
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Emiliana Mara Lopes Simões

A MATHEURISTIC ALGORITHM FOR THE MULTIPLE-DEPOT

VEHICLE AND CREW SCHEDULING PROBLEM

Belo Horizonte
2022

Emiliana Mara Lopes Simões

A MATHEURISTIC ALGORITHM FOR THE MULTIPLE-DEPOT

VEHICLE AND CREW SCHEDULING PROBLEM

Final Version

Dissertation presented to the Graduate Program in Electrical
Engineering of the Federal University of Minas Gerais in par-
tial fulőllment of the requirements for the degree of Doctor in
Electrical Engineering.

Advisor: Lucas de Souza Batista
Co-Advisor: Marcone Jamilson Freitas Souza

Belo Horizonte
2022

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

"A MATHEURISTIC ALGORITHM FOR THE MULTIPLE-DEPOT VEHICLE AND CREW SCHEDULING PROBLEM"

EMILIANA MARA LOPES SIMÕES

 Tese de Doutorado subme�da à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia
Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito para obtenção do grau de Doutor em
Engenharia Elétrica.

Aprovada em 13 de julho de 2022. Por:

Prof. Dr. Lucas de Souza Ba�sta

DEE (UFMG) - Orientador

Prof. Dr. Marcone Jamilson Freitas Souza

Departamento de Computação (UFOP)

Prof. Dr. Geraldo Robson Mateus

DCC (UFMG)

Prof. Dr. Mauricio Cardoso de Souza

DEP (UFMG)

Prof. Dr. Claudio Barbieri da Cunha

Departamento de Engenharia de Transportes (EPUSP)

Prof. Dr. André Luiz Maravilha Silva

Departamento de Informá�ca, Gestão e Design (CEFET-MG)

Documento assinado eletronicamente por Lucas de Souza Ba�sta, Professor do Magistério Superior, em 13/07/2022, às 19:27,
conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1576924 e o código CRC 8F165C68.

Referência: Processo nº 23072.239077/2022-43 SEI nº 1576924

Dedico este trabalho ao professor Marcone, que tanto me en-

sina e inspira com o amor, a sabedoria e o entusiasmo com

que exerce sua proőssão.

Acknowledgments

Chegar a esta página desta tese, da minha vida, foi desaőador. A jornada foi longa e

exigiu de mim muita dedicação, renúncias e resiliência. Porém, nada disso seria suőciente

se não houvesse instituições e pessoas apoiando a realização deste trabalho.

Pela oportunidade que me foi concedida de capacitação proőssional, agradeço à

UFVJM (Universidade Federal dos Vales do Jequitinhonha e Mucuri) e ao seu ICT (Insti-

tuto de Ciência e Tecnologia de Diamantina), onde sou professora, à UFMG (Universidade

Federal de Minas Gerais) e ao seu PPGEE (Programa de Pós-Graduação em Engenharia

Elétrica), onde estou realizando o doutorado, à CAPES (Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior), ao CNPq (Conselho Nacional de Desenvolvimento

Cientíőco e Tecnológico) e à FAPEMIG (Fundação de Amparo à Pesquisa do Estado de

Minas Gerais).

Agradeço aos meus orientador e coorientador, os professores Lucas e Marcone, pela

conőança em mim depositada, pelo formidável empenho em me orientar, por todo con-

hecimento compartilhado, pela assistência prestada e pela agradável convivência. Desejo

que o desenvolvimento desta tese tenha sido gratiőcante para eles (assim como foi para

mim), pois eles trabalharam muito nisso.

Agradeço aos membros da comissão do Exame de Qualiőcação do meu doutorado,

os professores André Luiz Maravilha Silva, Eduardo Gontijo Carrano e Geraldo Robson

Mateus, pelas valiosas sugestões e contribuições para a continuidade dos meus estudos.

Agradeço aos responsáveis pelo Operations Research and Complex Systems Lab

(ORCS Lab/UFMG) por toda a estrutura disponibilizada para o desenvolvimento desta

tese; ao André Maravilha e ao André Batista pelo empenho em resolver os problemas

técnicos do ORCS Lab.

Agradeço à Mônica pela amizade e apoio nos momentos, sempre corridos, que eu

estava em Belo Horizonte. Agradeço também a todos os meus amigos que tornaram meus

dias mais leves e divertidos durante o doutorado.

Por őm, agradeço àqueles que estão comigo a todo momento e são o meu alicerce,

Deus e minha família.

Minha mãe Dê, minhas irmãs Mariana e Carla, minhas sobrinhas Camila e Luísa,

Daniela e meu cunhado Cláudio não entendem nada de otimização, heurísticas e etc.,

mas abraçaram o meu doutorado como se fosse deles e őzeram tudo que podiam para me

ajudar. Família, muito obrigada pela maravilhosa convivência, amor, apoio, incentivo,

conselhos e por tudo mais que me trouxe alegria, conforto e ânimo para seguir em frente!

Amo-te inőnitamente!

Obrigada, Deus! O Senhor é o maestro da minha vida e que me concedeu a benção

de chegar até aqui na companhia de pessoas tão especiais. Sim, tu és real e maravilhoso,

Deus!

łSei que os Teus olhos

Sempre atentos permanecem em mim

E os Teus ouvidos

Estão sensíveis para ouvir meu clamor.ž

(Deus de Promessas, Composição: Davi Sacer/Ronald Fonseca/Verônica Sacer)

Resumo

Esta tese aborda o problema de programação de veículos e tripulações com múltiplas

garagens (MDVCSP). No MDVCSP, lidamos com dois problemas NP-difíceis de forma

integrada: o problema de programação de veículos com múltiplas garagens (MDVSP) e o

problema de programação de tripulações (CSP). Para solucionar o MDVCSP, deőnimos si-

multaneamente a rotina operacional dos veículos e as jornadas de trabalho das tripulações

de um sistema de transporte coletivo por ônibus com múltiplas garagens. Dada a diő-

culdade de resolver instâncias do mundo real do MDVCSP usando métodos matemáticos

exatos, propomos um algoritmo matheurístico para resolvê-lo. Este algoritmo matheurís-

tico, nomeado ILS-MDVCSP, combina duas estratégias em uma estrutura baseada em

busca local iterada (ILS): um algoritmo branch-and-bound para resolver o MDVSP e um

algoritmo baseado no VND (método de descida em vizinhança variável) para tratar os

CSPs associados. Comparamos o ILS-MDVCSP proposto com cinco abordagens da lit-

eratura que utilizam o mesmo conjunto de instâncias para teste. Também resolvemos

um problema real de uma das maiores cidades do Brasil. Para este problema, propuse-

mos uma formulação baseada em uma rede tempo-espaço para resolver o subproblema

MDVSP. Os resultados obtidos mostraram a eőcácia do ILS-MDVCSP, principalmente

para lidar com problemas do mundo real e de grande escala. O algoritmo foi capaz de

resolver as maiores instâncias da literatura, para as quais não havia solução relatada. Em

relação ao tempo de execução, à medida que o tamanho das instâncias aumenta, nossa

abordagem torna-se substancialmente menos onerosa que as demais da literatura. Para

as instâncias brasileiras, o ILS-MDVCSP economizou, em média, o uso de 25 veículos por

dia e reduziu em média 16% o tempo operacional diário dos veículos considerando quatro

garagens juntas.

Palavras-chave: Busca local iterada. Matheurística. Programação de veículos e trip-

ulações com múltiplas garagens. Transporte público. Rede tempo-espaço. Descida em

vizinhança variável.

Abstract

This thesis addresses the multiple-depot vehicle and crew scheduling problem (MDVCSP).

In MDVCSP, we deal with two NP-hard problems in an integrated way: the multiple-depot

vehicle scheduling problem (MDVSP) and the crew scheduling problem (CSP). For solving

the MDVCSP, we deőne the vehicles’ operational routine and the workdays of the crews

of a public bus transport system with multiple depots simultaneously. Given the difficulty

of solving real-world instances of the MDVCSP using exact mathematical methods, we

propose a matheuristic algorithm for solving it. This matheuristic algorithm, named ILS-

MDVCSP, combines two strategies into an iterated local search (ILS) based framework: a

branch-and-bound algorithm for solving the MDVSP and a variable neighborhood descent

(VND) based algorithm for treating the associated CSPs. We compared the proposed

ILS-MDVCSP with őve approaches in the literature that use the same benchmark test

instances. We also solved a real-world problem of one of Brazil’s largest cities. For this

problem, we proposed a formulation based on a time-space network to address the MDVSP

subproblem. The results obtained showed the effectiveness of ILS-MDVCSP, mainly to

deal with real-world and large-scale problems. The algorithm was able to solve the largest

instances from the literature, for which there was no reported solution. Regarding the

run time, as the instances’ size increases, our approach becomes substantially less costly

than the others from the literature. For the Brazilian instances, the ILS-MDVCSP saved,

on average, the use of 25 vehicles per day and reduced on average by 16% the daily

operational time of the vehicles considering four depots together.

Keywords: Iterated local search. Matheuristic. Multiple-depot vehicle and crew schedul-

ing. Public transportation. Time-space network. Variable neighborhood descent.

List of Figures

1.1 Operational planning of public urban bus transport. 15

2.1 Subproblems in a part of a branch-and-bound tree. 32

3.1 Example of vehicle itinerary and its crew duty. 40

3.2 Time-space network layer for the MDVSP. 43

3.3 Flow decomposition possibilities. 46

3.4 Circulation arcs of the timeline of a depot in a Brazilian real-world problem. . 47

3.5 Deőnition of one network layer for each depot-period. 49

3.6 Example of a solution sv for the MDVSP. 52

3.7 Example of a solution sc for the CSP. 52

3.8 MDVSP moves. 54

3.9 CSP moves. 55

List of Tables

2.1 Summary of the literature review for the MDVCSP 26

3.1 Example of part of a timetable . 38

3.2 Example of a deadhead matrix . 38

3.3 Concepts involved in deőning the MDVCSP 42

3.4 Example of direct partitioning of the vehicle itinerary into pieces of work . . . 63

3.5 Example of inverse partitioning of the vehicle itinerary into pieces of work . . 63

4.1 Costs considered in the evaluation functions and their respective values 70

4.2 Characteristics of the different duty types . 71

4.3 Parameters of the proposed algorithm . 72

4.4 Results from literature instances . 75

4.5 Variability of the solutions obtained by the ILS-MDVCSP algorithm 76

4.6 Characteristics of the Belo Horizonte instances 77

4.7 Results from the Belo Horizonte instances (2 depots) 80

4.8 Results from the Belo Horizonte instances (3 depots) 81

4.9 Results from the Belo Horizonte instances (4 depots) 82

4.10 Improvement of the initial solutions in the ILS-MDVCSP 83

4.11 Characteristics of the exact approach for the VSP instances 83

Contents

1 Introduction 14

1.1 Motivation . 14

1.2 Purpose of the Thesis . 18

1.3 Text Organization . 18

2 Literature Review 20

2.1 Related Work . 20

2.2 Combinatorial Optimization Techniques 27

2.2.1 Local Search . 27

2.2.1.1 Variable Neighborhood Descent 28

2.2.2 Metaheuristics . 29

2.2.2.1 Iterated Local Search . 30

2.2.3 Branch-and-Bound . 31

2.2.4 Matheuristics . 32

2.3 Combinatorial Optimization Problems . 33

2.3.1 Minimum Cost Flow Problem and Multicommodity Flow Problem . 33

2.3.2 Set Partitioning Problem . 35

3 Multiple-Depot Vehicle and Crew Scheduling Problem 37

3.1 Problem Deőnition . 37

3.2 Modeling Approach . 41

3.2.1 A Literature Modeling Approach for the MDVCSP 42

3.2.1.1 Time-Space Network for the MDVSP 43

3.2.1.2 Mathematical Formulations for the MDVSP and MDVCSP 44

3.2.2 Proposed Modeling Approach for the MDVSP and MDVCSP 46

3.2.2.1 Proposed Time-Space Network for the MDVSP 47

3.2.2.2 Proposed Mathematical Formulations for the MDVSP and

MDVCSP . 49

3.3 Solution Approach . 51

3.3.1 Solution Representation . 51

3.3.1.1 Solution Representation for the MDVSP 51

3.3.1.2 Solution Representation for the CSP 52

3.3.1.3 Solution Representation for the MDVCSP 52

3.3.2 Neighborhood Structures . 53

3.3.2.1 MDVSP Neighborhood Structures 53

3.3.2.2 CSP Neighborhood Structures 55

3.3.3 Evaluating Function . 56

3.3.4 Matheuristic Algorithm for the MDVCSP 57

3.3.5 Heuristic Methods for the CSP . 59

3.3.5.1 Heuristic Methods for Generating the Pieces of Work . . . 60

3.3.5.2 Heuristic Method for Inserting a Piece of Work Into Crew

Schedule . 64

3.3.5.3 Heuristic Method for Generating an Initial Solution for

the CSP . 66

3.3.5.4 Heuristic Method of Local Search for the CSP 66

4 Computational Experiments 69

4.1 Literature Instances . 70

4.1.1 Instances Description . 70

4.1.2 Parameter Settings . 71

4.1.3 Results . 73

4.2 Belo Horizonte Instances . 76

4.2.1 Instances Description . 76

4.2.2 Results . 77

5 Conclusions 84

Bibliography 86

14

Chapter 1

Introduction

1.1 Motivation

The planning process of the public bus transport system is highly complex. There-

fore the companies of the sector usually decompose it into several subproblems that are

approached in three stages: strategic, tactical, and operational.

Strategic planning addresses problems that involve long-term decisions. This plan-

ning aims to meet users’ demands and, at the same time, respect established budget

limitations. Thus, it speciőes the bus transit routes through the city (i.e., the set of line

routes).

Tactical planning deőnes the frequency with which the bus routes must be traveled

and the timetable. The timetable is composed of the daily trips to be performed by the

public transport company. Each trip has times and locations of the start and end.

Figure 1.1 shows the operational planning problems, namely the vehicle scheduling

problem (VSP), the crew scheduling problem (CSP), and the crew rostering problem

(CRP).

The VSP consists of determining a daily operating routine for a vehicle ŕeet. Its

objective is to make it possible to execute all timetable trips, reduce costs and, at the same

time, respect all operational restrictions. As a result, vehicle itineraries are obtained.

There must be a crew (possibly a driver and a collector) responsible for each

vehicle’s activity in the ŕeet. So, the CSP deals with deőning the workdays (duties)

for the crews. When resolving the CSP, we sought to minimize labor costs; however,

obligatorily in compliance with the operational and labor rules in force.

At last, there is the CRP. This problem consists of assigning duties to each crew

to deőne their monthly work routine. Thus, in the CRP, speciőc rules regarding long

periods are considered and therefore were not addressed in the daily schedule.

The division into stages presented above follows Desaulniers and Hickman [2007];

Ibarra-Rojas et al. [2015]. These works provide a comprehensive review of models and

approaches to solve the subproblems associated with each stage.

1.1. Motivation 15

Figure 1.1: Operational planning of public urban bus transport.

For a long time in the literature, proposals for sequential and independent resolu-

tion of the subproblems of the planning process of the public bus transport system predom-

inated. However, this type of approach leads to suboptimal solutions for global planning.

Thus, with the development of efficient computers and optimization techniques, more and

more successful research has emerged to integrate some of these subproblems [Steinzen

et al., 2010; Mesquita et al., 2013; Borndörfer et al., 2017; Carosi et al., 2019; Perumal

et al., 2021; Er-Rbib et al., 2021; Liang et al., 2020].

