel (R) Core (TM) i7-4510U

processor with a clock frequency of 2 GHz, 16 GB of RAM, and 64-bits Ubuntu 19.10

operating system.

Furthermore, we compared the performance of the NSGA-II and MOVNS2 algorithm

with two multi-objective algorithms: MOVNS1 of Geiger (2008) and NSGA-I of Srinivas

and Deb (1994). The NSGA-I uses the same crossover operators, mutation operators,

stopping criterion, and initial population of the NSGA-II. In turn, the MOVNS1 uses

the same neighborhood structures, stopping criterion, initial solution of the MOVNS2

algorithm.

5.1 Instances Generation

Since, as far as we know, there is no set of instances in the literature for the problem

addressed, we adapted two instance sets from the literature that deal with similar prob-

lems. The first one, called set1, is a subset of the small instances of Cota et al. (2018)

41

42 Computational Experiments

satisfying the triangular inequality, in which we add information about the energy price

on-peak and off-peak hours. The second set, named set2, is also a subset of the large

instances of Cota et al. (2018), in which we included instances of 750 jobs. Table 5.1

shows the characteristics of these sets of instances, which are available in Rego et al.

(2021).

Table 5.1: Instance characteristics

Parameter set1 set2 Based on

n 6, 7, 8, 9, 10 50, 250, 750 Vallada and Ruiz (2011),
Cota et al. (2018)

m 2 10, 20 Vallada and Ruiz (2011),
Cota et al. (2018)

o 3 5 Mansouri et al. (2016),
Ahilan et al. (2013), Cota
et al. (2018)

Pij U [1, 99] U [1, 99] Vallada and Ruiz (2011),
Cota et al. (2018)

Sijk U [1, 9] U [1, 9], U [1, 124] Vallada and Ruiz (2011),
Cota et al. (2018)

πi U [40, 200] U [40, 200] Cota et al. (2018)

Vl 1.2, 1, 0.8 1.2, 1.1, 1, 0.9, 0.8 Mansouri et al. (2016),
Ahilan et al. (2013), Cota
et al. (2018)

λl 1.5, 1, 0.6 1.5, 1.25, 1, 0.8, 0.6 Mansouri et al. (2016),
Ahilan et al. (2013), Cota
et al. (2018)

5.2 Metric description

The comparison of different multi-objective optimization algorithms involves choosing

the aspects to be evaluated. Zitzler et al. (2000) suggest three aspects that can be

identified and measured: convergence, extension, and distribution. Convergence refers

to the proximity of this set to the Pareto-optimal front or to the reference set. In turn,

the extension assesses the breadth of the region covered by this set of non-dominated

solutions. The distribution refers to the uniformity of the spacing between the solutions

within the set. Some authors consider that uniformity and diversity form a single aspect

Computational Experiments 43

called diversity (Yan et al., 2007). In the present work, we will use convergence and

diversity.

The hypervolume metric can evaluate both convergence and diversity (Shang et al.,

2020), and the HCC metric, in turn, considers only diversity (Guimarães et al., 2009).

5.2.1 Hypervolume

The hypervolume or S metric is a measure of quality often used to compare results from

multi-objective algorithms and it was proposed by Zitzler and Thiele (1998). This metric

provides a combined estimate of convergence and diversity of a set of solutions (Deb,

2014). The hypervolume of a non-dominated set measures the area covered or dominated

by this set’s points, limited by a Reference Point (RP). In maximization problems, it

is common to use the point (0; 0), while in minimization problems, an upper bound,

also known as the Nadir point, is used to limit this area. In Figure 5.1, the shaded area

defines the hypervolume of the set of non-dominated solutions A for a problem with

two objective functions. The point (maxx;maxy) defines the upper limit. We denote by

HV (A) the hypervolume of a set of non-dominated solutions A relative to a reference

point (Deb, 2014).

f1

f2

RP
Dots of A

HV (A)

Figure 5.1: Hypervolume for set A

44 Computational Experiments

5.2.2 HCC

Hierarchical Cluster Counting (HCC) is a metric proposed by Guimarães et al. (2009)

to evaluate the quality of non-dominated sets obtained by multi-objective optimization

algorithms. It is based on hierarchical clustering techniques, such as the Sphere Counting

(SC) (Wanner et al., 2006) metric. According to Guimarães et al. (2009), the diversity

of a non-dominated set is directly proportional to the HCC value calculated for it.

We calculate the HCC for a set of points A as follows:

1. Initially, we create a grouping for each point in the set and consider that each

group created is a sphere of radius equal to zero;

2. Then, we calculate the minimum distances of fusion, which is a new assumed value

for the radius of the spheres capable of decreasing the number of clusters;

3. We group the points into the same cluster;

4. We repeat steps 2 and 3 until all the points belong to the same grouping;

5. We obtain the HCC value by adding, in each iteration, the product between the

distances of fusion and the amount of grouping formed.

Consider Figure 5.2, which illustrates the steps to calculate the HCC for a six-point

non-dominated set. Figure 5.2(a) shows the first cluster in which each point is in a

different sphere with radius zero. Figure 5.2(b) shows the points grouped into five

spheres, each with radius r1. Figure 5.2(c) shows the points grouped into four spheres,

each with radius r2. Figure 5.2(d) shows, in the Cartesian plane, the relationship between

the number of clusters and the radius of each cluster. The gray region area represents

the value of the HCC metric for the set shown in Figure 5.2.

We present, in Figure 5.2, some steps to exemplify the calculation of this metric. In

Figure 5.2(a), we show a Pareto front composed of six points, and each point represents

one cluster, with ρ = 0. In Figure 5.2(b), we can see five clusters considering ρ ≈ 0.7. In

Computational Experiments 45

(a) Initial (b) Points grouped into 5 clusters

(c) Points grouped into 4 clusters (d) Number of clusters by ρ size

Figure 5.2: Example of how to calculate the HCC metric (Guimarães et al., 2009)

Figure 5.2(c), we have four clusters with ρ ≈ 0.9. The calculation ends when all points

are in a single cluster. Finally, Figure 5.2(d) shows a graph with cluster numbers formed

according to ρ. Note that as the value of ρ increases, the number of clusters decreases.

46 Computational Experiments

5.3 Tuning of algorithms’ parameters

The parameter values used in the algorithms can affect their performance. Therefore,

we use the Irace package (López-Ibáñez et al., 2016) to find the best values for these

parameters. Irace is a software encoded in the R language that automatically performs

an iterative procedure to find the appropriate optimization algorithm settings.

The parameters were tested in the following instances: 6 2 1439 3 S 1-9,

10 2 1439 3 S 1-9, 50 10 1439 5 S 1-9, 250 10 1439 5 S 1-124 and 750 20 1439 5 S 1-9.

Table 5.2 shows the test scenarios used. In the first column, we present the algorithm

name; in the second column, the description of each parameter; in the third column,

the set of values tested for each parameter; and in the fourth column, the best value

returned by Irace.