In the scope of operational planning, some authors deal with the integrated vehicle

and crew scheduling problem (VCSP) [Ball et al., 1983; Patrikalakis and Xerocostas, 1992;

Haase et al., 2001; Freling et al., 2003; Laurent and Hao, 2008; Simões et al., 2011]. In

the VCSP, vehicle itineraries and the workdays of the crews are deőned simultaneously.

Solving VSP and CSP in an integrated way is useful, as there is a dependency relationship

between these problems. Operating costs can even be an opposite relationship; that is, a

characteristic favorable to a solution for the VSP does not always reŕect satisfactorily in

the CSP and vice versa.

In this thesis, we approach the VCSP with multiple depots. In the so-called

multiple-depot vehicle and crew scheduling problem (MDVCSP), each timetable trip may

be assigned to a subset of existing depots. In addition, each depot has its vehicles and

crews. Therefore, solving more than one depot simultaneously (rather than distributing

trips between depots and then solving each depot separately) makes the problem more

ŕexible and more likely to result in better solutions.

1.1. Motivation 16

The beneőts of considering multiple depots were initially identiőed in solving the

multiple-depot vehicle scheduling problem (MDVSP), and there is a vast literature that

addresses this problem [Kliewer et al., 2006; Pepin et al., 2008; Desfontaines and De-

saulniers, 2018; Kulkarni et al., 2018; Dauer and Prata, 2021].

MDVCSP is an even more complex problem than MDVSP and has also received

the attention of researchers [Gaffi and Nonato, 1999; Huisman et al., 2005; Borndörfer

et al., 2008; Mesquita and Paias, 2008; Steinzen et al., 2010; Kliewer et al., 2012; Horváth

and Kis, 2019]. The works that address the MDVCSP differ signiőcantly in terms of

the assumptions considered. Gaffi and Nonato [1999], for example, impose that a crew is

assigned to the same vehicle during the whole duty. On the other hand, Mesquita and

Paias [2008] consider that a crew can change vehicles at any time at an appropriate local.

There are still works that allow the exchange of vehicles, but only between work shifts of

the crew [Huisman et al., 2005; Steinzen et al., 2010; Kliewer et al., 2012; Horváth and

Kis, 2019]. Thus, the particularities of the works often make it impossible to compare

them.

This thesis approaches the MDVCSP following the same assumptions considered

in Huisman et al. [2005]; Borndörfer et al. [2008]; Steinzen et al. [2010]; Horváth and Kis

[2019]. In addition, we also deal with a Brazilian real-world problem.

We propose a formulation for the MDVSP based on the time-space network elab-

orated by Steinzen et al. [2010]. In the Brazilian problem that we address, trips are

distributed throughout the day on the timetable. Therefore, we must guarantee a min-

imum daily stay in the depot for each vehicle in our formulation. This time is for the

maintenance and cleaning of the vehicles. Steinzen et al. [2010] and other authors [Huis-

man et al., 2005; Steinzen et al., 2007; Borndörfer et al., 2008; Steinzen et al., 2010;

Horváth and Kis, 2019] do not consider this situation. In the problem they address, there

is a long interval of the day in which no trip is scheduled on the timetable.

Furthermore, it is possible to combine our formulation for the MDVSP with a set

partitioning formulation for the CSP and thus constitute a model for the MDVCSP.

MDVCSP is an NP-hard problem [Huisman et al., 2005; Steinzen et al., 2010].

As shown in Bertossi et al. [1987] for the MDVSP and in Fischetti et al. [1989] for the

CSP, each of these problems is NP-hard. Therefore, we approach the MDVCSP through

a matheuristic algorithm to address real-world instances, which generally involve a high

number of variables.

Our matheuristic algorithm, named ILS-MDVCSP, uses the iterated local search

(ILS) [Stützle and Ruiz, 2018] framework for exploring the solution space of the MDVCSP.

In turn, its solution process combines two methods: a branch-and-bound method [Wolsey,

2020] to solve the MDVSP in optimality and a heuristic procedure based on the variable

neighborhood descent (VND) [Hansen et al., 2017] to treat associated CSPs.

To the best of our knowledge, only Steinzen et al. [2007] addressed the same prob-

1.1. Motivation 17

lem using a matheuristic. They deal with the MDVCSP using a hybrid evolutionary algo-

rithm (EA) to assign trips to depots. In this context, an individual is a trip-depot vector

where each trip is assigned to a single depot. In addition, these authors used Lagrangian

heuristics based on column generation to deőne vehicle and crew schedules and thus eval-

uate an individual’s őtness. The results showed that the hybrid EA overcame a sequential

approach to solving the MDVSP and CSP. However, the hybrid EA achieved lower per-

formance than the integrated resolution algorithms proposed in Borndörfer et al. [2004];

Huisman et al. [2005]. As well as Steinzen et al. [2007], we compared the ILS-MDVCSP

against the approaches proposed in Huisman et al. [2005] and Borndörfer et al. [2008] (the

improved work of Borndörfer et al. [2004]). Unlike Steinzen et al. [2007], our algorithm

performed better for all instances, considering the results reported in these works.

To validate our algorithm, we perform experiments with benchmark test instances

and compare the results against those reported in other well-known approaches from the

literature. We also present and discuss the results obtained for a real-world problem of a

city in Brazil, where the bus is the most popular form of public transport in large urban

centers. We compare the companies’ solutions (VSP and CSP sequential planning) with

the solutions obtained from two integrated approaches: VCSP resolution and MDVCSP

resolution. The results obtained showed:

1. The effectiveness of the matheuristic algorithm ILS-MDVCSP, mainly to deal with

real-world and large-scale problems.

2. The integrated resolution of the VSP and CSP is more efficient than the traditional

sequential resolution of these problems. Furthermore, the integrated approach with

multiple depots is more effective than the one with a single depot.

Finally, it is worth noting that, together with population growth and the new

challenges of urban mobility, the demand for an efficient, safe, quality, and cost-effective

locomotion service has been increasing. Concurrently, alternatives to move in the cities

have emerged. Therefore, the urban bus sector needs to adapt to this new competitive

and demanding scenario. In this respect, the optimized deőnition of vehicle and crew

schedules, as we propose in this thesis, is essential. It is directly related to the working

conditions of the employed labor and involves most of the sector’s operating costs. In

Brazil, according to the NTU (National Association of Urban Transport Companies), half

of the cost of the transport system refers to labor costs and almost 27% to fuel.

1.2. Purpose of the Thesis 18

1.2 Purpose of the Thesis

We hope to achieve the following purposes with this thesis:

1. To propose models and techniques to solve, in an integrated way and considering

multiple depots simultaneously, the following problems of the operational planning

of the public bus transport system: vehicle scheduling and crew scheduling.

2. To propose a time-space network for the MDVSP that ensures the deőnition of valid

vehicle operating periods. It is necessary when there is no on a 24-hour planning

horizon a sufficient interval in which no trip is scheduled. That is, we deőne all

the intervals of the day (operating periods) in which vehicles can work without

extrapolating the maximum daily operating time. The objective is to impose a

minimum time in the depot for each vehicle. This time is necessary and can be used

for cleaning, inspecting, maintaining, and refueling the vehicle.

3. Show the efficiency of the proposed approach to solve instances widely used in the

literature.

4. Show the applicability and effectiveness of the proposed approach to deal with real-

world and large-scale problems.

5. To present an alternative for the Brazilian public bus transport system to deal with

the growth in expenses. Optimized planning of the sector can avoid increased fares

and a government subsidy while favoring the sector’s efficiency, competitiveness,

and proőtability.

6. Publish the scientiőc knowledge produced and, therefore, support research related

to the problem and the combinatorial optimization techniques we address. From

this thesis, we generated the article described below.

Simões, E. M. L.; Batista, L. S.; Souza, M. J. F.. A Matheuristic Algorithm for

the Multiple-Depot Vehicle and Crew Scheduling Problem. IEEE Access, v. 9, p.

155897-155923, 2021.

1.3 Text Organization

The remaining of this thesis is as follows.

1.3. Text Organization 19

Chapter 2 reviews some related works to the MDVCSP (Section 2.1) and pro-

vides the necessary background for the algorithm and models proposed for this problem

(Sections 2.2 and 2.3, respectively).

Chapter 3 is composed of the sections described next. Section 3.1 deőnes the

MDVCSP and details the constraints we consider to solve a real-world problem of a city

in Brazil. Section 3.2 describes the literature formulations for the MDVSP and MDVCSP,

which support our formulation. Section 3.2 also presents the formulation we propose to

deal with a Brazilian real-world problem. These formulations are based on the time-space

network representations of the MDVSP detailed in Subsections 3.2.1.1 and 3.2.2.1. The

problem-solving approach is detailed in Section 3.3. In this section, Subsection 3.3.1 de-

scribes how to represent the MDVSP, CSP, and MDVCSP. Subsection 3.3.2 presents the

neighborhood structures used to explore the solution space of these problems. Subsec-

tion 3.3.3 deőnes the evaluation functions to vehicle and crew schedules. Subsection 3.3.4

presents the proposed ILS-MDVCSP matheuristic algorithm for solving the MDVCSP.

Subsection 3.3.5 describes heuristic procedures to treat the CSP exclusively and which

are auxiliary methods for the ILS-MDVCSP.

Chapter 4 presents and discusses the results obtained for benchmark test instances

(Subsection 4.1) and Brazilian instances (Subsection 4.2).

Finally, concluding remarks are pointed out in Chapter 5.

20

Chapter 2

Literature Review

This chapter reviews state-of-the-art approaches for the MDVCSP in Section 2.1 and some

techniques and problems of Operations Research used in this thesis (Sections 2.2 and 2.3).

Section 2.2 concerns combinatorial optimization techniques that are the foundation

of the proposed matheuristic algorithm for the MDVCSP and is organized as follows:

local search - variable neighborhood descent (Subsection 2.2.1), metaheuristic - iterated

local search (Subsection 2.2.2), Branch-and-Bound (Subsection 2.2.3), and matheuristics

(Subsection 2.2.4).

Section 2.3 reviews Minimum Cost Flow Problem and Multicommodity Flow Prob-

lem in Subsection 2.3.1 and Set Partitioning Problem in Subsection 2.3.2. These problems

are the base of the mathematical formulations for the MDVCSP that we will discuss.

2.1 Related Work

VSP and CSP have long been studied extensively in the Operations Research (OR)

literature. Among the precursors are the works Elias [1964]; Kirkman [1968]; Saha [1970];

Wren [1972]; Booler [1975]; Wren [1981]. In the 1980s, Ball et al. [1983] already pointed

out the advantages of addressing these problems in an integrated manner and proposed

a heuristic resolution method for the VCSP.

Patrikalakis and Xerocostas [1992] proposed the őrst mathematical formulation for

the VCSP. However, this model was for illustrative purposes only, being computationally

intractable [Freling et al., 1999]. Thus, the authors in Freling et al. [1995] are considered

the pioneers in proposing an integer programming formulation for the problem. This work

gave rise to a series of studies developed by Freling et al. on the topic, such as Freling

[1997]; Freling et al. [1999, 2003]. The formulations presented in these works are similar

and consist basically of two parts:

1. A quasi-assignment formulation based on a G(V,A) network ensures the viability

of the VSP. In this network, V is the set of all timetable trips and two more nodes,

2.1. Related Work 21

s (source) and t (sink), both representing the depot. The set A corresponds to the

arcs that: a) connect s and t to all other nodes in V , and b) connect compatible

trips, i.e., trips that can be performed by the same vehicle. Thus, a feasible solution

for the VSP is a set of disjoint paths from s to t in the network G, in such a way

that each trip node in V is covered precisely once;

2. A set partitioning formulation to assign each vehicle activity to a crew.

With the transformations in urban public transportation resulting from popula-

tion growth, social changes, and policies to encourage sustainability, recent research has

addressed more complex variants of the VCSP. Perumal et al. [2021] solved the VCSP

with electric buses (E-VCSP). So, new restrictions are imposed, such as i) limited driving

range of electric vehicles, ii) longer recharging times of vehicles, and iii) őxed charging

locations. Boyer et al. [2018] and Andrade-Michel et al. [2021] addressed the VCSP by

treating each vehicle and crew individually. They considered the compatibility between

each pair of vehicle-driver (the driver has/hasn’t the ability to drive the vehicle model),

driver-line (driver knows or not the line route), and vehicle-line (the bus must have appro-

priate characteristics to meet the line). Thus, the VCSP solution is a feasible trip-vehicle-

driver assignment for each line. Furthermore, to resolve the VCSP, Andrade-Michel et al.

[2021] considered the reliability of each driver (probability that he will not be absent

from work) and the importance of each trip (measured by the number of passengers it

serves). Amberg et al. [2019] observed that interruption (delay) can occur in urban public

transport due to heavy traffic or passenger behavior. In addition, this initial delay of a

scheduled task can cause delays in other activities that use the same resources (vehicle

and crew). Thus, Amberg et al. [2019] solved the VCSP aiming to minimize operational

costs and, at the same time, deőne robust vehicle and crew schedules. The robustness in

this context concerns the ability of an integrated schedule to prevent the spread of delays.

These previous works and many others solved the VCSP considering that there was only

one depot for managing vehicles and crews (see e.g., Laurent and Hao [2008]; Simões et al.

[2011]; Kang et al. [2019]). This problem is so-called single-depot VCSP (SDVCSP).

Medium-sized and large public transport companies usually have multiple depots

to manage their vehicles and crews. In this scenario, we have the deőnition of the multiple-

depot VCSP (MDVCSP).

Based on Freling et al. [2003], Huisman et al. [2005] proposed a model and algorithm

to deal with the MDVCSP. The developed algorithm combined column generation with

Lagrangian relaxation and consisted of the following steps:

1. Generation of the initial columns: Solved the problems MDVSP and several CSPs to

generate the initial columns, i.e., the crew duties. To solve the MDVSP, the authors

used the model described in Huisman et al. [2004] and the all-purpose solver CPLEX.

To address the CSP, they considered the approach presented in Freling et al. [2003];

2.1. Related Work 22

2. Obtaining the lower bound: Used column generation with Lagrangian relaxation.

The problems addressed are:

• Master problem: By relaxing the necessary constraints, the master problem

becomes a single and large VSP with a single depot, which can be solved in

polynomial time;

• Pricing problem: This problem was solved in two phases, considering one depot

at a time, to generate new columns (crew duties):

a) Creating pieces of work: Each piece of work was a sequence of trips of a

vehicle limited by a minimum and maximum duration. In this phase, Huis-

man et al. [2005] used a piece-generation network. In this network, each

node corresponded to a relief point deőned by location and time, where and

when the change of crews might occur; each arc had an associated reduced

cost and corresponded to a trip or a deadhead (vehicle travel without pas-

sengers). Then, the authors solved a shortest path problem between each

pair of nodes in the network to create pieces of work;

b) Generation of new duties: The work proposed a simpliőcation and con-

sidered i) the formation of duties with only two pieces of work and ii) the

reduced cost of duty was the sum of the reduced costs of the pieces of

work that composed it. The latter simpliőcation was possible because of

the continuous attendance assumption, i.e., whenever a vehicle is out of

the depot, there is a crew with it.

3. Obtaining a feasible solution: Used Lagrangian relaxation to solved the MDVSP

from the Lagrangian multipliers from the previous stage. Thus, good feasible so-

lutions for MDVSP were obtained in few iterations. Finally, from the MDVSP

solution, several CSPs, one for each depot, were addressed.

Huisman et al. [2005] developed another model for the MDVCSP from the formu-

lation proposed by Haase et al. [2001] for the VCSP. However, their algorithm generated

better results using the model based on Freling et al. [2003].

Before Huisman et al. [2005], only Gaffi and Nonato [1999] addressed the MDVCSP.

Gaffi and Nonato [1999] used a model and algorithm similar to those presented in Huisman

et al. [2005], but they consider particular constraints that facilitate the resolution of the

problem [Huisman et al., 2005].

Based on Freling [1997]; Freling et al. [1999, 2003] and using one of the models pro-

posed in Huisman et al. [2005], Borndörfer et al. [2008] proposed a Lagrangian relaxation

and column generation approach to the MDVCSP. For the solution of the Lagrangian

relaxations, they used a proximal bundle method. Besides, they used the primal and dual

2.1. Related Work 23

information generated by this bundle method to guide a branch-and-bound algorithm to

produce integer solutions.

Mesquita and Paias [2008] proposed two formulations for the MDVCSP. The őrst

(SP-VCSP) was similar to the one presented in Huisman et al. [2005] but with a smaller

number of constraints and decision variables. This formulation combined two models:

the multicommodity network ŕow model for vehicle scheduling and the set partition-

ing/covering model for crew scheduling. The second formulation (SPC-VCSP) was an

extension of the previous one, and it replaced some set partitioning constraints by set

covering constraints. This modiőcation made the model more ŕexible. Without increasing

the complexity of the problem, it made possible situations in which the crew was allowed

to change vehicles during their duty. Unlike Huisman et al. [2005] and other authors

(e.g. Borndörfer et al. [2008]; Steinzen et al. [2010]; Horváth and Kis [2019]), Mesquita

and Paias [2008] allowed a given crew to drive vehicles from any depot and not just the

depot to which they belong. Furthermore, a crew could change from a vehicle to another

at any time at an appropriate local. Therefore, the results in Mesquita and Paias [2008]

cannot be directly compared with those of other studies that addressed the MDVCSP.

Steinzen et al. [2010] presented a new formulation for the MDVCSP, based on the

so-called time-space network. Until then, in the literature, all works used models similar

to the one proposed in Huisman et al. [2005], based on the so-called connection-based

network to address the MDVCSP. The network proposed in Steinzen et al. [2010] was

much smaller considering the number of nodes and arcs, which resulted in a mathematical

formulation with a much smaller number of constraints and variables. The proposed

solution methodology was similar to that presented in Huisman et al. [2005] and combined

the generation of columns with Lagrangian relaxation. It has two major phases:

1. Lagrangian relaxation phase: It aimed to determine a good set of columns (crew

duties) and a lower bound for the relaxed problem. Therefore, the restricted master

problem considered was the original relaxed problem using Lagrangian relaxation,

and Steinzen et al. [2010] solved it approximately with the subgradient method. In

the pricing problem, they obtained new columns with a negative reduced cost of

a time-space network. Therefore, they used a resource-constrained shortest-path

(RCSP) formulation. In this approach, any path from the source node to the sink

node in the time-space network corresponded to a feasible duty. The path’s cost

corresponded to the reduced cost of the duty, and the authors considered resources

to satisfy the constraints associated with a feasible duty. Based on the proposed

formulation, Steinzen et al. [2010] used a dynamic programming algorithm to obtain

negative reduced costs duties efficiently;

2. Integer programming phase: It aimed to determine a feasible integer solution. In this

phase, Steinzen et al. [2010] proposed a Lagrangian relaxation approach in a time-

2.1. Related Work 24

space network. Two improvements were essential for the computational performance

gain: a branch-and-price heuristic algorithm and a variable őxing heuristic.

For the tests, Steinzen et al. [2010] used the instances available at Huisman [2003]

and generated larger ones using the same algorithm of Huisman et al. [2005], which are

available in Steinzen [2007a]. According to Steinzen et al. [2010], when considering other

works in the literature, their results were the best in terms of processing time (when it

was possible to compare) and quality of the solution generated (number of vehicles and

crews employed).

As we mentioned earlier, Steinzen et al. [2007] addressed the MDVCSP using a

hybrid evolutionary algorithm (EA). In the proposed strategy, the hybrid EA was used to

assign trips to depots and, in this way, transform the MDVCSP into several VCSPs. Both

problems, MDVCSP and VCSP, are NP-hard. However, in VCSP, the associated vehicle

scheduling problem can be solved in polynomial time, as it is the minimum cost ŕow

problem. Thus, the hybrid EA used Lagrangian heuristics based on column generation to

solve the VCSP and compute the individuals’ őtness.

The solution approaches described in Steinzen et al. [2007] and Steinzen et al. [2010]

provided the basis for Kliewer et al. [2012] to solve the MDVCSP with time windows for

scheduled trips (MDVCSP-TW). At MDVCSP-TW, the scheduled time for timetable trips

is not őxed. That is, at MDVCSP-TW, the trip departure and arrival times are variables.

This ŕexibility increases the number of trips compatible with each other and can reduce

required vehicles and crews in the schedule. Kliewer et al. [2012] compared the approaches

a) traditional sequential planning of vehicles and crews, b) sequential planning extended

with consideration of time windows in the vehicle scheduling phase, c) integrated planning,

and d) integrated planning with time windows. The results indicated that the integrated

planning approach with time windows was better than the others.

Ciancio et al. [2018] solved the MDVCSP considering several real-world restrictions

according to the European Union legal framework. These restrictions are so speciőc

that their proposed problem is quite different from those found in the literature [Ciancio

et al., 2018]. The authors proposed an ILS-based heuristic to address the MDVSP and

a greedy heuristic combined with local searches to build an initial solution for the CSP.

In integration, these solutions are modiőed by changing the trips’ allocation on vehicles

to minimize the combined objective function. The authors used instances proposed by

themselves in the tests. The largest instance considered had 712 trips and 4 depots.

Horváth and Kis [2019] proposed a mathematical formulation for the MDVCSP

based on the model of Steinzen et al. [2010]. Furthermore, they presented a branch-

and-price procedure to approach the problem exactly. This approach used an efficient

pricing method, some branching strategies, and a simple primal heuristic. According to

the authors, this was the őrst work to propose an exact solution to the MDVCSP deőned

2.1. Related Work 25

in Huisman et al. [2005]. The proposed approach was able to efficiently solve only small

instances, with 4 depots and 80 or 100 trips. Optimal solutions were found for 4 of the

20 instances considered and, for the others, the GAP of the solution found was deőned

concerning the lower bound obtained. The GAP was less than 0.5% for 7 instances.

The formulations proposed in the literature for the MDVCSP represent the asso-

ciated MDVSP in two ways: 1ś connection-based network, initially proposed by Huisman

et al. [2005]; or 2ś time-space network [Steinzen et al., 2010]. As shown in Kliewer et al.

[2006] and Steinzen et al. [2010], in the time-space network the amount of deadhead arcs

is much less than in the connection-based network. Kliewer et al. [2006] solved very large

practical instances of the MDVSP in optimality through the direct application of standard

optimization software. Thus, we propose a formulation based on a time-space network for

the MDVSP subproblem in this thesis. Our time-space network for the MDVSP ensures

the deőnition of valid vehicle operating periods. It is necessary when there is no on a

24-hour planning horizon a sufficient interval in which no trip is scheduled. The revised

literature does not consider this situation because the problems addressed have a long

interval of the day without a trip.

Table 2.1 summarizes the approaches proposed to the MDVCSP from the literature

review and present work. This table also describes the instances considered in the works’

computational experiments.

Table 2.1 shows that the literature applies different optimization techniques to

tackle the MDVCSP (mathematical programming, evolutionary algorithms, metaheuris-

tics, and matheuristics). Most research proposed a solution approach that combines the

generation of columns with Lagrangian relaxation. Our work proposes a matheuristic

that combines branch-and-bound and variable neighborhood descent into an iterated lo-

cal search-based framework to approach the MDVCSP. To the best of our knowledge, we

are the őrst to address the largest instances from the benchmark instances widely used

in the literature. Furthermore, we present the largest real-world instance (1573 trips and

four depots) and solve it.

Regarding the run time, as the size of the instances increases, our approach becomes

substantially less costly than the others from the literature. Thus, we show that the

proposed algorithm can efficiently handle large-scale instances from literature and the

real-world.

In the remainder of this chapter, we provide the necessary background for the

algorithm and models used in this thesis. These are comprehensive subjects. Thus, we

consider only a few topics directly related to our solution approach.

2.1.
R

elated
W

ork
26

Table 2.1: Summary of the literature review for the MDVCSP

Reference
Solution approach Literature instances Real-world instances

Type Approach Generated by Largest instance treated Companies from Largest instance treated
Gaffi and Nonato [1999] Heuristic CG-LR1 - - Italy9 257 trips, 28 depots
Huisman et al. [2005] Heuristic CG-LR themselves 200 trips, 4 depots Netherlands10 653 trips, 1.74 depot/trip12

Steinzen et al. [2007] Heuristic EA-CG-LR2 Huisman et al. [2005] 200 trips, 4 depots - -
Borndörfer et al. [2008] Heuristic CG-LR Huisman et al. [2005] 400 trips, 4 depots Germany10 1414 trips, 3 depots
Mesquita and Paias [2008] Heuristic CG-LPR-BB3 Huisman et al. [2005]7 400 trips, 4 depots - -
Steinzen et al. [2010] Heuristic CG-LR Huisman et al. [2005]8 640 trips, 4 depots - -
Kliewer et al. [2012] Heuristic CG-LR Huisman et al. [2005]8 640 trips, 4 depots - -
Ciancio et al. [2018] Heuristic ILS-GH-LS4 themselves 712 trips, 4 depots - -
Horváth and Kis [2019] Exact BP5 Huisman et al. [2005] 100 trips, 4 depots - -
Present work Heuristic ILS-BB-VND6 Huisman et al. [2005]8 800 trips, 4 depots Brazil11 1573 trips, 4 depots

1 Column generation in combination with Lagrangian relaxation.
2 Hybrid evolutionary algorithm and column generation in combination with Lagrangian relaxation.
3 Column generation in combination with linear programming relaxation; branch-and-bound.
4 ILS-based heuristic and a greedy heuristic combined with local searches.
5 Branch-and-price.
6 Combines branch-and-bound and variable neighborhood descent into an iterated local search-based framework.
7 Unlike other authors, Mesquita and Paias [2008] allowed a given crew to drive vehicles from any depot.
8 Includes the instances generated by Huisman et al. [2005] and Steinzen et al. [2010]. Both used the instances generation algorithm of Huisman et al.

[2005].
9 A driver must be assigned a single vehicle during the whole duty in this problem. Furthermore, there are different types of vehicles, and for each trip

the suggested type is known, corresponding to the most suitable type for that service.
10 Some trips have to be assigned to vehicles and drivers from a certain subset of depots in this problem.
11 Every trip can be assigned to any depot in this problem.
12 The average number of depots to which a trip may be assigned.

2.2. Combinatorial Optimization Techniques 27

2.2 Combinatorial Optimization Techniques

Combinatorial optimization techniques aim to obtain the best solution to a problem

that has a őnite but extremely large set of feasible solutions. The best solution is called

the optimal solution (global optimum), and it is not necessarily unique. That is, there can

be several optimal solutions to the same problem. The quality of a solution s, from the

set of feasible solutions S, is deőned by a function f : S → R, called objective function

or evaluation function. This function associates to each solution s ∈ S a real-valued f(s).

When the objective is to obtain a solution s∗ with the smallest possible value for f , we

have a minimization problem. Otherwise, that is, when the objective is to őnd a solution

s∗ with the highest possible value for f , we have a maximization problem.

Many practical instances of combinatorial optimization problems cannot be solved

exactly in a reasonable time. In these cases, heuristics should be used to produce an

approximate solution of high quality quickly, or sometimes an optimal solution but without

proof of its optimality. Many of these heuristics employ neighborhood structures to explore

the solution space. Let min {f(s) | s ∈ S} be a minimization optimization problem, let

N (s) denote a neighborhood structure of a given solution s. N (s) usually consists of all

solutions obtained from s by some simple modiőcation, i.e., N : S → P(S), where P(S)

denotes the power set of the set S. Then, a solution s∗ is a local optimum, relative to

neighborhood N (s∗), if f(s∗) ≤ f(s), ∀s ∈ N (s∗). Furthermore, as previously described,

a solution s∗ is an optimal solution if f(s∗) ≤ f(s), ∀s ∈ S.

Vehicle scheduling, crew scheduling, and related problems are classical combina-

torial optimization problems. Therefore, this section brieŕy explains the combinatorial

optimization techniques we applied to address the MDVCSP.

2.2.1 Local Search

Local search is a fundamental tool in developing heuristic algorithms and explores

a neighborhood structure of a current solution at each iteration [Hansen et al., 2017;

Amaral et al., 2021]. From the neighborhood of the current solution, a local search

heuristic chooses one feasible solution that improves the value of the objective function.

The selected solution becomes the new current solution. This process repeats until the

current solution is the local optimum for the neighborhood structure considered.

The most common search strategies used within a local search heuristic are:

2.2. Combinatorial Optimization Techniques 28

1. The best improvement that selects at each iteration the neighbor with the best

objective function value;

2. The őrst improvement that selects at each iteration the őrst evaluated neighbor

that is better than the current solution. Furthermore, the őrst improvement that

evaluates the neighborhood randomly is equivalent to a random selection of an

improving neighbor.

Algorithm 1 describes the local search procedure using the best improvement search

strategy for a minimization problem.

Algorithm 1: Local search using the best improvement search strategy

1 Data: N , operator that deőnes the neighborhood structure.
2 Data: s0, the initial solution.
3 Result: s, the solution after local search.

4 s← s0
5 s′ ← argmins′′∈N (s)f(s

′′)

6 while f(s′) < f(s) do

7 s← s′

8 s′ ← argmins′′∈N (s)f(s
′′)

2.2.1.1 Variable Neighborhood Descent

The variable neighborhood descent (VND) is a local search procedure [Hansen et al.,

2017, 2019]. This method is based on the principle that a local optimal concerning a given

neighborhood structure does not necessarily correspond to a local optimum concerning

another neighborhood structure. Thus, the objective is to explore the solution space

through systematic changes of neighborhood structures.

There are different VND variants in the literature. Each variant has its own rule

for selecting the next neighborhood structure to be explored if the current solution is

improved. Hansen et al. [2017] describe four sequential VND variants: basic VND (B-

VND), pipe VND (P-VND), cyclic VND (C-VND) and Union VND (U-VND).

We apply a B-VND-based local search for improving crew scheduling in this thesis.

Let N = {N1, ...,Nkmax
} be a set of operators deőning the neighborhood structures and

the order of their examination. The basic sequential VND (B-VND) procedure [Hansen

et al., 2017] iteratively explores its neighborhood structures one after another according to

2.2. Combinatorial Optimization Techniques 29

the established order. As soon as an improvement of the current solution in some neigh-

borhood structure occurs, the B-VND resumes search in the őrst neighborhood structure

of the new current solution. Algorithm 2 details this procedure for a minimization problem

and uses the best improvement search strategy.

Algorithm 2: B-VND using the best improvement search strategy

1 Data: N = {N1, ...,Nkmax
}, the set of operators deőning the neighborhood

structures and the order of their examination.
2 Data: s0, the initial solution.
3 Result: s, the solution after local search.