Table 5.2: Test scenarios for algorithms’ parameters

Method Description Tested values Irace best value

NSGA-II
Population size (sizepop) 80, 90, 100, 110 110

Probability of mutation 0.04, 0.05, 0.06, 0.07 0.05

NSGA-I
Population size (sizepop) 80, 90, 100, 110 80

Probability of mutation 0.04, 0.05, 0.06, 0.07 0.06

MOVNS2
Initial set size (sizeset) 20, 25, 30, 35 25

Perturbation level 2, 4, 6, 8 6

Destruction level 2, 4, 6, 8 6

MOVNS1
Initial set size (sizeset) 25, 30, 35, 40 30

Perturbation level 2, 4, 6, 8 4

Computational Experiments 47

5.4 Results

In this section, we presented the results of two experiments used to evaluate the perfor-

mance of proposed algorithms. First, we present the MOVNS2, NSGA-II, and weighted

sum method results in instances with up to 10 jobs and 2 machines (set1). Then, we

report the results of NSGA-II and MOVNS2 algorithms in larger instances, with up to

750 jobs and 20 machines (set2), and compare with others literature algorithms. In both

cases, we executed the algorithms 30 times in each instance. The time limit for each

execution of the metaheuristics was defined as timelimit = n× ln(m) seconds, where m

and n are the number of machines and jobs, respectively.

We used the Relative Percentage Deviation (RPDHV
i) to evaluate the HV metric for

each method Alg and instance i. It is calculated by Equation (5.1):

RPDHV
i (Alg) =

HV RS
i −HV v

i

HV RS
i

, (5.1)

where HV RS
i is the hypervolume value of the reference set in 30 executions of the algo-

rithm Alg in the instance i. v can assume three values: min, max, and avg, representing,

respectively, the smallest, the largest, and the average of the hypervolume in 30 execu-

tions of the algorithm in the instance i.

Since we not known the optimal Pareto front, we define a reference set to each

instance compose by all non-dominated solutions obtained by the all tested algorithms.

The reference set is also known as Pareto front (Arroyo et al., 2011).

5.4.1 Results in the set1

In this subsection, we reported the results of the algorithms NSGA-II, MOVNS2, and

the weighted sum method in the set of instances set1.

Table 5.3 shows the reference set data for these instances. In this table, the first two

columns display the instance identifier and name, respectively. The next two columns

present the number of jobs and machines, respectively. The fifth column shows the

hypervolume of this reference set. Finally, the last column presents the reference point

(Cmax; TEC) used to calculate the hypervolume of each instance.

48 Computational Experiments

Table 5.3: Summary of reference set data in the set1

ID # Instance n m HV RP

1 6 2 1439 3 S 1-9 6 2 8,795.00 (250; 259.82)

2 7 2 1439 3 S 1-9 7 2 15,918.00 (400; 260.68)

3 8 2 1439 3 S 1-9 8 2 4,825.00 (260; 321.17)

4 9 2 1439 3 S 1-9 9 2 31,080.00 (450; 389.38)

5 10 2 1439 3 S 1-9 10 2 35,448.00 (500; 382.46)

Tables 5.4 and 5.5 present the method results concerning the RPDHV and the HCC

metrics. In these tables, the first column identifies the instance. The second and third

columns show the upper bound (UB) and the time, in seconds, of the exact method. The

next three columns display the minimum, maximum and average values, respectively,

concerning the MOVNS2 method. The seventh column presents the standard deviation

of the MOVNS2 results. The next three columns show the minimum, maximum and

average values, respectively, concerning the NSGA-II method. The 11th column displays

the standard deviation of the NSGA-II results. Finally, the 12th column presents the

time, in seconds, of the NSGA-II and MOVNS2 algorithms.

Table 5.4: Summary of RPDHV and runtime of the proposed methods in the set1. The
best average values are highlighted in bold.

ID

Exact MOVNS2 NSGA-II

time (s)UB time (s) min max avg sd min max avg sd

(%) (%) (%) (%) (%) (%) (%)

1 0.01 172.09 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 4.16

2 0.01 549.86 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 4.85

3 0.00 2,140.40 0.00 0.00 0.00 0.00 0.00 0.21 0.02 0.04 5.54

4 0.03 8,312.92 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.02 6.24

5 0.03 39,396.63 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.02 6.93

We can see in Table 5.4 that in the set of instances set1, the RPDHV of the MOVNS2

algorithm is lower or equal in all cases (min, max e avg) compared to the NSGA-

II and exact method. We can also verify that the standard deviation of the MOVNS2

algorithm in all instances is equal to zero. In other words, in these instances, all MOVNS2

executions obtained the same set non-dominated. Moreover, the execution time of the

NSGA-II and the MOVNS2 is much less than that of the exact algorithm.

Computational Experiments 49

T
ab

le
5.

5:
S
u
m

m
ar

y
of

H
C

C
va

lu
e

an
d

ru
n
ti

m
e

of
p
ro

p
os

ed
th

e
m

et
h
o
d
s

in
th

e
se

t1
.

T
h
e

b
es

t
av

er
ag

e
va

lu
es

ar
e

h
ig

h
li
gh

te
d

in
b

ol
d
.

#
ID

E
x
ac

t
M

O
V

N
S
2

N
S
G

A
-I

I
ti

m
e

(s
)

U
B

ti
m

e
(s

)
m

in
m

ax
a
v
g

sd
m

in
m

ax
a
v
g

sd

1
20

9.
32

17
2.

09
23

9.
72

23
9.

72
23

9.
72

0.
00

22
3.

81
27

4.
13

2
4
1
.5

2
8.

49
4.

16

2
42

8.
11

54
9.

86
52

5.
03

52
5.

03
52

5.
03

0.
00

51
3.

94
53

5.
51

5
2
5
.3

3
3.

43
4.

85

3
14

2.
59

2,
14

0.
40

20
6.

10
20

6.
10

2
0
6
.1

0
0.

00
13

5.
43

24
2.

25
19

4.
88

23
.1

4
5.

54

4
35

9.
65

8,
31

2.
92

57
5.

89
57

5.
89

5
7
5
.8

9
0.

00
40

8.
26

70
7.

81
55

6.
11

71
.9

5
6.

24

5
70

8.
26

39
,3

96
.6

3
84

8.
28

84
8.

28
8
4
8
.2

8
0.

00
47

4.
27

86
9.

75
72

1.
59

98
.2

6
6.

93

50 Computational Experiments

Concerning Table 5.5, we noted that the NSGA-II algorithm performed better than

others in two comparisons (ID 1 and 2). If we consider only the instances with more

than seven jobs (ID 3, 4, and 5), the MOVNS2 was superior in diversity metric.