4 k ← 1 // neighborhood structure to explore

5 s← s0

6 while k ≤ kmax do

7 s′ ← argmins′′∈Nk(s)
f(s′′)

8 if f(s′) < f(s) then

9 s← s′

10 k ← 1

11 else

12 k ← k + 1

2.2.2 Metaheuristics

Metaheuristics are generic or higher-level heuristics that aim to explore the prob-

lem’s solution space intelligently. They have mechanisms so that the search is not stuck in

local optima and thus őnds good solutions in other regions at an acceptable computational

cost.

Metaheuristic algorithms effectively solve a wide variety of optimization problems.

In Hussain et al. [2019], there is a comprehensive survey of metaheuristic research in

literature and Sörensen et al. [2018] describe the history of metaheuristics in different

periods. Osaba et al. [2021] proposed an end-to-end methodology for addressing real-

world optimization problems with metaheuristic algorithms.

Next, we present the main ideas of the Iterated Local Search metaheuristic. Our

algorithm to tackle the MDVCSP uses an Iterated Local Search based framework.

2.2. Combinatorial Optimization Techniques 30

2.2.2.1 Iterated Local Search

The iterated local search (ILS) metaheuristic [Stützle and Ruiz, 2018; Lourenço

et al., 2019] combines perturbation and local search in an iterative process to generate

a chain of good solutions. The perturbation modiőes the current solution and generally

consists of the random move in a neighborhood of higher order than the one used by

the local search algorithm. Therefore, the local search should not be able to undo the

perturbation.

At each iteration, the ILS performs a perturbation to the current solution and,

subsequently, executes a local search procedure. Then, the acceptance criterion of the

ILS determines whether the resulting solution is accepted or not as the new current

solution. These steps are repeated until the stop condition is satisőed.

Algorithm 3 describes the basic ILS and has four components:

1. GenerateInitialSolution: this procedure generates an initial s0 solution, i.e., the

starting point of the search;

2. LocalSearch: it is the improvement method that returns an improved solution s after

generating the initial solution and another sž after perturbation;

3. Perturbation: this procedure modiőes the current solution s leading to an interme-

diate solution s’. An efficient perturbation is one that does not drastically change

the current solution, but still allows the local search to explore different regions on

space of all candidate solutions;

4. AcceptanceCriterion: it determines whether the resulting solution sž is accepted or

not as the new current solution.

Algorithm 3: ILS

1 Result: s, the best solution found.

2 s0 ← GenerateInitialSolution()

3 s← LocalSearch(s0) // optional line of code

4 while the stop condition is not satisőed do

5 s′ ← Perturbation(s, history)

6 s′′ ← LocalSearch(s′)

7 s← AcceptanceCriterion(s, s′′, history)

Algorithm 3 considers aspects of the search history in the Perturbation and Accep-

tanceCriterion procedures. This history can be used by ILS to, for example, adjust the

2.2. Combinatorial Optimization Techniques 31

perturbation strength or the choice done in the acceptance criterion. Studies show that

incorporating memory enhances performance [Lourenço et al., 2010].

According to Stützle and Ruiz [2018], the ILS has advantages compared to re-

peatedly starting the local search method from random initial candidate solutions. The

ILS algorithm generally generates more local optima and local optima of better average

quality with a given run time.

The basic ILS is a simple and easy to implement metaheuristic. Furthermore, a

high-performing ILS algorithm can be developed when problem-speciőc details are taken

into account [Stützle and Ruiz, 2018; Lourenço et al., 2019].

2.2.3 Branch-and-Bound

Branch-and-bound is an exact solution approach for combinatorial optimization

problems that implicitly enumerate many solutions. Land and Doig [1960] proposed

this algorithm initially for solving integer programming (IP) problems. Based on the

divide and conquer principle, the branch-and-bound decomposes the original problem

into smaller subproblems that are easier to solve. Then, the solutions to the subproblems

are used to solve the original problem. The decomposition works based on the following

proposition [Wolsey, 2020]: let the problem be Z = max {cx : x ∈ S}, let S = S1∪ ...∪SK

be a decomposition of S into smaller sets, and let Zk = max {cx : x ∈ Sk} for k = 1, ..., K.

Then, Z = maxk Z
k.

Figure 2.1 shows a part of a branch-and-bound tree, a typical way to represent the

branch-and-bound strategy. In Figure 2.1, each subproblem represents a node on the tree.

The main problem S is at the root node, and is then divided into two subproblems, S1 and

S2 (S = S1 ∪ S2). This process of dividing a problem into smaller subproblems is called

branching and is performed successively on the subproblems. However, the complete

enumeration of the solution space is very time-consuming for most problems of practical

size. Therefore, in the branch-and-bound, whenever possible, a node is pruned. That is,

the node subproblem goes not divided anymore. Branch-and-bound uses lower and upper

bounds information to prune nodes that cannot contain a solution better than the best

solution (incumbent solution) found so far. In general, a node is pruned if one of the

following cases happens:

1. Pruning by optimality: the optimal solution to a node subproblem is found;

2. Pruning by bound: the upper bound calculated for a node subproblem is not greater

than the lower bound already known (in a maximization problem);

2.2. Combinatorial Optimization Techniques 32

3. Pruning by infeasibility: the feasible region of a node subproblem is empty.

Suppose a node cannot be pruned based on the above conditions. In that case, new

branches are created to decompose the node subproblem into smaller subproblems. The

algorithm stops when all nodes are pruned and the optimal solution will be the incumbent

solution.

Figure 2.1: Subproblems in a part of a branch-and-bound tree.

The optimization solvers, like Gurobi Optimization, LLC [2021], generally use a

linear programming-based branch-and-bound algorithm to solve mixed-integer linear pro-

gramming (MILP) problems. In LP-based branch-and-bound, linear programming relax-

ations provide the bounds. The capabilities of solvers increased so much in recent years,

but the underlying theory has changed relatively little. The main techniques improved

have been preprocessing/presolving, cutting planes, primal heuristics, and parallelism.

In this thesis, we use the Gurobi to solve the MDVSP in optimality.

2.2.4 Matheuristics

We propose a matheuristic algorithm for solving the MDVCSP. Matheuristics

are hybrid algorithms that combine mathematical programming and metaheuristic tech-

niques. According to Raidl [2015], this class of algorithms exploits the individual advan-

tages of these methods and beneőts from the synergy between them.

Given the success of the matheuristics, researches in literature have applied this

technique to solving several combinatorial optimization problems. Dumitrescu and Stüt-

zle [2003] describe approaches in which a local search method is applied to the problem

to solve and an exact algorithm to some subproblems. They show that this combina-

tion generated powerful algorithms. Puchinger and Raidl [2005] present a more general

2.3. Combinatorial Optimization Problems 33

classiőcation of existing approaches combining exact and metaheuristic algorithms. They

distinguish two main combinations categories: collaborative (the algorithms exchange in-

formation, but are not part of each other) and integrative (one technique is a subordinate

embedded component of another technique). Jourdan et al. [2009]; Blum et al. [2011];

Raidl [2015]; Talbi [2016] are other reviews of how hybrid approaches are being designed

in the literature.

Maniezzo et al. [2021] is a comprehensive tutorial on matheuristics. The book pro-

vides a detailed presentation of the best-known metaheuristics and their mathematical hy-

brids. Furthermore, it describes both extensions of well-known heuristics and innovative,

matheuristic-only approaches [Maniezzo et al., 2021].

2.3 Combinatorial Optimization Problems

The őeld of combinatorial optimization deals with problems of minimizing or max-

imizing a function of discrete decision variables subject to equality or inequality con-

straints. This section reviews some well-known combinatorial optimization problems

which we use in this thesis to model the MDVCSP.

2.3.1 Minimum Cost Flow Problem and Multicommodity Flow

Problem

Network optimization is an important problem domain in operations research.

There are a variety of applications in the literature that model practical situations as

network optimization problems. See, for example, Mahey et al. [2017].

A lot of well-known network ŕow problems are special cases of the minimum cost

ŕow problem. According to Ahuja et al. [1993], this problem aims to determine a minimum

cost shipment of a commodity through a network that will satisfy the ŕow demands at

certain nodes from available supplies at other nodes.

Let G = (N,A) be a directed graph, where N is the set of nodes and A is the set

of directed arcs. Each arc (i, j) ∈ A has an associated cost cij per unit ŕow on that arc.

Then, we assume that the ŕow cost varies linearly with the amount of ŕow. Furthermore,

let lij and uij be, respectively, the minimum and maximum amount of ŕow on each arc

2.3. Combinatorial Optimization Problems 34

(i, j) ∈ A. Each node i ∈ N has an associated integer bi which indicates its supply (bi > 0)

or demand (bi < 0). If bi = 0, node i is a transshipment node. Let yij be the decision

variables and represents the ŕow on an arc (i, j) ∈ A. The formulation for the minimum

cost ŕow problem is presented below (2.1)ś(2.3).

min
∑

(i,j)∈A

cijyij (2.1)

s. t.

∑

{j:(i,j)∈A}

yij −
∑

{j:(j,i)∈A}

yji = bi ∀i ∈ N, (2.2)

lij ≤ yij ≤ uij, ∀(i, j) ∈ A. (2.3)

The objective is to minimize the cost of the ŕow of a commodity through a network

(2.1). Constraints (2.2) ensure that the net ŕow out of each node (outŕow minus inŕow)

must equal the supply/demand of the node. Constraints (2.3) guarantee that the ŕow

on each arc satisfy the capacity, lower and upper bound, of that arc. We refer to the

constraints in (2.2) as ŕow conservation constraints and constraints (2.3) as ŕow bound

constraints.

In that model, there are two important details:

1. The data must satisfy the feasibility condition, that is,
∑

i∈N bi = 0;

2. The constraint matrix is totally unimodular. Then, suppose the supplies/demands

of the nodes and the capacities of the arcs are integral. In that case, each solution

to the linear program above is integral [Wolsey, 2020].

In general, the minimum cost ŕow problem is solved by specialized algorithms that

run in polynomial time and exploit the structure of the underlying network (see Ahuja

et al. [1993, 2001]). These algorithms are often faster than general-purpose linear pro-

gramming algorithms such as primal or dual simplex.

The multicommodity ŕow problem is an extension of the minimum cost ŕow prob-

lem. In the multicommodity ŕow problem, several commodities share the same network.

Furthermore, each commodity has separate ŕow conservation constraints, and all com-

modities share the same ŕow bound constraints.

Below we give the formulation of the multicommodity ŕow problem with K as the

set of commodities and with separate ŕow variables and costs by commodity k ∈ K.

min
∑

k∈K

∑

(i,j)∈A

ckijy
k
ij (2.4)

2.3. Combinatorial Optimization Problems 35

s. t.

∑

{j:(i,j)∈A}

ykij −
∑

{j:(j,i)∈A}

ykji = bki ∀k ∈ K, ∀i ∈ N, (2.5)

lij ≤
∑

k∈K

ykij ≤ uij ∀(i, j) ∈ A, (2.6)

lkij ≤ ykij ≤ uk
ij ∀k ∈ K, ∀(i, j) ∈ A, (2.7)

ykij ∈ Z
+ ∀k ∈ K, ∀(i, j) ∈ A. (2.8)

We might formulate a variety of alternative multicommodity models with differ-

ent assumptions. In the model above, we also impose individual ŕow bounds for each

commodity (constraints (2.7)).

Models for integral multicommodity ŕow problem must impose integrality on the

ŕow variables to obtain integral solutions (see constraints (2.8)). Garey and Johnson [1979]

prove that this problem is NP-hard if there are at least two commodities.

2.3.2 Set Partitioning Problem

The set partitioning problem is a 0-1 integer programming problem that determines

a minimum cost partitioning of the elements of a set M into feasible smaller subsets. In

this way, each element of M must be contained in one, and only one, those subsets.

Let M be a őnite set and N be a őnite family of feasible subsets of M . A constraint

set deőnes N . Moreover, each subset j ∈ N has an associate cost cj. Let xj be a binary

decision variable, where xj is equal 1 if the subset j ∈ N is part of the solution and 0

otherwise. Let aij be 1 if subset j ∈ N contains element i ∈ M and 0 otherwise. Next,

we present the model for the set partitioning problem.

min
∑

j∈N

cjxj (2.9)

s. t.

∑

j∈N

aijxj = 1 ∀i ∈M, (2.10)

xj ∈ {0, 1} , ∀j ∈ N. (2.11)

As proved in Garey and Johnson [1979], this problem is NP-hard. There are two

main types of solution algorithms for the set partitioning problem in the literature: dual-

fractional and primal algorithms [Tahir et al., 2019].

2.3. Combinatorial Optimization Problems 36

Many scheduling problems, such as bus, airline, and railway crew schedulings, are

traditionally formulated as a set partitioning problem (e.g., Balas and Padberg [1975];

Marsten and Shepardson [1981]; Desaulniers et al. [1997]; Mingozzi et al. [1999]; Haase

et al. [2001]; Mesquita and Paias [2008]; Perumal et al. [2021]).

37

Chapter 3

Multiple-Depot Vehicle and Crew

Scheduling Problem

This chapter describes our approach to tackle the MDVCSP. It is the central part of this

thesis, and the subjects in Chapter 2 are its basis.

Section 3.1 introduces the MDVCSP and presents the constraints and assumptions

that we consider to solve a real-world problem in Brazil and a problem addressed in the

literature. Section 3.2 discusses the modeling approaches proposed by Steinzen et al.

[2010] and by us for the MDVCSP. Section 3.3 describes the ILS-MDVCSP matheuristic

algorithm we propose to solve the MDVCSP and the underlying procedures and strategies.

3.1 Problem Deőnition

In the multiple-depot vehicle and crew scheduling problem (MDVCSP), vehicle and

crew schedules are deőned simultaneously and must be mutually compatible. That is,

the workday of some crew must cover each operational activity of a vehicle. Besides, we

consider more than one depot for ŕeet and labor management. Therefore, we must also

assign each vehicle and crew on the schedule to a single depot.

The rest of this section presents the concepts involved in deőning the MDVCSP.

Timetable trips is constituted by the set of trips to be made daily by the public bus

transit company. Table 3.1 represents part of a timetable with trips of line A-B (a route

over which a bus travels in both directions: A→B and B→A). In this table, arranged

in columns and appearing sequentially, are the features of the trips considered relevant

for the operational planning, they are: trip number (an identiőer), start time of the trip,

start point (which corresponds to the place of the start of the trip), end time of the trip,

and end point (which refers to the point the trip ends).

Deadhead is each travel of a vehicle, which is not a timetable trip. According to its

operational itinerary, this journey can be necessary to place a vehicle in an appropriate

3.1. Problem Deőnition 38

Table 3.1: Example of part of a timetable

Trip Start Start End End
Number Time Point Time Point

1 06:26 A 07:22 B
2 09:06 A 09:55 B
3 13:06 A 13:59 B
4 17:06 A 17:59 B
5 19:46 A 20:31 B
6 06:50 B 07:46 A
7 08:10 B 09:06 A
8 11:30 B 12:19 A
9 17:30 B 18:23 A
10 20:10 B 20:55 A

local. For example, we have the vehicle’s travel to the starting point of a trip or return

to the depot at the end of the day. Thus we must provide the deadhead times between

the various stopping points of the vehicles. We organized this information in a structure

called deadhead matrix.

Table 3.2 depicts a deadhead matrix with one depot G1 and the points A, B, C,

and D. In this table, travel times are in minutes. As in this example, in most cases, this

matrix is symmetric. Then, the travel time from X to Y is equal to the travel time from

Y to X for any points X and Y. Furthermore, the distance from X to X is always 0.

Table 3.2: Example of a deadhead matrix

G1 A B C D
G1 0 42 41 55 55
A 42 0 32 15 24
B 41 32 0 32 22
C 55 15 32 0 15
D 55 24 22 15 0

Therefore, given a timetable and a deadhead matrix, the vehicle scheduling problem

(VSP) consists of determining the operational routine for a vehicle ŕeet. The aim here is

to make the execution of all trips feasible and, at the same time, to minimize the costs

involved.

Vehicles itineraries are speciőed when addressing the VSP. Each itinerary corre-

sponds to the trips assigned to a vehicle that can be carried out successively, without

violating the operational rules and time and space limitations. It is noteworthy that, as

long as it is feasible, a vehicle can return to the depot more than once during its operating

day. Thus, the trips comprised between an exit/return sequence to the depot constitute

the so-called vehicle block. The cost of the vehicle schedule includes őxed costs for each

vehicle’s purchase and variable costs for deadhead and waiting time outside the depot.

3.1. Problem Deőnition 39

In the context of public bus transport, a depot corresponds to an installation for the

management, maintenance, and parking of vehicles when they are not in use (operation).

A depot can have an associated maximum capacity and type of ŕeet. Furthermore, a

depot is located at a known distance from each trip’s start and end point. Regarding the

number of available depots, the VSP can be classiőed into single-depot vehicle scheduling

problem (SDVSP) and multiple-depot vehicle scheduling problem (MDVSP).

Whenever a vehicle is out of the depot, there must be a crew responsible for it.

Usually, a crew is composed of a driver and a collector. Therefore, the crew scheduling

problem (CSP) consists of creating the workdays, so-called duties, for the crews. These

duties must ensure the feasibly of the vehicle schedule. Besides, we must carry out this

distribution of work to minimize labor costs and, at the same time, comply with labor leg-

islation, collective labor agreements, and the operational rules under which the company

operates.

Therefore, to address the CSP, the vehicle itineraries from a solution for the VSP

are considered. We often observe that a vehicle’s operational routine is not adequate to be

executed entirely by a single crew (for example, because of its long duration). However,

changing the crew responsible for a vehicle cannot be done at any time. It will only occur

at so-called relief points, that is, at appropriate locations and time intervals.

Whereas in the VSP, the manipulated unit is the trip, in the CSP, it is the task. A

task represents the smallest amount of work that can be assigned to a crew. It includes

consecutive trips of the same vehicle and between which there is no relief point.

In addition to the tasks, many studies propose the formation of the so-called piece

of work [Haase et al., 2001; Freling et al., 2003; Huisman et al., 2005; Steinzen et al.,

2010] to solve the problem. Each piece of work includes consecutive tasks of a vehicle, is

limited by a minimum and a maximum duration, must be fully assigned to just one crew,

and does not include time for rest/feeding of the crew. In this case, a duty consists of

combining pieces of work.

To meet legal and operational requirements, companies usually deőne the types of

duties that are valid. Some characteristics that can be considered to specify the types of

duties are minimum/maximum working time, minimum break length, maximum time of

overtime, and time allowed for the beginning and end of a duty.

Figure 3.1 shows the itinerary of a vehicle and its decomposition in a duty. The

vehicle makes őve trips and returns to the depot once during its itinerary. Thus, it consists

of two vehicle blocks. The vehicle’s itinerary is decomposed into four tasks as there are

only two relief points, station C and DEPOT. From these tasks, we created three feasible

pieces of work. We also deőne a crew’s duty, considering that a feasible duty is formed

by, at most, two pieces of work and that there must be a break between them. Note that

while the vehicle is parked at the depot, the crew takes a break for rest/feeding.

From the above, the MDVCSP approaches the MDVSP and CSP problems simul-

3.1. Problem Deőnition 40

Figure 3.1: Example of vehicle itinerary and its crew duty.

taneously.

This thesis proposes a matheuristic capable of satisfactorily addressing real-world

and large-scale instances for the MDVCSP. These instances come from the public bus

transport system in the city of Belo Horizonte, MG. It is a Brazilian city with the fourth

largest ŕeet of buses in the country.

The constraints considered in solving the problem are:

C1 - Each timetable trip can be serviced by any depot;

C2 - Each trip has exactly two relief points: one at the beginning and one at the end of

the trip. That is, each trip of the vehicle is considered a task;

C3 - Each vehicle is assigned to a single depot and must start and end your itinerary

there;

C4 - Each crew is associated with a depot and can only drive vehicles from it. Every

duty does not need to start and end in the depot. However, when they take place

outside the depot, these activities require additional time for the crew to prepare;

C5 - The viability of a piece of work depends only on its duration, which is limited by a

minimum and a maximum time;

C6 - During its itinerary, the vehicle will return to the depot whenever the idle time

between two consecutive trips is sufficient to perform a round trip to the depot;

C7 - A crew can change vehicles (changeover), but only during a rest/feeding break (that

is, between pieces of work);

3.2. Modeling Approach 41

C8 - The so-called continuous attendance is respected. That is, always there is a crew re-

sponsible for a vehicle that is outside the depot, regardless of whether it is stationary

or moving;

C9 - Each depot is unlimited concerning the number of associated crews;

C10 - Each depot has a limited number of assigned vehicles;

C11 - If the rest/feeding interval of the crew occurs between work shifts, the crew must

end the őrst shift at the start point of the second shift;

C12 - Each vehicle must remain in the depot for a minimum of time at the end of its daily

operating itinerary. This time is for cleaning and maintaining the vehicle.

We generate an initial solution for the MDVCSP addressing its subproblems,

MDVSP and CSP, sequentially. Initially, we solve the MDVSP in optimality. Then,

from its solution with n depots (n ≥ 2), we generate n independent CSPs, that is, one

CSP per depot. Each CSP is solved separately by a procedure that generates an initial

solution and a B-VND local search heuristic. Note that it does not make sense to solve

a single CSP considering all depots simultaneously because, according to constraints C4,

each crew can only drive vehicles from the same depot.

From this initial solution, we approach the MDVSP and CSPs in an integrated

way, i.e., the MDVCSP. Iteratively, we make changes (perturbations) in the solution for

the MDVSP. If the itinerary of a vehicle is modiőed, its pieces of work must be rebuilt

(see Figure 3.1). So, in the associated CSPs, we must remove the pieces of work that no

longer exist and assign each new piece of work to some crew. In this way, we will be able

to obtain lower total cost vehicle and crew schedules and, at the same time, keep them

mutually compatible and feasible.

Table 3.3 summarizes the principal terms introduced in this section.

3.2 Modeling Approach

This section describes the modeling approaches for the MDVCSP. Subsections 3.2.1

and 3.2.2, respectively, present the mathematical formulations proposed by Steinzen et al.

[2010] and by us for the MDVCSP. These formulations are composed of two parts:

1. A multicommodity network ŕow formulation based on a time-space network for the

MDVSP;

2. A set partitioning formulation for the CSP.

3.2. Modeling Approach 42

Table 3.3: Concepts involved in deőning the MDVCSP

Term Meaning

Timetable trips
It is constituted by the set of trips to be made daily by the public bus
transit company.

Deadhead It is each travel of a vehicle, which is not a timetable trip.

Deadhead matrix
The structure that provides the deadhead times between the various stop-
ping points of the vehicles.

Vehicle itinerary
Corresponds to the trips assigned to a vehicle that can be carried out
successively without violating the operational rules and time and space
limitations.

Vehicle block
The trips of a vehicle comprised between an exit/return sequence to the
depot.

Depot
Installation for the management, maintenance, and parking of vehicles
when they are not in use (operation).

Crew
It is usually composed of a driver and a collector responsible for each
vehicle’s activity.

Duty Consists of a crew’s workday.

Relief point
Appropriate location and time interval for changing the crew responsible
for a vehicle.

Task
Represents the smallest amount of work that can be assigned to a crew.
It includes consecutive trips of the same vehicle and between which there
is no relief point.

Piece of work

Includes consecutive tasks of a vehicle, is limited by a minimum and a
maximum duration, must be fully assigned to just one crew, and does
not include time for rest/feeding of the crew. Many studies propose the
formation of pieces of work as a solution strategy for the CSP.

VSP Vehicle scheduling problem.
SDVSP Single-depot vehicle scheduling problem.
MDVSP Multiple-depot vehicle scheduling problem.
CSP Crew scheduling problem.
MDVSP Multiple-depot vehicle and crew scheduling problem.

3.2.1 A Literature Modeling Approach for the MDVCSP

This subsection presents the mathematical formulation proposed by Steinzen et al.

[2010] for the MDVCSP.

To model the problem, Steinzen et al. [2010] consider the same constraints pre-

sented in Section 3.1, except constraints C11 and C12. Regarding constraint C11, they

consider that there may be a change of point in a rest/feeding interval, but there must be

enough time for the crew to comply with the rest time and walk between these locations.

About constraint C12, there is no limitation on a vehicle’s itinerary duration.

3.2. Modeling Approach 43

Figure 3.2: Time-space network layer for the MDVSP.

3.2.1.1 Time-Space Network for the MDVSP

In a time-space network for the MDVSP each node represents a location in a given

instant ; each arc corresponds to a transition in time and, possibly, in space. For each

vehicle stopping point (station or depot), we deőne an imaginary timeline with nodes

representing the departure and arrival events at this point. In the timeline, the nodes are

increasingly ordered by the instant they represent.

We associate a network layer with each depot of the problem. Figure 3.2 illustrates

a network layer with three stations (A, B, and C), őve trips, and the respective depot.

In this example, the planning horizon is from 6:00 am to 12:00 am. The types of arcs

present in the network are:

1. trip arc: arc associated with a trip. It connects the departure node (station and

start time of the trip) to the arrival node (station and end time of the trip);

2. pull-out/pull-in arcs: a pull-out arc connects a node in the depot to the starting

node of a trip and represents the deadhead from the depot to the start station of

the trip. A pull-in arc connects the arrival node of a trip to a node in the depot

and represents the deadhead from the end station of the trip to the depot;

3. waiting arc: connects consecutive nodes on the point’s timeline and corresponds to

waiting at the point. We eliminate waiting arcs from the network that represents

long durations in the stations. Note that in Figure 3.2, for example, there is no

waiting arc in station C connecting the trips t4 and t5. This simpliőcation is made

possible by the constraint C6 of Section 3.1, initially proposed by Huisman et al.

[2005] to address a problem in the literature;

3.2. Modeling Approach 44

4. deadhead arc: connects the arrival node of a trip to a departure node in another

station where there are trips compatible with that trip. Therefore, this arc represents

a deadhead between compatible trips. In Figure 3.2, to execute trips t2 and t3

consecutively, a vehicle needs to make a deadhead from station A to station B. On

the other hand, to execute trip t4 just after t2, the vehicle needs to make the same

previous deadhead and must remain to wait in station B;

5. circulation arc: connects the last node (sink) to the őrst node (source) in the depot

timeline. This arc allows ŕow circulation in the network. Each ŕow unit in the

circulation arc corresponds to a vehicle used in the schedule.

To the best of our knowledge, the formulations proposed in the literature for the

MDVCSP represent the associated MDVSP in two ways: 1ś connection-based network,

initially proposed by Huisman et al. [2005]; or 2ś time-space network [Steinzen et al.,

2010], as presented above.

In a connection-based network, we have an arc between each pair of compatible

trips. On the other hand, many of these connections are considered only implicitly in the

time-space network. In Figure 3.2, for example, the trips t2 and t4 are compatible since

it is possible to traverse different types of arcs from t2 and arrive at t4.

As shown in Kliewer et al. [2006] and Steinzen et al. [2010], in the time-space

network the amount of deadhead arcs is much less than in the connection-based network.

This fact has a substantial impact on the number of variables and constraints of the

model for the MDVSP. So, we choose to use the time-space network to formulate the

vehicle scheduling in this thesis.

For a detailed description about building time-space networks, see Kliewer et al.

[2006] and Steinzen [2007b].

3.2.1.2 Mathematical Formulations for the MDVSP and MDVCSP

Let T = {1, 2, ...,m} be the set of all m timetable trips and D = {1, 2, ..., n} be

the set of n depots. For each depot d ∈ D there is an acyclic time-space network layer

Gd = (Nd, Ad), where Nd is the set of nodes and Ad is the set of arcs. We denote Ãd ⊂ Ad

as the set of arcs that represent activities that involve the joint participation of vehicle and

crew. So, Ãd does not include the waiting arcs in the depots, according to the continuous

attendance requirement (Section 3.1, constraint C8). Let Ad(t) : T → Ad be the function

that returns a set with precisely one trip arc, (i, j) ∈ Ad, associated with the trip t ∈ T , if

t can be assigned to the depot d ∈ D. Otherwise, we have an empty set. The maximum

3.2. Modeling Approach 45

capacity ud
ij of each arc (i, j) ∈ Ad, ∀d ∈ D, is deőned as follows: pull-out/in and trip

arcs have a maximum capacity of 1; all other arcs have a maximum capacity equal to the

number of vehicles available in the depot d ∈ D. Each arc (i, j) ∈ Ad has an associated

cost cdij. In circulation arcs, cdij represents the cost of purchasing a vehicle. In the other

arcs, cdij is the operating cost. Let Kd be the set of duties associated with the depot

d ∈ D. Kd(i, j) ⊂ Kd is the set of duties associated with the depot d that covers the

(i, j) ∈ Ãd arc. fd
k refers to the cost of the duty k ∈ Kd and involves őxed and working

time crew costs.

Be the following types of decision variables:

• ydij: indicates the ŕow associated with the arc (i, j) ∈ Ad, d ∈ D (ŕow variable);

• xd
k: determines whether the duty k ∈ Kd, d ∈ D, is part of the schedule (binary

variable).

The model proposed by Steinzen et al. [2010] for the MDVCSP is presented below.

min
∑

d∈D

∑

(i,j)∈Ad

cdijy
d
ij +

∑

d∈D

∑

k∈Kd

fd
kx

d
k, (3.1)

s. t.

∑

d∈D

∑

(i,j)∈Ad(t)

ydij = 1 ∀t ∈ T (3.2)

∑

{j:(j,i)∈Ad}

ydji −
∑

{j:(i,j)∈Ad}

ydij = 0 ∀d ∈ D, ∀i ∈ Nd (3.3)

∑

k∈Kd(i,j)

xd
k − ydij = 0 ∀d ∈ D, ∀(i, j) ∈ Ãd (3.4)

0 ≤ ydij ≤ ud
ij, y

d
ij ∈ N ∀d ∈ D, ∀(i, j) ∈ Ad (3.5)

xd
k ∈ {0, 1} ∀d ∈ D, ∀k ∈ Kd. (3.6)

The objective is to minimize the cost of vehicle and crew schedules (3.1). Con-

straints (3.2) ensure that each timetable trip will be assigned to precisely one vehicle

from one of the depots that can serve it. In constraints (3.3), ŕow conservation at the

nodes is ensured for each network layer (depot). Constraints (3.4) guarantee that, for

each depot, there will be the same number of vehicles and crews covering each activity

(arc) that requires the association of a vehicle and a crew. Constraints (3.5) ensure that

the maximum capacities of the ŕow variables are respected.