Figure 5.3(a) and 5.3(b) presents the non-dominated sets obtained by NSGA-II,

MOVNS2, and the exact method in two randomly selected instances. The first instance

has 6 jobs and 2 machines, and the second has 10 jobs and 2 machines. In this figure,

the fill green circles, the blue “x”, and the red circles represent the solutions of the exact

method, the MOVNS2, and NSGA-II, respectively. The x-axis represents the makespan,

and the y-axis represents the total energy cost.

We can notice in Figure 5.3(a) that the MOVNS2 and NSGA-II non-dominated

set contain all the solutions found by the exact method, plus two additional solutions.

In this example, the three methods have the same amplitude, and the MOVNS2 and

NSGA-II were able to find a set of solutions with higher cardinality. On the other hand,

Figure 5.3(b) shows that MOVNS2, NSGA-II, and the exact method found 16, 14, and

8 non-dominated solutions, respectively. The MOVNS2 solutions dominate two of the

NSGA-II solutions. In this example, the MOVNS2 and the exact method showed better

amplitude than the NSGA-II, but the MOVNS2 obtained higher cardinality.

Considering these results, we observed that the MOVNS2 and NSGA-II find good

quality solutions and require less computational time than the exact method.

5.4.2 Results in the set2

Here, we presented the results of the NSGA-II and MOVNS2 algorithms in the set of

instances set2.

Table 5.6 shows the reference set data for the instances of set2. Its organization

follows the same description as the previous section’s tables.

Tables 5.7 and 5.8 report the RPDHV and HCC metric values, respectively, to the

proposed algorithms in the set of instances set2.

The results in Table 5.7 indicate that, in the mean, the MOVNS2 algorithm performs

better than the NSGA-II, in all instances considering the RPDHV metric. The low

standard deviation values presented by MOVNS2 indicate that it is relatively stable.

The results in Table 5.8 indicate that, in the mean, the MOVNS2 algorithm per-

Computational Experiments 51

120 140 160 180 200 220 240 260
160

180

200

220

240

makespan

T
E
C

Exact
MOVNS2
NSGA-II

(a) Instance with 6 jobs and 2 machines

250 300 350 400 450 500

250

300

350

400

makespan

T
E
C

(b) Instance with 10 jobs and 2 machines

Figure 5.3: Example of Fronts found by NSGA-II, MOVNS2 and Exact methods

52 Computational Experiments

Table 5.6: Summary of reference set data in the set2

ID # Instance n m HV RP

1 50 10 1439 5 S 1-9 50 10 65,171.00 (289; 452.65)

2 50 10 1439 5 S 1-124 50 10 257,472.00 (539; 909.56)

3 50 20 1439 5 S 1-9 50 20 20,554.00 (121; 323.34)

4 50 20 1439 5 S 1-124 50 20 212,473.00 (474; 642.57)

5 250 10 1439 5 S 1-9 250 10 1,603,978.00 (1457; 2245.16)

6 250 10 1439 5 S 1-124 250 10 8,501,314.00 (5049; 2930.02)

7 250 20 1439 5 S 1-9 250 20 821,506.00 (525; 2570.86)

8 250 20 1439 5 S 1-124 250 20 6,536,232.00 (2919; 3179.80)

9 750 10 1439 5 S 1-9 750 10 8,500,037.00 (3758; 5630.80)

10 750 10 1439 5 S 1-124 750 10 111,007,003.00 (19483; 9442.33)

11 750 20 1439 5 S 1-9 750 20 4,992,770.00 (1556; 5573.70)

12 750 20 1439 5 S 1-124 750 20 37,616,516.00 (7847; 7065.71)

Table 5.7: Summary of RPDHV and runtime to the instances of set2 in the proposed
algorithms. The best average values are highlighted in bold.

ID

MOVNS2 NSGA-II

min
(%)

max
(%)

avg
(%)

sd min
(%)

max
(%)

avg
(%)

sd
time (s)

1 0.01 0.05 0.03 0.01 0.10 0.24 0.17 0.03 115.13

2 0.04 0.09 0.07 0.01 0.07 0.19 0.12 0.03 115.13

3 0.01 0.06 0.03 0.01 0.19 0.31 0.24 0.04 149.79

4 0.01 0.04 0.02 0.01 0.09 0.19 0.14 0.02 149.79

5 0.01 0.02 0.01 0.00 0.08 0.11 0.10 0.01 575.65

6 0.02 0.03 0.02 0.00 0.02 0.05 0.03 0.00 575.65

7 0.01 0.03 0.02 0.00 0.11 0.16 0.14 0.01 748.93

8 0.01 0.02 0.01 0.00 0.04 0.05 0.04 0.00 748.93

9 0.01 0.03 0.02 0.00 0.07 0.08 0.08 0.00 1,726.94

10 0.01 0.03 0.02 0.00 0.05 0.06 0.05 0.00 1,726.94

11 0.01 0.01 0.01 0.00 0.09 0.12 0.10 0.01 2,246.80

12 0.01 0.02 0.01 0.00 0.06 0.07 0.07 0.00 2,246.80

forms better than the NSGA-II in three instances (ID 2, 6, and 7) for the HCC metric.

Moreover, the NSGA-II is superior in nine instances for this metric.

Computational Experiments 53

T
ab

le
5.

8:
S
u
m

m
ar

y
of

H
C

C
an

d
ru

n
ti

m
e

to
th

e
in

st
an

ce
s

of
se

t2
in

th
e

p
ro

p
os

ed
al

go
ri

th
m

s.
T

h
e

b
es

t
av

er
ag

e
va

lu
es

ar
e

h
ig

h
li
gh

te
d

in
b

ol
d
.

#
ID

M
O

V
N

S
2

N
S
G

A
-I

I
ti

m
e

(s
)

m
in

m
ax

a
v
g

sd
m

in
m

ax
a
v
g

sd

1
1,

01
2.

20
1,

47
7.

80
1,

15
1.

40
98

.1
9

1,
25

3.
90

1,
71

5.
60

1
,4

4
6
.9

4
12

8.
44

11
5.

13

2
1,

11
3.

80
2,

28
6.

20
1
,6

7
4
.6

8
30

3.
65

1,
06

3.
80

2,
22

4.
00

1,
65

3.
94

32
3.

72
11

5.
13

3
33

6.
57

47
7.

62
40

1.
53

38
.6

8
27

9.
32

65
9.

35
4
3
1
.3

4
89

.4
5

14
9.

79

4
1,

28
8.

60
1,

73
3.

70
1,

43
7.

69
11

7.
01

1,
32

5.
60

2,
53

0.
40

1
,8

6
1
.5

6
27

6.
50

14
9.

79

5
5,

29
2.

00
7,

95
0.

80
6,

47
4.

27
58

5.
46

8,
26

8.
30

10
,7

02
.6

2
9
,1

8
7
.1

9
53

5.
43

57
5.

65

6
8,

75
5.

10
15

,6
37

.5
3

1
1
,6

0
0
.8

5
1,

90
1.

10
9,

86
6.