Given the constraints C1 to C12 of Section 3.1, we consider C6 and C12 (when

used) in deőning the time-space network, and C2, C4, C5, C7, and C11 (when used)

in constructing the feasible duties sets (Kd, ∀d ∈ D). Finally, we associate the other

constraints of the problem directly to the model equations, as follows: C1 - Equation (3.2),

3.2. Modeling Approach 46

C3 - Equation (3.3), C8 - Equation (3.4), C10 - Equation (3.5), and C9 - Equation (3.6)

(that is, we only specify the domain of variables xd
k, and we do not limit the number of

variables with value 1).

In the formulation for MDVCSP (3.1)ś(3.6), considering only the portion of the

objective function associated with vehicle schedule (
∑

d∈D

∑
(i,j)∈Ad c

d
ijy

d
ij) and the con-

straints (3.2), (3.3), and (3.5), we get a formulation for the MDVSP. This formulation

was proposed in Kliewer et al. [2006].

In this formulation, an optimal solution (ŕow) represents a set of optimum vehicle

schedules due to the aggregation of connections in the time-space network speciőcation.

Figure 3.3 illustrates this situation in a small portion of the network and its optimal ŕow.

There are two different ways to sequence trips t1, t2, t3, and t4 on the itineraries of two

vehicles, they are: t1− t3 (vehicle 1) and t2− t4 (vehicle 2) or t1− t4 (vehicle 1) and t2− t3

(vehicle 2). Thus, we use a ŕow decomposition procedure to obtain a speciőc vehicle

schedule. There are different strategies for deőning paths in the time-space network with

the optimal ŕow. Each path from the source node to the sink node in the depot timeline

represents a vehicle itinerary.

Figure 3.3: Flow decomposition possibilities.

3.2.2 Proposed Modeling Approach for the MDVSP and

MDVCSP

In this subsection, we discuss our network structure and mathematical formulation

for the MDVSP that considers the particularities of the Brazilian real-world problem

addressed in the present work. That is, this modeling approach meets the assumptions

and constraints stated in Section 3.1. As we will describe later, our MDVCSP resolution

heuristic uses this model to generate an initial vehicle schedule.

3.2. Modeling Approach 47

3.2.2.1 Proposed Time-Space Network for the MDVSP

The formulation for the MDVSP presented in Subsection 3.2.1.2 is consistent and

efficient for solving instances widely used in the literature, as the ones proposed by Huis-

man et al. [2005] and Steinzen et al. [2010]. However, it is not adequate to represent the

Brazilian real-world problem that we have addressed in this thesis.

In the instances from literature, trips always start from 6 am and end before 1 am.

Thus, in the 24-hours planning horizon, there is an interval of more than 5 hours in which

no trip is performed. However, in the Brazilian real-world instances that we consider,

there are timetable trips distributed throughout the day. There is even an extrapolation

of the 24-hour planning horizon. In this sense, some trips start at the end of a day and end

in the early hours of the next day; other trips start in the day’s őrst moments. Besides, the

public transport management company requires that every vehicle remains in the depot

for a minimum time at the end of its daily itinerary. This time is used for cleaning and

overhauling the vehicle. This situation probably occurs in many large companies in the

world.

Figure 3.4 illustrates the timeline of a depot for a Brazilian real-world instance.

Shaded nodes are associated with pull-out arcs (depot exit) and non-őlled nodes with

pull-in arcs (depot arrival). This example requires that the itinerary of any vehicle lasts

a maximum of 23 hours and 30 minutes.

Suppose a single circulation arc in Figure 3.4 connects the last node in the depot’s

timeline to the őrst one. In that case, we could deőne itineraries that are longer than

acceptable. So we created more than one circulation arc. Each arc will represent a valid

operating period (shift) for the vehicles in this depot.

Figure 3.4: Circulation arcs of the timeline of a depot in a Brazilian real-world problem.

By deőnition and without loss of generality, we can consider that a circulation arc

must always connect a node of an arc pull-in (arrival at the depot) to a node of an arc

pull-out (exit of the depot). Thus, below we detail how the circulation arcs are created.

3.2. Modeling Approach 48

We go through the depot timeline iteratively (node by node) and from right to left, as

follows: at each node of a pull-in arc reached (origin of the circulation arc), we search for

the node of a pull-out arc (destination of the circulation arc). We chose this second node

in such a way as to deőne the longest feasible operating period possible. When selecting

the destination node of the circulation arc, two situations can occur:

1. There is already a circulation arc arriving at this node. So, we did not create a new

circulation arc;

2. There is no circulation arc with a destination at this node. So, we created a new

circulation arc. If the target node of this arc is the őrst node in the depot timeline,

we őnish the arc deőnition process.

At the end of this procedure, all nodes in the depot will be covered, i.e., they will

belong to one or more operating periods. Furthermore, this procedure creates all the

viable operating periods.

In our representation of the MDVSP, we must maintain a circulation arc per net-

work layer. Therefore, each layer will be associated with the depot-operating period

feasible combination; and it will only represent trips that can be carried out in the depot

and period considered. In Figure 3.5, we break down the network layer of a depot with

two circulation arcs in Figure 3.5a (inconsistent representation) into two network layers

in Figures 3.5b and 3.5c. Therefore, in general, the timeline of a depot with w circulation

arcs will give rise to w layers of the time-space network.

To construct the time-space network, we follow Kliewer et al. [2006]. We represent

each network layer by an adjacency list and deőne the network arcs in the order: 1− trip

arcs, 2− pull-out/pull-in arcs, 3− deadhead arcs, 4− waiting arc, and 5− circulation arc.

According to Kliewer et al. [2006], we can connect each pair of compatible trips through a

deadhead arc. However, the number of deadhead arcs can be high and implies a problem

size which cannot be handled by state-of-the-art solvers. Thus, we used the modeling

technique described in Kliewer et al. [2006] to aggregate deadhead arcs between trips.

This aggregation is composed of three stages and provides a crucial model reduction.

Furthermore, we used the proposed procedure above to deőne each circulation arc and

build each network layer for the Brazilian real-world instances.

In the following, we discuss the complexity of the proposed network structure.

Let m be the number of timetable trips, p the number of different stations, and ℓ the

number of network layers (depot-operating period combinations). Thus, the number of

deadhead arcs in a network layer is O(mp) because one deadhead arc connects a trip with

all subsequent trips at a different station. On the other hand, the number of waiting arcs,

pull-out/pull-in arcs, or trip arcs grows linearly with the number of trips in a network

layer. Finally, there is one circulation arc in a network layer. Therefore, the number of

3.2. Modeling Approach 49

(a) Network layer of a depot with two circulation arcs.

(b) Network layer with only the circulation arc of
period 1.

(c) Network layer with only the circulation arc of
period 2.

Figure 3.5: Deőnition of one network layer for each depot-period.

arcs in the time-space network is O(ℓmp). Note that this number of arcs determines the

number of variables of the proposed mathematical formulation for the MDVSP, as shown

in the next subsection.

3.2.2.2 Proposed Mathematical Formulations for the MDVSP and

MDVCSP

The formulation we propose for the MDVSP is presented below (3.7)ś(3.11).

Let T = {1, 2, ...,m} be the set of all m timetable trips and D = {1, 2, ..., n} be the

set of n depots. From the depots in D we deőne ∆ = {1, 2, ..., ℓ}, the set of all possible

depot-operating period combinations. Each feasible operating period is deőned by a

circulation arc. For each depot-period δ ∈ ∆ we have an acyclic time-space network layer

3.2. Modeling Approach 50

Gδ = (N δ, Aδ), where: N δ is the set of nodes and Aδ the set of arcs. Let Aδ(t) : T → Aδ

be the function that returns a set with exactly one trip arc, (i, j) ∈ Aδ, associated with

the trip t ∈ T , if t can be covered by the depot and operating period given by δ ∈ ∆.

Otherwise, we have an empty set.

Let ∆d be the set of depot-period combinations in which the depot involved is

d ∈ D. F δ is the set formed by the circulation arc associated with the depot-period

δ ∈ ∆. capd refers to the capacity of the depot d ∈ D concerning the number of vehicles.

Each arc (i, j) ∈ Aδ has an associated cost cδij. In circulation arcs, cδij represents

the cost of purchasing a vehicle. In the other arcs, cδij is the operating cost. Finally, we

have the decision variable yδij which indicates the ŕow associated with the arc (i, j) ∈ Aδ,

δ ∈ ∆ .

min
∑

δ∈∆

∑

(i,j)∈Aδ

cδijy
δ
ij, (3.7)

s. t.

∑

δ∈∆

∑

(i,j)∈Aδ(t)

yδij = 1 ∀t ∈ T (3.8)

∑

{j:(j,i)∈Aδ}

yδji −
∑

{j:(i,j)∈Aδ}

yδij = 0 ∀δ ∈ ∆, ∀i ∈ N δ (3.9)

∑

δ∈∆d

∑

(i,j)∈F δ

yδij ≤ capd ∀d ∈ D (3.10)

yδij ∈ Z
+ ∀δ ∈ ∆, ∀(i, j) ∈ Aδ. (3.11)

The objective is to minimize the cost of vehicle schedule (3.7). The constraints (3.8)

ensure that each timetable trip will be assigned to precisely one vehicle. This vehicle

must be linked to a depot-operating period combination that is compatible with the trip.

In (3.9) we have the ŕow conservation constraints at the nodes of each network layer

(depot-period). The constraints (3.10) ensure that the capacity of each depot, in relation

to the number of vehicles, is respected. The constraints (3.8)ś(3.11) implicitly establish

an upper limit for the value of each ŕow variable yδij. Let uδ
ij be the upper limit for

(i, j) ∈ Aδ and δ ∈ ∆, we have: uδ
ij = 1, for trip and pull-in/out arcs. In addition, uδ

ij

depends on the depot capacity associated with δ. That is, the sum of the ŕows of the

circulation arcs of a depot cannot exceed the capacity of the depot; and the ŕow in any

arc in a network layer cannot be greater than the ŕow of your circulation arc.

This formulation can be combined with the set partitioning formulation for the

CSP of Subsection 3.2.1.2. Thus, we obtain a formulation for the MDVCSP.

3.3. Solution Approach 51

3.3 Solution Approach

Given the difficulty of solving real-world instances of the MDVCSP using ex-

act mathematical methods, we propose a matheuristic algorithm for solving it. This

matheuristic algorithm combines two strategies into an ILS-based framework: a branch-

and-bound algorithm for solving the MDVSP and a VND-based algorithm for treating

the associated CSPs.

Next, we describe how to represent the MDVSP, CSP, and MDVCSP in Subsec-

tion 3.3.1. In Subsection 3.3.2, we present the neighborhood structures used to explore

the solution space of these problems. In Subsection 3.3.3, we deőne the evaluation func-

tions to vehicle and crew schedules. Subsection 3.3.4 presents the proposed matheuristic

algorithm for solving the MDVCSP. Subsection 3.3.5 describes heuristic procedures to

treat the CSP exclusively, which we use as auxiliary methods to solve the MDVCSP in

Subsection 3.3.4.

3.3.1 Solution Representation

3.3.1.1 Solution Representation for the MDVSP

A solution sv for the MDVSP consists of a list of vehicles. In turn, for each

vehicle, we associate its depot and the list of trips that it will perform during a working

day. Figure 3.6 illustrates a solution sv for the MDVSP in which a ŕeet of three vehicles,

distributed over two depots, must perform ten trips.

In this representation, we organize the trips made by each vehicle according to

their start times. Thus, it is possible to evaluate the vehicle’s operational itinerary in

several aspects, such as the locomotion time out of operation (deadhead), the waiting

time at the station between two consecutive trips, the number of returns to the depot,

and the viability of the vehicle block.

3.3. Solution Approach 52

Figure 3.6: Example of a solution sv for the MDVSP.

3.3.1.2 Solution Representation for the CSP

A solution sc for the CSP consists of a list of duties. Each duty associates the pieces

of work to be performed by the same crew during a working day. Figure 3.7 illustrates

a solution sc for the CSP. In this example, there is a depot with three duties and four

pieces of work assigned.

We keep the pieces of work of each duty on a list and sort them in ascending order

by their start times. In this way, it is possible to determine relevant characteristics of

the duty, such as time reserved for rest/food, the occurrence of vehicle change, and the

existence of an overlap between tasks.

Figure 3.7: Example of a solution sc for the CSP.

3.3.1.3 Solution Representation for the MDVCSP

We represent a solution Svc for the MDVCSP by a pair Svc = [sv, Sc], where

sv represents the solution to the MDVSP and Sc represents the solution set of the n

CSPs associated to each solution sv with n depots. Both representations were previously

described and illustrated in Subsections 3.3.1.1 and 3.3.1.2, respectively.

Let sv be a solution for the MDVSP, sci a solution for the CSP associated with the

i-th depot, and n the number of depots. Then, we deőne Sc as a set of n solutions, one

3.3. Solution Approach 53

for each of the n CSPs obtained from sv, that is:

Sc = {sc1, s
c
2, ..., s

c
n} . (3.12)

As some depots may be inactive (i.e., without linked vehicles) in a solution for the

MDVSP, some solutions sci into the set Sc may be empty (i.e., without duties).

3.3.2 Neighborhood Structures

3.3.2.1 MDVSP Neighborhood Structures

We apply the six types of moves described below to explore the MDVSP solution

space. Each move deőnes a neighborhood structure. Figure 3.8 illustrates all of them.

1. Trip relocate without depot adjustment (Neighborhood structure N v
r): It consists of

reallocating a trip without allowing changing depots. Figure 3.8b illustrates this

move. A trip is transferred from one vehicle to another one, and the depots of the

vehicles involved are maintained;

2. Trip relocate with depot adjustment (Neighborhood structure N v
rd): It consists of

reallocating a trip allowing changing depots. In Figure 3.8c, a trip is transferred

from one vehicle to another one. This transfer seeks to assign each modiőed vehicle

to the depot that implies the lowest operating cost considering the new itinerary

conőguration;

3. Trip exchange without depot adjustment (Neighborhood structure N v
e): This move

consists of exchanging trips between two vehicles, not allowing changing their depots.

Figure 3.8d shows how it works. A vehicle exchanges one of its trips with a trip of

another vehicle, and the depots of the vehicles involved are maintained;

4. Trip exchange with depot adjustment (Neighborhood structure N v
ed): This move

consists of exchanging trips between two vehicles allowing them to change their

depots. Figure 3.8e illustrates its operation. A vehicle exchanges one of its trips

with a trip from another vehicle. In this exchange, we seek to assign each modiőed

vehicle to the depot that implies the lowest operating cost considering the new

itinerary conőguration;

3.3. Solution Approach 54

5. Trip redistribution (Neighborhood structure N v
dd): This move consists of redistribut-

ing the trips of two vehicles allowing them to change their depots. Figure 3.8f) shows

the application of this move. Two vehicles have all their trips removed. These trips

are then randomly redistributed to each other. Finally, we seek to assign each vehi-

cle to the depot that implies the lowest operating cost considering the new itinerary

conőguration;

6. Depot change (Neighborhood structure N v
dc): It consists of changing the depot linked

to a vehicle. Figure 3.8g shows a neighbor in which vehicle B changes from depot

D2 to D1.

In the relocation, exchange, and redistribution moves, the vehicles involved should

not necessarily belong to the same depot. Besides, we apply only those moves that

maintain the feasibility of the solution.

(a) Initial MDVSP solution.

(b) Move 1 - Relocates the Trip 4 of Vehicle A
to Vehicle B.

(c) Move 2 - Equal Figure 3.8b and makes depot
adjustments.

(d) Move 3 - Exchange of Trip 1 of Vehicle A
with Trip 2 of Vehicle B.

(e) Move 4 - Equal Figure 3.8d and makes depot
adjustments.

(f) Move 5 - Redistributes the trips of the A and
B vehicles and makes depot adjustments.

(g) Move 6 - Vehicle B depot change from D2 to
D1.

Figure 3.8: MDVSP moves.

3.3. Solution Approach 55

3.3.2.2 CSP Neighborhood Structures

We use two types of moves to explore the CSP solution space: relocate a piece

of work and exchange pieces of work. These moves are illustrated in Figure 3.9 and are

described below, together with the associated neighborhood structures.

1. Relocate piece of work (Neighborhood structure N c
r): It consists of reallocating one

piece of work from one duty to another one. Figure 3.9b illustrates this move. A

piece of work is transferred from one duty to another one;

2. Exchange pieces of work (Neighborhood structure N c
e): This move consists of ex-

changing pieces of work between two duties. Figure 3.9c shows how it works. One

piece of work belonging to a duty is exchanged with a piece of work from another

duty.

The manipulated duties belong to the same depot in these moves since there is an

independent CSP per depot. Moreover, we only carry out movements that maintain the

viability of the sc solution.

(a) Initial CSP solution.

(b) Move 1 - Relocates the Piece of work 4 from
Duty C to Duty B.

(c) Move 2 - Exchange of Piece of work 1 of Duty
A with Piece of work 2 of Duty B.

Figure 3.9: CSP moves.

3.3. Solution Approach 56

3.3.3 Evaluating Function

To determine the quality of a solution Svc = [sv, Sc] for the MDVCSP, we associate

a cost with vehicle and crew schedules.

We evaluate a solution sv for the MDVSP based on the following function f v (3.13),

which should be minimized:

f v(sv) = totalVehicles × vehicleCost + operationTime × operationalCost, (3.13)

where:

(a) totalVehicles is the number of vehicles used on the vehicle schedule;

(b) vehicleCost is the vehicle cost;

(c) operationTime is the total time, in minutes, that the vehicles in the ŕeet were out

of the depot (regardless of the activities carried out during this period, which may

include: trip, deadhead, or waiting at the station);

(d) operationalCost is the cost per minute due to a vehicle staying outside its depot.

In turn, we calculate the cost of a solution sc for the CSP using the function f c,

as shown below in (3.14):

f c(sc) = totalCrews × crewCost + totalWorkingTime × workingTimeCost, (3.14)

where:

(a) totalCrews is the number of crews on the schedule;

(b) crewCost is the cost of each crew;

(c) totalWorkingTime is the total working time, in minutes, of all crews on the schedule.

That is, we consider the total duration of each duty, including the mandatory rest

time;

(d) workingTimeCost is the cost of each minute of work for one crew.

Let Svc = [sv, Sc] and Sc = {sc1, s
c
2, ..., s

c
n} for n depots, the cost of a solution Svc

for MDVCSP is evaluated according to Equation (3.15):

f vc(Svc) = f v(sv) +
n∑

i=1

f c(sci), (3.15)

3.3. Solution Approach 57

where f v(sv) and f c(sci) are the functions that evaluate the solutions sv and sci for the

MDVSP and CSP, respectively. There is no cost for infeasibility since the solution Svc is

kept feasible throughout the solution methods.

3.3.4 Matheuristic Algorithm for the MDVCSP

The matheuristic algorithm ILS-MDVCSP proposed for solving the MDVCSP com-

bines an exact method with a heuristic method into an ILS-based framework. It solves the

MDVSP optimally using a branch-and-bound algorithm. A constructive procedure and

a B-VND local search procedure generate the solutions of the associated CSPs. Finally,

the ILS-MDVCSP iteratively modiőes the integrated solution through perturbations and

performs a B-VND-based local search on the CSPs that have been changed.

The ILS-MDVCSP is described in Algorithm 4. Initially, we generate a solution

sv for the MDVSP (line 8). For that, an integer linear programming (ILP) optimization

solver solves the problem from one of the formulations presented in the Subsections 3.2.1.2

and 3.2.2.2. The choice of the formulation depends on the MDVSP speciőcally addressed,

that is, the MDVSP as deőned in the literature or the Brazilian real-world problem

addressed in this work.

As each depot considered in the MDVSP generates a CSP, in line 9 we deőne the

set of solutions Sc. For a problem with n depots, Sc contains n crew schedules. This

procedure is detailed in Algorithm 5.

In Algorithm 5, the itinerary of each vehicle of the solution sv is partitioned into

pieces of work to form the set P (line 4). Subsection 3.3.5.1 describes the two partitioning

methods used: direct and inverse. For each vehicle in the schedule, we randomly choose

one of these procedures. Then, we separate the pieces of work obtained by the depot

(line 5). Thus, we generate n sets of pieces of work. When no vehicles are assigned to some

available depots, some of them may be empty. In this way, there will be n CSPs to solve at

most. At each iteration (lines from 8 to 12), a solution sci for the CSP associated with the

i-th depot is obtained and added to the solution set Sc. For that, we consecutively invoke

the constructive procedure described in Algorithm 10 (Subsection 3.3.5.3) and the local

search procedure based on the B-VND described in Algorithm 11 (Subsection 3.3.5.4).

We form a complete solution for the MDVCSP (Svc
∗) in line 10 of Algorithm 4.

Then, we execute the procedures described in lines 12 to 14 as long as the maximum

processing time (timemax) has not been reached.

Algorithm 6 describes the perturbation method. In this method, a perturbation

of a certain level begins with applying randomly moves in the solution sv for the MDVSP

3.3. Solution Approach 58

(line 4).

We applied six levels of perturbations based on the moves deőned in Subsec-

tion 3.3.2.1, namely:

1. level 1 : one depot change move,

2. level 2 : one trip relocation move,

3. level 3 : one trip exchange move,

4. level 4 : one trip redistribution move,

5. level 5 : two trips exchange moves,

6. level 6 : two trips redistribution moves.

As the perturbation level increases, the search procedure gradually moves away

from the current solution towards other regions that have not yet been explored in the

problem’s solution space.

When carrying out the relocate and exchange moves of trips, we randomly chose

between two possibilities: 1) maintaining the depots of the vehicles involved (neighbor-

hood structures N v
r and N v

e) and 2) inserting the modiőed vehicles in the depots that

generate lower cost (neighborhood structures N v
rd and N v

ed).

Any change in the MDVSP solution (sv) causes changes to the CSP solutions

(Sc). So, for vehicle and crew schedules to be kept individually feasible and mutually

compatible, the pieces of work of the vehicles that have been modiőed must be rebuilt.

For this, we randomly choose one of the partitioning methods deőned in Subsection 3.3.5.1

(direct or inverse) for each vehicle. In this process, we must remove the pieces of work

that no longer exist from the crews to which we assign them. We also need to assign each

new piece of work to a crew of the schedule. Thus, the pieces of work removed and created

are separated by depot (lines 5 and 6, respectively). Pieces of work are excluded from

the CSP solution directly. To do it, we have only to őnd the crews responsible for these

pieces (line 10). In lines 13 to 15, each new piece of work is inserted into the schedule

using the heuristic procedure described in Algorithm 9 (Subsection 3.3.5.2). Due to the

construction process, in set Ci, each vehicle’s pieces of work are arranged sequentially.

However, we can also sort this set by the start time of the pieces of work. Then, the

parameter sortP ieces_pert deőnes the order of the pieces of work in the set Ci (line 11).

From this perturbed solution for the MDVCSP, we apply the LocalSearch method

(line 13 from ILS-MDVCSP algorithm). According to Algorithm 7, we apply a B-VND-

based local search (Algorithm 11, Subsection 3.3.5.4) for solving each CSP that has been

modiőed. In this step, the vehicle schedule is not changed.

Finally, we evaluate the new solution obtained at line 14 of the ILS-MDVCSP

algorithm. According to Algorithm 8, we accept the new solution Svc (vehicle and crew

3.3. Solution Approach 59

schedules) only if it has a cost less than or equal to the cost of the current solution

Svc
∗ . Suppose there was an improvement in the solution. In that case, we restart the

perturbation level to intensify the search in the current region. Otherwise, we increase

the perturbation level by one unit to move away from the current region or restart it if it

is already at the highest perturbation level.

Algorithm 4: ILS-MDVCSP

1 Data: T , the set of the timetable trips.
2 Data: n, the number of depots of the problem.
3 Data: lmax, the maximum level of perturbation.
4 Data: timemax, the maximum processing time.
5 Result: Svc

∗ , the best solution found for the MDVCSP.

6 time← 0 // the current processing time of the algorithm

7 l ← 1 // the current level of perturbation

8 sv ← solver(T, n)

9 Sc ← initialSolutions_CSPs(sv, n) // See Algorithm 5

10 Svc
∗ ← [sv, Sc] // The complete solution Svc

∗ for the MDVCSP consists of

the solution sv for the MDVSP and the set Sc of solutions for the

n CSPs

11 while time < timemax do

12 Svc
1 ← perturbation(Svc

∗ , l) // See Algorithm 6

13 Svc
2 ← localSearch(Svc

1) // See Algorithm 7

14 [Svc
∗ , l]← acceptanceCriterion(Svc

∗ , Svc
2 , l, lmax) // See Algorithm 8

3.3.5 Heuristic Methods for the CSP

This subsection presents the heuristic procedures developed to address the CSP.

These procedures consider that the vehicle schedule of an MDVSP depot is known. We

apply them to solve the MDVCSP described in Subsection 3.3.4.

In Subsection 3.3.5.1, we show how to split the vehicle schedule into pieces of work.

Then, in Subsection 3.3.5.2, we present the heuristic procedure for adding a new piece of

work to a partial solution for the CSP. Finally, in Subsections 3.3.5.3 and 3.3.5.4, we detail

the heuristic procedures for, respectively, generating an initial solution and performing a

local search for the CSP.

3.3. Solution Approach 60

Algorithm 5: initialSolutions_CSPs

1 Data: sv, a solution for the MDVSP.
2 Data: n, the number of depots of the problem.
3 Result: Sc, the set of solutions for the n CSPs.

4 Let P be the set of pieces of work obtained from sv

5 Let {P1, P2, ..., Pn}, where Pi is the set of pieces of work associated with the i-th
depot and Pi ⊆ P

6 Sc ← {}

7 for i← 1 to n do

8 Let sci be an initially empty solution for the CSP associated with the i-th
depot

9 if Pi ̸= ∅ then

10 sci ← Pi // as described in Subsection 3.3.5.3, Algorithm 10

11 sci ← V ND_CSP (sci) // as described in Subsection 3.3.5.4,

Algorithm 11

12 Sc ← Sc ∪ {sci}

3.3.5.1 Heuristic Methods for Generating the Pieces of Work

To solve the CSP, we őrst split the vehicle itineraries originated from an MDVSP

solution into pieces of work. To exemplify this operation, assume that:

• All start and end trip points are also relief points. That is, each vehicle trip is a

task;

• The minimum and maximum durations of a piece of work are, respectively, 30

minutes and 5 hours.

Table 3.4 shows a vehicle’s itinerary split into three pieces of work. On the left is

the vehicle itinerary and, on the right, the pieces of work formed (Piece 1, Piece 2, Piece

3).

A crew is responsible for each activity of a vehicle outside the depot. This respon-

sibility includes:

1. the trips themselves attributed to the vehicle,

2. the moves for positioning the vehicle in the appropriate places (i.e., the so-called

deadheads),

3. the waiting time at the stations to wait for the next trip to start.

3.3. Solution Approach 61

Algorithm 6: perturbation

1 Data: Svc = [sv, Sc], a solution for the MDVCSP. sv is the solution for the
MDVSP and Sc = {sc1, s

c
2, ..., s

c
n} is the set of solutions for the n CSPs (for

a problem with n depots).
2 Data: l, the level of perturbation.
3 Result: Svc

2 = [sv2, S
c
2], the solution perturbed.

4 sv2 ← perturb(sv, l)

5 Let {R1, R2, ..., Rn}, where Ri is the set of pieces of work removed from the i-th
depot, that is, the pieces associated with sv and not associated with sv2

6 Let {C1, C2, ..., Cn}, where Ci is the set of pieces of work created in the i-th
depot, that is, the pieces associated with sv2 and not associated with sv

7 Sc
2 ← ∅ // the new set of solutions for the n CSPs

8 for i← 1 to n do

9 Let sci ∈ Sc

10 sci ← sci \Ri

11 piecesOrder(Ci, sortP ieces_pert) // Defines the pieces’ order in Ci

12 while Ci ̸= ∅ do

13 Let p be the őrst piece of work from Ci

14 Ci ← Ci \ {p}

15 sci ← sci ∪ {p} // as described in Subsection 3.3.5.2, Algorithm 9

16 Sc
2 ← Sc

2 ∪ {s
c
i}

17 Svc
2 ← [sv2, S

c
2] // perturbed solution for the MDVCSP

Algorithm 7: localSearch

1 Data: Svc = [sv, Sc], a perturbed solution for the MDVCSP. sv is the solution for
the MDVSP and Sc = {sc1, s

c
2, ..., s

c
n} is the set of solutions for the n CSPs

(for a problem with n depots).
2 Result: Svc

2 = [sv2, S
c
2], the solution for the MDVCSP after local search.

3 Sc
2 ← ∅ // the new set of solutions for the n CSPs

4 for i← 1 to n do

5 Let sci ∈ Sc

6 if sci has been modiőed then

7 sci ← V ND_CSP (sci) // as described in Subsection 3.3.5.4,

Algorithm 11

8 Sc
2 ← Sc

2 ∪ {s
c
i}

9 sv2 ← sv // solution for the MDVSP does not change

10 Svc
2 ← [sv2, S

c
2] // the solution for the MDVCSP after local search

3.3. Solution Approach 62

Algorithm 8: acceptanceCriterion

1 Data: Svc
∗ , the current solution for the MDVCSP.

2 Data: Svc, the solution for the MDVCSP after perturbation and local search.
3 Data: l, the current level of perturbation of the ILS-MDVCSP.
4 Data: lmax, the maximum level of perturbation.
5 Result: A pair [Svc

∗ , l], where Svc
∗ is the updated current solution for the

MDVCSP and l is the updated level of perturbation.

6 if f vc(Svc) < f vc(Svc
∗) then

7 Svc
∗ ← Svc

8 l ← 1

9 if f vc(Svc) = f vc(Svc
∗) then

10 Svc
∗ ← Svc

11 l ← l + 1

12 if f vc(Svc) > f vc(Svc
∗) then

13 l ← l + 1

14 if l > lmax then

15 l ← 1

Thus, the following attributes are associated with each piece of work:

• Expanded start time: Piece of work start time;

• Expanded start point: Location where the piece of work starts;

• Expanded end time: Piece of work end time;

• Expanded end point: Location where the piece of work ends;

• Duration: Duration of the piece of work.

In Table 3.4, Piece 1 starts at 7:53 am in depot G1, ends at 11:34 am at point B,

and has a total duration of three hours and forty-one minutes. Piece 2 starts at 11:34

am at point B, ends at 4:14 pm also at point B, and has a total duration of four hours

and forty minutes. Therefore, we observe that the Piece 1 ends precisely at the place

and time when the Piece 2 starts. The same situation occurs between the pieces of work

Piece 2 and Piece 3. In this way, the vehicle is never without a crew outside the depot.

According to the piece of work deőnition (see Section 3.1), there are many ways

to partition a vehicle itinerary to build pieces of work. However, we propose only two

heuristic procedures to do this. They are: direct partitioning and reverse partitioning.