60
12

,4
70

.5
8

11
,0

42
.9

0
66

9.
22

57
5.

65

7
2,

15
7.

50
3,

13
5.

60
2
,7

6
7
.2

6
20

3.
35

1,
87

8.
40

4,
19

3.
80

2,
55

6.
17

51
4.

60
74

8.
93

8
4,

54
3.

90
11

,0
54

.7
1

7,
74

5.
17

1,
71

2.
55

7,
36

0.
40

10
,7

02
.1

2
8
,7

9
0
.4

6
87

2.
03

74
8.

93

9
8,

54
1.

80
13

,7
96

.1
5

10
,5

25
.1

4
1,

82
0.

08
20

,2
18

.4
9

23
,4

18
.8

0
2
1
,9

6
7
.4

4
85

8.
86

1,
72

6.
94

10
24

,3
61

.2
0

66
,6

83
.1

4
43

,2
14

.2
8

12
,7

45
.6

3
53

,8
24

.7
4

75
,0

91
.8

6
6
0
,4

7
2
.8

7
6,

18
4.

92
1,

72
6.

94

11
4,

31
2.

80
6,

00
2.

60
5,

30
2.

41
39

3.
51

10
,2

15
.9

1
15

,2
84

.6
2

1
2
,9

2
5
.0

0
1,

47
3.

66
2,

24
6.

80

12
14

,9
84

.1
2

26
,7

85
.2

1
20

,1
41

.9
5

4,
11

6.
04

¨
26

,0
60

.8
8

33
,1

75
.7

0
2
9
,7

0
3
.9

0
1,

66
3.

63
2,

24
6.

80

54 Computational Experiments

We report, in Tables 5.9 and 5.10, the mean values of RPDHV and HCC metrics,

respectively, of the NSGA-I, NSGA-II, MOVNS1, and MOVNS2 algorithms in the set

of instances set2.

Table 5.9: Average RPDHV to the instances of set2 in the tested algorithms. The best
values are highlighted in bold.

#ID MOVNS1 MOVNS2 NSGA-I NSGA-II

(%) (%) (%) (%)

1 0.02 0.03 0.18 0.17

2 0.08 0.07 0.12 0.12

3 0.03 0.03 0.26 0.24

4 0.04 0.02 0.14 0.14

5 0.02 0.01 0.13 0.10

6 0.03 0.02 0.04 0.03

7 0.02 0.02 0.17 0.14

8 0.02 0.01 0.05 0.04

9 0.02 0.02 0.10 0.08

10 0.02 0.02 0.06 0.05

11 0.01 0.01 0.16 0.10

12 0.01 0.01 0.07 0.07

Mean 0.03 0.02 0.12 0.11

As shown in Table 5.9, the MOVNS2 achieved the best average results regarding

hypervolume in eleven instances. In the mean, the MOVNS1 was superior in seven

instances. Both obtained the best result in six instances. The MOVNS2 achieved the

best results for this metric.

On the other hand, in Table 5.10, the NSGA-II found the best results in seven

instances of set2 in the HCC metric. The NSGA-I had better performance in three

instances. The MOVNS1 was superior in two instances. In the mean, the NSGA-II

presented the best result for the HCC metric.

These results indicate that the NSGA-II algorithm outperforms NSGA-I, MOVNS1,

and MOVNS2 algorithms concerning this metric.

Figures 5.4(a) and 5.4(b) illustrate the Pareto front obtained from each algorithm

Computational Experiments 55

Table 5.10: Average HCC to the instances of set2 in the tested algorithms. The best
values are highlighted in bold.

#ID MOVNS1 MOVNS2 NSGA-II NSGA-I

1 1,282.79 1,151.40 1,446.94 1,422.89

2 2,042.02 1,674.68 1,653.94 1,844.78

3 402.08 401.53 431.34 397.67

4 1,689.60 1,437.69 1,861.56 1,885.60

5 6,708.21 6,474.27 9,187.19 8,270.10

6 12,017.58 11,600.85 11,042.90 10,844.27

7 3,006.93 2,767.26 2,556.17 3,429.42

8 8,550.94 7,745.17 8,790.46 8,739.29

9 9,880.29 10,525.14 21,967.44 19,413.19

10 32,607.87 43,214.28 60,472.87 61,504.40

11 5,763.31 5,302.41 12,925.00 11,851.43

12 18,301.29 20,141.95 29,703.90 29,611.39

Mean 8,521.08 9,369.72 13,503.31 13,267.87

in two different instances. The first instance has 50 jobs and 20 machines, and the

second has 750 jobs and 10 machines. As can be seen, the NSGA-II produced sets of

non-dominated solutions with good diversity compared to other algorithms. In its turn,

the MOVNS1 and MOVNS2 algorithms converge well.

In industrial problems, as treated in this work, the goal is to find a Pareto front that

optimizes the objective functions; in other words, a Pareto front with good convergence.

Thus, we can conclude that the MOVNS2 algorithm presents the best performance for

the addressed problem.

5.4.3 Statistical Analysis

We performed an exploratory analysis to understand the samples data before performing

the statistical test.

Figure 5.5 (a)-(b) shows the boxplot of the RPDHV and HCC results, respectively.

Before performing the hypothesis tests, we need to choose the test type, parametric

or non-parametric. Generally, parametric tests are more powerful; however, to use them,

56 Computational Experiments

40 60 80 100 120

100

150

200

makespan

T
E
C

MOVNS1
MOVNS2
NSGA-I
NSGA-II

(a) Instance with 50 jobs and 20 machines

2,000 4,000 6,000 8,000

4,000

6,000

8,000

makespan

T
E
C

(b) Instance with 750 jobs and 10 machines

Figure 5.4: Example of the Pareto front obtained from each algorithm

Computational Experiments 57

●

●

●

●●
●
●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●
●●
●

●
●●●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●

MOVNS1 MOVNS2 NSGAI NSGAII

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Algorithms

R
P

D
H

V

(a) Boxplot of the RPDHV results

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●
●

●
●●
●

●

●

●
●

MOVNS1 MOVNS2 NSGAII NSGAI

0
20

00
0

40
00

0
60

00
0

80
00

0

Algorithms

H
C

C

(b) Boxplot of the HCC results

Figure 5.5: Boxplots of the results

58 Computational Experiments

it is necessary to satisfy three assumptions (Garćıa et al., 2010):

1. Normality: Every sample must originate from a population with normal distribu-

tion,

2. Independence: The samples must be independent of each other,

3. Homoscedasticity: There must be equality of variances across samples.

We applied the Shapiro-Wilk normality test to the samples with the RPDHV and

HCC values from each algorithm and showed its results in Table 5.11.

Table 5.11: p-values of the Shapiro-Wilk normality test concerning RPDHV and HCC
values

Algorithm
p-value

RPDHV HCC

MOVNS1 2.2e-16 2.2e-16

MOVNS2 2.2e-16 2.2e-16

NSGA-I 1.35e-10 2.2e-16

NSGA-II 4.413e-12 2.2e-16

With a confidence level of 95% (α = 0.05), we can say that the results presented

in Table 5.11 do not present evidence that the results of the algorithms come from a

population with normal distribution.

Thus, to verify if the differences between the results presented by the algorithms are

statistically significant, we performed the non-parametric Friedman test with Bonferroni

correction.

The test presented a p-value equal to 2.2e-16. Therefore, we can conclude that the

observed difference is statistically significant from the test result.

Thus, we applied the Paired Wilcoxon signed-rank non-parametric test (Wilcoxon,

1945) to identify the pairs of results that present the differences. Table 5.12 reports

the results of this test obtained by the MOVNS1, MOVNS2, NSGA-I, and NSGA-II

algorithms for the RPDHV and HCC values samples.

Computational Experiments 59

Table 5.12: p-values of the paired Wilcoxon signed-rank test concerning RPDHV and
HCC values (α = 0.05).

group 1 group 2
p-value

RPDHV HCC

MOVNS1 MOVNS2 2e-16 0.03497

MOVNS1 NSGA-I 7.8e-15 2e-16

MOVNS1 NSGA-II 1.1e-07 2e-16

MOVNS2 NSGA-I 0.028 2e-16

MOVNS2 NSGA-II 2.2e-06 2e-16

NSGA-I NSGA-II 2e-16 0.00056

According to Table 5.12, there is a significant statistical difference between all al-

gorithms concerning RPDHV and HCC metrics. Thus, these tests confirm the results

in Tables 5.9 and 5.10, indicating that MOVNS2 outperforms all other algorithms re-

garding the RPDHV metric, and the NSGA-II is superior concerning the HCC metric.

60

Chapter 6

Conclusions

This thesis addressed the unrelated parallel machine scheduling problem with sequence-

dependent setup times for minimizing the makespan and total energy cost under time-

of-use electricity price.

To solve it, we developed a mixed-integer linear programming formulation and applied

the weighted sum method to generate sets of non-dominated solutions to the problem.

Considering that this formulation could not solve larger instances of the problem, we

adapted heuristic algorithms to deal with them.

To test the methods, we adapted instances of the literature to contemplate the prob-

lem’s characteristics addressed. We divided these instances into two groups. The first

group consists of small instances with up to 10 jobs and 2 machines, while the second

group contains large instances, with up to 750 jobs and 20 machines. We evaluated the

methods concerning the hypervolume and HCC metrics.

Initially, we used part of the set of instances to tuning the parameter values of the

algorithms. To this end, we used the Irace package.

We validated the NSGA-II and MOVNS2 results in small instances, by comparing

them with the results of the exact method. The algorithms showed good convergence

and diversity. Besides, it spent much shorter CPU time than that required by the exact

method.

We compare the proposed NSGA-II and MOVNS2 with the NSGA-I and MOVNS1

of the literature in instances with up to 750 jobs and 50 machines. The results showed

that the MOVNS2 outperforms MOVNS1, NSGA-I, and NSGA-II algorithms concerning

61

62 Conclusions

the hypervolume metric. Further, the NSGA-II is superior to MOVNS1, MOVNS2, and

NSGA-I algorithms regarding the HCC metric. Both results are with a 95% confidence

level. Thus, the proposed MOVNS2 and NSGA-II algorithms find non-dominated so-

lutions with good convergence and diversity, respectively. As we address an industrial

problem in this work, we concluded that the MOVNS2 presents the best performance

since it finds Pareto fronts with the best convergence.

As future work, we suggest testing other crossover and mutation operators for the

NSGA-II. Besides, we intend to implement other multi-objective algorithms, such as

Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Multi-objective Evolutionary

Algorithm Based on Decomposition (MOEA/D). Moreover, we indicate to test mecha-

nisms that improve the diversity of solutions generated by MOVNS2.

Appendix A

Publications

As result of this work, the following publications were produced:

Title: A mathematical formulation and an NSGA-II algorithm for minimizing the

makespan and energy cost under time-of-use electricity price in an unrelated par-

allel machine scheduling

Authors: Marcelo Ferreira Rego, Júlio Cesar Evaristo Moreira Pinto, Luciano Perdigão

Cota, and Marcone Jamilson Freitas Souza

Journal: PeerJ Computer Science

Issn: 2376-5992

Year: 2022

Qualis Computer Science: A2

DOI: 10.7717/peerj-cs.844

Title: Smart General Variable Neighborhood Search with Local Search based on Mathe-

matical Programming for solving the Unrelated Parallel Machine Scheduling Prob-

lem

Authors: Marcelo Ferreira Rego and Marcone Jamilson Freitas Souza

Conference: 21th International Conference on Enterprise Information Systems (ICEIS

2019)

Address: Heraklion, Creta, Grécia

Year: 2019

Month: 3-5 May

63

64 Publications

Qualis Computer Science: B2

The following book chapter was published:

Title: A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem

Authors: Marcelo Ferreira Rego and Marcone Jamilson Freitas Souza

Booktitle: Revised selected papers of the 21st International Conference, ICEIS 2019

Series: Lecture Notes in Business Information Processing

Publisher: Springer International Publishing

Year: 2020

Isbn: 978-3-030-40783-4

Editors: Filipe J., Śmia lek M., Brodsky A., Hammoudi S.

Bibliography

Aalami, H. A.; Moghaddam, M. Parsa and Yousefi, G. R. (2015). Evaluation of nonlinear
models for time-based rates demand response programs. International Journal of
Electrical Power & Energy Systems, v. 65, p. 282–290.

Afzalirad, Mojtaba and Rezaeian, Javad. (2017). A realistic variant of bi-objective un-
related parallel machine scheduling problem: Nsga-ii and moaco approaches. Applied
Soft Computing, v. 50, p. 109–123.

Ahilan, C; Kumanan, Somasundaram; Sivakumaran, N and Dhas, J Edwin Raja. (2013).
Modeling and prediction of machining quality in CNC turning process using intelligent
hybrid decision making tools. Applied Soft Computing, v. 13, n. 3, p. 1543–1551.

Albadi, Mohamed H and El-Saadany, Ehab F. (2007). Demand response in electricity
markets: An overview. 2007 IEEE power engineering society general meeting, p. 1–5,
Tampa, FL, USA. IEEE.

Arroyo, J. E. C.; Ottoni, R. S. and Oliveira, A. P. (2011). Multi-objective variable
neighborhood search algorithms for a single machine scheduling problem with distinct
due windows. Electronic Notes in Theoretical Computer Science, v. 281, p. 5–19.

Babazadeh, Hossein; Alavidoost, MH; Zarandi, MH Fazel and Sayyari, ST. (2018). An
enhanced nsga-ii algorithm for fuzzy bi-objective assembly line balancing problems.
Computers & industrial engineering, v. 123, p. 189–208.

Bandyopadhyay, Susmita and Bhattacharya, Ranjan. (2013). Solving multi-objective
parallel machine scheduling problem by a modified nsga-ii. Applied Mathematical
Modelling, v. 37, n. 10-11, p. 6718–6729.

BEIS,. Industrial electricity prices in the IEA 2020.; U.K. Department for Business
Energy Industrial Strategy, (2020). Available at https://assets.publishing.

service.gov.uk/government/uploads/system/uploads/attachment_data/file/

895162/table_531.xlsx, accessed on February 28, 2020.

Bektur, Gulcin. (2021). An nsga-ii-based memetic algorithm for an energy-efficient un-
related parallel machine scheduling problem with machine-sequence dependent setup
times and learning effect. Arabian Journal for Science and Engineering, p. 1–16.

65

66 BIBLIOGRAPHY

Che, Ada; Zeng, Yizeng and Lyu, Ke. (2016). An efficient greedy insertion heuristic
for energy-conscious single machine scheduling problem under time-of-use electricity
tariffs. Journal of Cleaner Production, v. 129, p. 565–577.

Che, Ada; Zhang, Shibohua and Wu, Xueqi. (2017). Energy-conscious unrelated parallel
machine scheduling under time-of-use electricity tariffs. Journal of Cleaner Production,
v. 156, p. 688–697.

Cheng, Junheng; Chu, Feng and Zhou, Mengchu. (2018). An improved model for
parallel machine scheduling under time-of-use electricity price. IEEE Transactions on
Automation Science and Engineering, v. 15, n. 2, p. 896–899.

Cheng, Junheng; Wu, Peng and Chu, Feng. 25-27 September(2019). Mixed-integer pro-
gramming for unrelated parallel machines scheduling problem considering electricity
cost and makespan penalty cost. 2019 International Conference on Industrial Engi-
neering and Systems Management (IESM), p. 1–5, Shanghai, China. IEEE.

Chiaraviglio, Luca; Mellia, Marco and Neri, Fabio. (2011). Minimizing isp network
energy cost: Formulation and solutions. IEEE/ACM Transactions On Networking, v.
20, n. 2, p. 463–476.

Cota, Luciano P; Coelho, Vitor N; Guimarães, Frederico G and Souza, Marcone J F.
(2018). Bi-criteria formulation for green scheduling with unrelated parallel machines
with sequence-dependent setup times. International Transactions in Operational Re-
search, v. 28, p. 996–1017.

Cota, Luciano P; Guimarães, Frederico G; Ribeiro, Roberto G; Meneghini, Ivan R; de
Oliveira, Fernando B; Souza, Marcone J F and Siarry, Patrick. (2019). An adaptive
multi-objective algorithm based on decomposition and large neighborhood search for
a green machine scheduling problem. Swarm and Evolutionary Computation, v. 51,
p. 100601.

Deb, Kalyanmoy. (2014). Multi-objective optimization. Burke, Edmund K. and
Kendall, Graham, editors, Search Methodologies: Introductory Tutorials in Optimiza-
tion and Decision Support Techniques, p. 403–449. Springer US, Boston, MA.

Deb, Kalyanmoy; Pratap, Amrit; Agarwal, Sameer and Meyarivan, TAMT. (2002). A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation, v. 6, n. 2, p. 182–197.

Deb, Kalyanmoy; Rao N., Udaya Bhaskara and Karthik, S. (2007). Dynamic multi-
objective optimization and decision-making using modified nsga-ii: a case study on
hydro-thermal power scheduling. Obayashi, Shigeru; Deb, Kalyanmoy; Poloni, Carlo;
Hiroyasu, Tomoyuki and Murata, Tadahiko, editors, Evolutionary Multi-Criterion Op-
timization, p. 803–817, Matsushima, Japan. Springer Berlin Heidelberg.

Deng, Wu; Xu, Junjie and Zhao, Huimin. (2019). An improved ant colony optimization
algorithm based on hybrid strategies for scheduling problem. IEEE access, v. 7, p.
20281–20292.

BIBLIOGRAPHY 67

Ding, J.; Song, S.; Zhang, R.; Chiong, R. and Wu, C. (2016). Parallel machine scheduling
under time-of-use electricity prices: New models and optimization approaches. IEEE
Transactions on Automation Science and Engineering, v. 13, n. 2, p. 1138–1154.

Ebrahimi, Ahmad; Jeon, Hyun Woo; Lee, Seokgi and Wang, Chao. (2020). Minimizing
total energy cost and tardiness penalty for a scheduling-layout problem in a flexible job
shop system: A comparison of four metaheuristic algorithms. Computers & Industrial
Engineering, v. 141, p. 106295.

EIA,. May(2016). International energy outlook 2016 with projections to 2040. Tech-
nical report DOE/EIA-0484, U.S. Energy Information Administration, U.S. Depart-
ment of Energy, Washington. Available at https://www.eia.gov/outlooks/ieo/

pdf/0484(2016).pdf, accessed on February 1, 2020.

Falsafi, Hananeh; Zakariazadeh, Alireza and Jadid, Shahram. (2014). The role of de-
mand response in single and multi-objective wind-thermal generation scheduling: A
stochastic programming. Energy, v. 64, p. 853–867.

Fang, Kan; Uhan, Nelson; Zhao, Fu and Sutherland, John W. (2011). A new approach to
scheduling in manufacturing for power consumption and carbon footprint reduction.
Journal of Manufacturing Systems, v. 30, n. 4, p. 234–240.

Feo, Thomas A and Resende, Mauricio G. C. (1995). Greedy randomized adaptive
search procedures. Journal of global optimization, v. 6, n. 2, p. 109–133.

Fysikopoulos, Apostolos; Pastras, Georgios; Alexopoulos, Theocharis and Chrys-
solouris, George. (2014). On a generalized approach to manufacturing energy effi-
ciency. The International Journal of Advanced Manufacturing Technology, v. 73, n.
9-12, p. 1437–1452.

Garćıa, Salvador; Fernández, Alberto; Luengo, Julián and Herrera, Francisco. (2010).
Advanced nonparametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of power. In-
formation Sciences, v. 180, n. 10, p. 2044–2064.

Garey, Michael R and Johnson, David S. (1979). Computers and intractability. A guide
to the theory of NP-completeness, volume 174. Freeman, San Francisco.

Geiger, Martin Josef. (2008). Randomised variable neighbourhood search for multi
objective optimisation. 4th EU/ME Workshop: Design and Evaluation of Advanced
Hybrid Meta-Heuristics, p. 34–42, Nottingham, United Kingdom.

Gotoda, Shohei; Ito, Minoru and Shibata, Naoki. 13–16 May(2012). Task scheduling
algorithm for multicore processor system for minimizing recovery time in case of single
node fault. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), p. 260–267, Ottawa, Canada. IEEE. doi: 10.1109/
CCGrid.2012.23.

68 BIBLIOGRAPHY

Graham, R. L.; Lawler, E. L.; Lenstra, J. K. and Kan, A. H. G. Rinnooy. (1979).
Optimization and approximation in deterministic sequencing and scheduling: a survey.
v. 5, p. 287–326.

Guimarães, F. G.; Wanner, E. F. and Takahashi, R. H. C. (2009). A quality metric for
multi-objective optimization based on hierarchical clustering techniques. 2009 IEEE
Congress on Evolutionary Computation, p. 3292–3299, Trondheim, Norway.

Gurobi Optimization, LLC. Gurobi optimizer reference manual, (2020). Available at
http://www.gurobi.com , accessed on February 4, 2020.

Hansen, Pierre and Mladenović, Nenad. (2001). Variable neighborhood search: Prin-
ciples and applications. European journal of operational research, v. 130, n. 3, p.
449–467.

Hansen, Pierre; Mladenović, Nenad; Todosijević, Raca and Hanafi, Säıd. (2017). Vari-
able neighborhood search: basics and variants. EURO Journal on Computational
Optimization, v. 5, n. 3, p. 423–454.

Hong, Feng; Chen, Hao; Cao, Bin and Fan, Jing. (2021). A moead-based approach to
solving the staff scheduling problem. Gao, Honghao; Wang, Xinheng; Iqbal, Mudde-
sar; Yin, Yuyu; Yin, Jianwei and Gu, Ning, editors, Collaborative Computing: Net-
working, Applications and Worksharing, p. 112–131, Pittsburgh, PA USA. Springer
International Publishing.

Huang, Simin; Cai, Linning and Zhang, Xiaoyue. (2010). Parallel dedicated machine
scheduling problem with sequence-dependent setups and a single server. Computers
& Industrial Engineering, v. 58, n. 1, p. 165–174.

Keshavarz, Taha; Karimi, Erfaneh and Shakhsi-Niaei, Majid. (2021). Unrelated parallel
machines scheduling with sequence-dependent setup times to minimize makespan and
tariff charged energy consumption. Advances in Industrial Engineering, v. 55, n. 1, p.
91–113.

Kopanos, Georgios M; Láınez, José Miguel and Puigjaner, Luis. (2009). An efficient
mixed-integer linear programming scheduling framework for addressing sequence-
dependent setup issues in batch plants. Industrial & Engineering Chemistry Research,
v. 48, n. 13, p. 6346–6357.

Kurniawan, B; Gozali, AA; Weng, W and Fujimura, S. (2017). A genetic algorithm for
unrelated parallel machine scheduling minimizing makespan cost and electricity cost
under time-of-use (tou) tariffs with job delay mechanism. 2017 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM), p. 583–
587, Singapore. IEEE.

Kurniawan, Bobby; Chandramitasari, Widyaning; Gozali, Alfian Akbar; Weng, Wei
and Fujimura, Shigeru. (2020). Triple-chromosome genetic algorithm for unrelated
parallel machine scheduling under time-of-use tariffs. IEEJ Transactions on Electrical
and Electronic Engineering, v. 15, n. 2, p. 208–217.

BIBLIOGRAPHY 69

Liang, Peng; Yang, Hai-dong; Liu, Guo-sheng and Guo, Jian-hua. (2015). An ant op-
timization model for unrelated parallel machine scheduling with energy consumption
and total tardiness. Mathematical Problems in Engineering, v. 2015.

Liu, Ying; Dong, Haibo; Lohse, Niels; Petrovic, Sanja and Gindy, Nabil. (2014). An
investigation into minimising total energy consumption and total weighted tardiness
in job shops. Journal of Cleaner Production, v. 65, p. 87–96.

López-Ibáñez, Manuel; Dubois-Lacoste, Jérémie; Cáceres, Leslie Pérez; Birattari, Mauro
and Stützle, Thomas. (2016). The irace package: Iterated racing for automatic algo-
rithm configuration. Operations Research Perspectives, v. 3, p. 43–58.

Mansouri, S Afshin; Aktas, Emel and Besikci, Umut. (2016). Green scheduling of a two-
machine flowshop: Trade-off between makespan and energy consumption. European
Journal of Operational Research, v. 248, n. 3, p. 772–788.

Marler, R Timothy and Arora, Jasbir S. (2004). Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization, v. 26, n. 6, p.
369–395.

Mladenović, Nenad and Hansen, Pierre. (1997). Variable neighborhood search. Com-
puters & operations research, v. 24, n. 11, p. 1097–1100.

Moon, Joon-Yung; Shin, Kitae and Park, Jinwoo. (2013). Optimization of production
scheduling with time-dependent and machine-dependent electricity cost for industrial
energy efficiency. The International Journal of Advanced Manufacturing Technology,
v. 68, n. 1-4, p. 523–535.

Park, Jongsoo and Dally, William J. June 13–5(2010). Buffer-space efficient and
deadlock-free scheduling of stream applications on multi-core architectures. Proceed-
ings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, p. 1–10, New York, NY, USA. Association for Computing Machinery.

Pinedo, Michael L. (2016). Scheduling: Theory, Algorithms, and Systems. Springer
International Publishing, New York.

Pinto, Julio Cesar Evaristo Moreira; Cota, Luciano Perdigão; Guimarães, Frederico G.
and Souza, Marcone Jamilson Freitas. (2019). Uma formulação de programação
matemática para minimizar o makespan e o custo de energia em um problema de
sequenciamento em máquinas paralelas. Anais do LI Simpósio Brasileiro de Pesquisa
Operacional, volume 2, p. 107764, Campinas, Brazil. SOBRAPO.

Pour, Shahrzad M; Drake, John H; Ejlertsen, Lena Secher; Rasmussen, Kourosh Marjani
and Burke, Edmund K. (2018). A hybrid constraint programming/mixed integer
programming framework for the preventive signaling maintenance crew scheduling
problem. European Journal of Operational Research, v. 269, n. 1, p. 341–352.

70 BIBLIOGRAPHY

Raquel, Carlo R. and Naval, Prospero C. (2005). An effective use of crowding distance
in multiobjective particle swarm optimization. Proceedings of the 7th Annual Confer-
ence on Genetic and Evolutionary Computation, p. 257–264, Washington DC USA.
Association for Computing Machinery.

Rego, Marcelo Ferreira; Cota, Luciano Perdigão and Souza, Marcone Jamilson Fre-
itas. Instances for the upmsp with sequence-dependent setup times under time-of-use
electricity price, (2021). Available at https://github.com/marcelofr/UPMSP_ME_

INSTANCE, accessed on February 4, 2022.

Ropke, Stefan and Pisinger, David. (2006). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Transportation
science, v. 40, n. 4, p. 455–472.

Rosa, Bruno Ferreira and Souza, Marcone Jamilson Freitas. 01-04 September(2009).
Uma nova formulação de programação matemática indexada no tempo para uma
classe de problemas de sequenciamento em uma máquina. Anais do XLI Simpósio
Brasileiro de Pesquisa Operacional, volume 41, p. 2898–2909, Porto Seguro, Brazil.
SOBRAPO.

Ruiz, Rubén; Pan, Quan-Ke and Naderi, Bahman. (2019). Iterated greedy methods for
the distributed permutation flowshop scheduling problem. Omega, v. 83, p. 213–222.

Saberi-Aliabad, Hossein; Reisi-Nafchi, Mohammad and Moslehi, Ghasem. (2020).
Energy-efficient scheduling in an unrelated parallel-machine environment under time-
of-use electricity tariffs. Journal of Cleaner Production, v. 249, p. 119393.

Scheffé, Henry. (1958). Experiments with mixtures. Journal of the Royal Statistical
Society: Series B (Methodological), v. 20, n. 2, p. 344–360.

Senbel, Samah. July 16–17(2019). Novel recursive technique for finding the optimal solu-
tion of the nurse scheduling problem. Arai, Kohei; Bhatia, Rahul and Kapoor, Supriya,
editors, Intelligent Computing, p. 359–375, London, United Kingdom. Springer.

Shang, Ke; Ishibuchi, Hisao; He, Linjun and Pang, Lie Meng. (2020). A survey on the hy-
pervolume indicator in evolutionary multiobjective optimization. IEEE Transactions
on Evolutionary Computation, v. 25, n. 1, p. 1–20.

Shen, Liji; Dauzère-Pérès, Stéphane and Neufeld, Janis S. (2018). Solving the flexible
job shop scheduling problem with sequence-dependent setup times. European Journal
of Operational Research, v. 265, n. 2, p. 503–516.

Shrouf, Fadi; Ordieres-Meré, Joaquin; Garćıa-Sánchez, Alvaro and Ortega-Mier, Miguel.
(2014). Optimizing the production scheduling of a single machine to minimize total
energy consumption costs. Journal of Cleaner Production, v. 67, p. 197–207.

Srinivas, Nidamarthi and Deb, Kalyanmoy. (1994). Muiltiobjective optimization using
nondominated sorting in genetic algorithms. Evolutionary computation, v. 2, n. 3, p.
221–248.

BIBLIOGRAPHY 71

Sun, Xiang; Guo, Shunsheng; Guo, Jun and Du, Baigang. (2019). A hybrid multi-
objective evolutionary algorithm with heuristic adjustment strategies and variable
neighbor-hood search for flexible job-shop scheduling problem considering flexible rest
time. IEEE Access, v. 7, p. 157003–157018.

Tsao, Yu-Chung; Thanh, Vo-Van and Hwang, Feng-Jang. (2020). Energy-efficient single-
machine scheduling problem with controllable job processing times under differential
electricity pricing. Resources, Conservation and Recycling, v. 161, p. 104902.

Vallada, Eva and Ruiz, Rubén. (2011). A genetic algorithm for the unrelated parallel
machine scheduling problem with sequence dependent setup times. European Journal
of Operational Research, v. 211, n. 3, p. 612–622.

Wang, Hongfeng; Fu, Yaping; Huang, Min; Huang, George Q and Wang, Junwei. (2017).
A nsga-ii based memetic algorithm for multiobjective parallel flowshop scheduling
problem. Computers & Industrial Engineering, v. 113, p. 185–194.

Wang, Shijin; Liu, Ming; Chu, Feng and Chu, Chengbin. (2016). Bi-objective optimiza-
tion of a single machine batch scheduling problem with energy cost consideration.
Journal of Cleaner Production, v. 137, p. 1205–1215.

Wang, Yong and Li, Lin. (2015). Time-of-use electricity pricing for industrial customers:
A survey of us utilities. Applied Energy, v. 149, p. 89–103.

Wanner, Elizabeth F; Guimaraes, Frederico G; Takahashi, Ricardo HC and Fleming, Pe-
ter J. (2006). A quadratic approximation-based local search procedure for multi-
objective genetic algorithms. 2006 IEEE International Conference on Evolutionary
Computation, p. 938–945, Vancouver, BC, Canada. IEEE.

Wilcoxon, Frank. (1945). Some uses of statistics in plant pathology. Biometrics Bulletin,
v. 1, n. 4, p. 41–45.

Willeke, Stefan; Ullmann, Georg and Nyhuis, Peter. (2016). Method for an energy-cost-
oriented manufacturing control to reduce energy costs: Energy cost reduction by using
a new sequencing method. 2016 International Conference on Industrial Engineering,
Management Science and Application (ICIMSA), p. 1–5, Jeju, Korea (South). IEEE.

Wolf, Joel; Bansal, Nikhil; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wagle, Ro-
hit; Wu, Kun-Lung and Fleischer, Lisa. December 1-5(2008). Soda: An optimizing
scheduler for large-scale stream-based distributed computer systems. Issarny, Valérie
and Schantz, Richard, editors, Middleware 2008, p. 306–325, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Wu, Xueqi and Che, Ada. (2019). A memetic differential evolution algorithm for energy-
efficient parallel machine scheduling. Omega, v. 82, p. 155–165.

Wu, Xueqi and Che, Ada. (2020). Energy-efficient no-wait permutation flow shop
scheduling by adaptive multi-objective variable neighborhood search. Omega, v. 94,
p. 102117.

72 BIBLIOGRAPHY

Yan, Jingyu; Li, Chongguo; Wang, Zhi; Deng, Lei and Sun, Demin. (2007). Diversity
metrics in multi-objective optimization: Review and perspective. 2007 IEEE Inter-
national Conference on Integration Technology, p. 553–557, Shenzhen, China. IEEE.
doi: 10.1109/ICITECHNOLOGY.2007.4290378.

Zeng, YiZeng; Che, Ada and Wu, Xueqi. (2018). Bi-objective scheduling on uniform
parallel machines considering electricity cost. Engineering Optimization, v. 50, n. 1,
p. 19–36.

Zhang, Hao; Zhao, Fu; Fang, Kan and Sutherland, John W. (2014). Energy-conscious
flow shop scheduling under time-of-use electricity tariffs. CIRP Annals, v. 63, n. 1, p.
37 – 40.

Zhang, Like; Deng, Qianwang; Lin, Ruihang; Gong, Guiliang and Han, Wenwu. (2021).
A combinatorial evolutionary algorithm for unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times, limited worker resources
and learning effect. Expert Systems with Applications, v. 175, p. 114843.

Zhang, Qingfu and Li, Hui. (2007). Moea/d: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on evolutionary computation, v. 11, n.
6, p. 712–731.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algo-
rithms – a comparative case study. Parallel problem solving from nature-PPSN V, p.
292–301, Amsterdam, Netherlands. Springer.

Zitzler, Eckart; Deb, Kalyanmoy and Thiele, Lothar. (2000). Comparison of multiob-
jective evolutionary algorithms: Empirical results. Evolutionary computation, v. 8, n.
2, p. 173–195.