The objective in both procedures is to build pieces of work that have as many trips as

possible and do not include waiting times in the depot.

3.3. Solution Approach 63

Table 3.4: Example of direct partitioning of the vehicle itinerary into pieces of work

Vehicle Itinerary Piece of Work

Trip Start Start End End Exp. Start Exp. Start Exp. End Exp. End
Duration

Number Time Point Time Point Time Point Time Point

- 7:53 G1 8:35 A

7:53 G1 11:34 B 3:41 Piece 1
1 8:35 A 9:18 D
- 9:18 D 9:42 A
2 9:55 A 10:33 D
- 10:33 D 10:55 B

3 11:34 B 12:24 C

11:34 B 16:14 B 4:40 Piece 2
4 13:31 C 13:56 A
5 14:01 A 14:26 C
6 14:30 C 15:23 B

7 16:14 B 17:07 C

16:14 B 20:04 G1 3:50 Piece 3
8 17:31 C 17:56 A
9 18:01 A 18:26 C
10 18:30 C 19:23 B
- 19:23 B 20:04 G1

Table 3.5: Example of inverse partitioning of the vehicle itinerary into pieces of work

Vehicle Itinerary Piece of Work

Trip Start Start End End Exp. Start Exp. Start Exp. End Exp. End
Duration

Number Time Point Time Point Time Point Time Point

- 7:53 G1 8:35 A

7:53 G1 10:33 D 2:40 Piece 1
1 8:35 A 9:18 D
- 9:18 D 9:42 A
2 9:55 A 10:33 D

- 10:33 D 10:55 B

10:33 D 15:23 B 4:50 Piece 2
3 11:34 B 12:24 C
4 13:31 C 13:56 A
5 14:01 A 14:26 C
6 14:30 C 15:23 B

7 16:14 B 17:07 C

15:23 B 20:04 G1 4:41 Piece 3
8 17:31 C 17:56 A
9 18:01 A 18:26 C
10 18:30 C 19:23 B
- 19:23 B 20:04 G1

In direct partitioning, the procedure starts in the depot, before the vehicle’s őrst

trip on the day. The procedure systematically covers the entire vehicle itinerary, trip by

trip, and forms pieces of work. In this approach, a piece of work always:

• starts in the depot or at the associated őrst trip beginning;

• ends in the depot or at the őrst trip beginning of the next piece of work.

Table 3.4 illustrates an example of the generation of pieces of work by direct par-

titioning.

In the reverse partitioning procedure, the pieces of work’ construction start in the

depot after the vehicle’s last trip. The method systematically goes through the entire

3.3. Solution Approach 64

vehicle itinerary, from back to front, building the pieces of work. In this case, a piece of

work always:

• starts in the depot or at the end of the last trip of the previous piece of work;

• ends in the depot or at the associated last trip ending.

See an example of this type of partitioning in Table 3.5.

We create pieces of work aiming to reduce the complexity of solving the CSP in

two ways:

1. Combining tasks to form pieces of work. Thus, the piece of work becomes the

smallest amount of work that we can assign to a crew. Furthermore, we impose

that each duty is composed of at most two pieces of work;

2. Partitioning the vehicle itineraries into pieces of work using only two heuristic pro-

cedures, i. e., we do not consider all possible splits.

3.3.5.2 Heuristic Method for Inserting a Piece of Work Into Crew Schedule

Let be the following data:

• p: piece of work to be included in the schedule;

• sc0: solution partially built for the CSP and that always keeps an empty duty in the

last position on its list of duties (see representation in Subsection 3.3.1.2).

We deőned three basic methods for inserting p into sc0 maintaining the feasibility

of the solution, they are:

1. Random insertion - randomInsertion(p, sc0): We randomly select a crew from the

schedule and, if the viability of sc0 is maintained, we insert the piece of work p into its

duty. As there is a possibility of failure, this procedure returns true if the insertion

is effective and false, otherwise;

2. Sequential insertion - sequentialInsertion(p, sc0): The list of duties for the sc0 solu-

tion is inspected sequentially, starting from the őrst position. The piece of work p

is assigned to the őrst crew that can perform it;

3. Greedy insertion - greedyInsertion(p, sc0): We analyze the cost of inserting the piece

of work p in each of the possible duties of sc0. In this way, p is allocated to the lowest

cost duty according to the evaluation function (3.14).

3.3. Solution Approach 65

Since we keep an empty duty in sc0, we will always őnd a duty to insert p in the

sequential and greedy insertion procedures. That is, if there is no other possibility, the

empty duty of sc0 will receive p.

Algorithm 9 shows the heuristic procedure for inserting a piece of work p into the

partially built crew schedule sc0. This procedure combines the three primary methods

presented above (random, sequential, and greedy insertions).

According to Algorithm 9, we initially tried, at most itmax times, to randomly

insert p in a duty (lines 7 to 9). If we can’t, we randomly choose one of the two remaining

types of insertions, sequential or greedy, to insert the piece of work p (lines 10 and 11).

To deőne itmax (line 4), we consider the percentage of duties in sc0 that we can test. This

percentage is given by percDutiesTested and consists of a parameter whose value we need

to specify. Finally, in lines 12 and 13, we guarantee that sc0 will have an empty duty in

the last position in its duty list.

Algorithm 9: insertP iece_Solution

1 Data: p, a piece of work to insert in the solution.
2 Data: sc0, a solution partially built for the CSP. It has an empty duty at the last

position in its duties list.
3 Result: sc1, a partially built solution for the CSP that includes the piece of work

p. It has an empty duty at the last position in its duties list.

4 itmax ← percDutiesTested× number of duties in sc0 // the maximum number of

attempts to insert p randomly into sc0

5 it← 0 // the number of attempts made to insert p randomly into sc0

6 inserted← false // boolean variable that will be true if p is

inserted randomly into sc0

7 while it < itmax and inserted = false do

8 inserted← randomInsertion(p, sc0)

9 it← it+ 1

10 if inserted = false then

11 sequentialInsertion(p, sc0) or greedyInsertion(p, sc0), choose randomly
between one of these procedures

12 if sc0 does not have an empty duty then

13 Insert empty duty in the last position in the sc0 duty list

14 sc1 ← sc0

3.3. Solution Approach 66

3.3.5.3 Heuristic Method for Generating an Initial Solution for the CSP

Algorithm 10 describes the heuristic method that generates an initial solution for

the CSP. For this procedure, we must supply the set of pieces of work of the associated

vehicle schedule. Due to the construction process, in set P , each vehicle’s pieces of work

are arranged sequentially. However, we can also sort this set by the start time of the

pieces of work. The parameter sortP ieces_const deőnes the order of the pieces of work

in the set P (line 3). Then, we allocate each piece of work to a crew, exactly as presented

in Algorithm 9.

Algorithm 10: constructive_CSP

1 Data: P , the set of pieces of work.
2 Result: sc, a solution for the CSP.

3 piecesOrder(P, sortP ieces_const) // Defines the pieces’ order in P

4 Start sc with just one empty duty

5 while P ̸= ∅ do

6 Let p be the őrst piece of work from P

7 P ← P \ {p}

8 sc ← sc ∪ {p} // as described in Subsection 3.3.5.2, Algorithm 9

3.3.5.4 Heuristic Method of Local Search for the CSP

To improve a CSP solution, we propose a local search method based on the B-VND

procedure described in Subsection 2.2.1.1.

Algorithm 11 presents the developed heuristic, the VND-CSP. Given the high

computational cost of evaluating a whole neighborhood of the current solution at each

iteration, we employ a selection at random of an improving neighbor as search strategy.

The search methods that we developed are:

1. relocate_CSP (Algorithm 12): explores the neighborhood N c
r (relocation of a piece

of work);

2. exchange_CSP (Algorithm 13): explores the neighborhood N c
e (exchange of pieces

of work).

3.3. Solution Approach 67

Algorithm 11: VND-CSP

1 Data: sc, a solution for the CSP.
2 Result: sc∗, the solution for the CSP after local search.

3 k ← 1

4 while k ≤ 2 do

5 if k = 1 then

6 sc1 ← relocate_CSP (sc)

7 if k = 2 then

8 sc1 ← exchange_CSP (sc)

9 if f(sc1) < f(sc) then

10 sc ← sc1
11 k ← 1

12 else

13 k ← k + 1

14 sc∗ ← sc

Algorithm 12: relocate_CSP

1 Data: sc0, a solution for the CSP.
2 Result: sc, the solution for the CSP after search.

3 sc ← sc0

4 for i← 1 to it_rmax do

5 choose sc1 ∈ N c
r (s

c) at random

6 if f(sc1) < f(sc) then

7 sc ← sc1
8 break

9 else

10 i← i+ 1

The relocate_CSP method works as follows. Given a CSP solution sc, we apply

a move to it, generating a neighbor sc1. If sc1 represents an improvement for the current

solution’s value sc, then, this neighbor becomes the current solution, and the method

ends; otherwise, we randomly generate a new neighbor. If after it_rmax iterations we

do not őnd an improved solution, then we őnish this method. The value of it_rmax is

estimated by Equation (3.16):

it_rmax = | N c
r (s

c) | × perc_r, (3.16)

3.3. Solution Approach 68

Algorithm 13: exchange_CSP

1 Data: sc0, a solution for the CSP.
2 Result: sc, the solution for the CSP after search.

3 sc ← sc0

4 for i← 1 to it_emax do

5 choose sc1 ∈ N c
e (s

c) at random

6 if f(sc1) < f(sc) then

7 sc ← sc1
8 break

9 else

10 i← i+ 1

where:

(a) it_rmax is the maximum number of iterations with no improvement in the current

solution;

(b) N c
r (s

c) is the set of neighbors of sc concerning the neighborhood structure N c
r ;

(c) perc_r is the percentage of the size of the neighborhood N c
r (s

c) to be explored.

Note that this calculation links it_rmax to the instance’s size to be solved. Thus,

as we explore only part of the neighborhood, there is a reduction in its evaluation cost.

The exchange_CSP method works likewise the relocate_CSP method. Further-

more, we estimate the value of it_emax similarly to Equation (3.16), replacing perc_r

with perc_e.

As the Algorithm 11 shows, we end the VND-CSP method when there is no im-

provement in the two neighborhood structures, N c
r and N c

e . In this case, the method

returns a local optimum concerning these two neighborhoods. In the VND-CSP, we apply

the relocate_CSP and exchange_CSP procedures in this order.

69

Chapter 4

Computational Experiments

This chapter reports the computational experiments that deal with the MDVCSP and use

the ILS-MDVCSP matheuristic algorithm proposed in Chapter 3. Next, we make some

considerations about the execution of these experiments.

The ILS-MDVCSP was developed in the C++ language and compiled with ver-

sion 9.3.0 of gcc. Subsection 4.1.2 describes the tuning process of the ILS-MDVCSP’s

parameters. The mathematical models developed for the MDVSP were solved using the

standard conőguration (except for the number of threads) of the Gurobi solver version

9.0.3. The experiments were performed on an Intel (R) Xeon (R) E5-2640 (2.50 GHz)

microcomputer and under the 64-bit GNU Linux Ubuntu 20.04.1 LTS operating system.

All experiments were run using a single thread only.

To perform the computational experiments, we use the instances of Huisman et al.

[2005], which are widely used in the literature. We also consider real-world instances

originating from the public urban bus transport system from one of the largest Brazilian

cities (Belo Horizonte/MG). In Sections 4.1 and 4.2, we describe the characteristics of

these instances and present and analyze the results obtained by the proposed algorithm.

The benchmark and Brazilian real-world instances, executable code of the implemented

algorithms, and all scripts to run the executable and solve the instances are available for

download at http://sites.google.com/view/mdvcsp-instances (generally, it is not

accessible from a Google Workspace account).

The cost values used in the evaluation functions presented for the MDVSP (3.13),

CSP (3.14) and MDVCSP (3.15) are the same ones used in Steinzen et al. [2010]. Table 4.1

shows these costs. According to it, there is a őxed cost of 1000 units for each vehicle and

crew, a variable cost of 1 unit for each minute a vehicle is outside the depot, and a

variable cost of 0.1 unit for each minute crew working time. So, these costs prioritize the

minimization of the number of vehicles and crews employed. The reduction of operating

costs (variable costs) is a secondary objective.

4.1. Literature Instances 70

Table 4.1: Costs considered in the evaluation functions and their respective values

Type of cost Value
vehicleCost 1000
crewCost 1000
operationalCost 1
workingTimeCost 0.1

4.1 Literature Instances

In this section, we describe the instances of the literature in Subsection 4.1.1 and

the tuning process of our algorithm in Subsection 4.1.2. We compare the results of our

algorithm with those of other methods from the literature in Subsection 4.1.3.

4.1.1 Instances Description

We use eight groups of instances that depict characteristics of European public

transport companies. They are differentiated by the number of trips, which can be: 80,

100, 160, 200, 320, 400, 640, or 800 trips. Each group contains ten instances, totaling 80

instances. The őrst six groups of instances were made available in Huisman [2003], and the

last two in Steinzen [2007a]. Huisman and Steinzen generated all of these instances from

the software described in Huisman [2004] and Huisman et al. [2005]. These instances

are widely used in the literature (see Table 2.1 in Section 2.1) and have the following

characteristics:

• There are four depots;

• Depots have unlimited capacity. That is, the number of vehicles and crews available

for each depot is unlimited;

• Each timetable trip can be serviced by any depot;

• Instances with 80, 160, and 320 trips have four relief points, and the others have

őve.

Additionally, according to Huisman et al. [2005], whenever a duty starts or ends its

activity in the depot, a crew preparation time of 10 and 5 minutes is required, respectively.

However, a duty can start or end at any other relief point (outside the depot), and, in

4.1. Literature Instances 71

this case, the crew preparation time will be the travel time between the relief point and

the depot plus 15 minutes.

Still according to Huisman et al. [2005], there are őve types of duties: tripper,

formed by only one piece of work lasting between 30 minutes and 5 hours; and four more

types (early, day, late, and split), made up of two pieces of work. Table 4.2 details them,

whose characteristics are as follows:

• Interval: Interval of the day on which a duty can take place. The absence of a lower

or upper limit indicates that there is no restriction on the time of beginning or end

of the duty, respectively;

• Piece length: Minimum and maximum length allowed for a piece of work. It is

noteworthy that during a piece of work, the crew will remain responsible for the

same vehicle without interruption;

• Break length: Minimum break duration between the pieces of work of the duty;

• Duty length: Maximum duration of the duty considering all activities: preparation

to start or end the duty, monitoring of the vehicle and mandatory breaks;

• Working time: Maximum time a crew can spend on the vehicle. It is the sum of the

duration of the duty’ pieces of work.

Table 4.2: Characteristics of the different duty types

Early Day Late Split

Min Max Min Max Min Max Min Max
Interval 16:30 8:00 18:14 13:15 19:30
Piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
Break length 0:45 0:45 0:45 1:30
Duty length 9:45 9:45 9:45 12:00
Working time 9:00 9:00 9:00 9:00

4.1.2 Parameter Settings

For tuning the developed ILS-MDVCSP algorithm’s parameters, we apply the irace

package [López-Ibáñez et al., 2016b]. This software tunes the parameters of optimization

algorithms. The authors developed it in the R language and implemented an extension

of the Iterated F-race algorithm (I / F-Race) [Birattari et al., 2010].

4.1. Literature Instances 72

Irace receives as input a set of values assumed by the parameters, a set of instances

for tuning those parameters, and a set of options for running irace.

In Table 4.3, we present the analyzed parameters, describe their meanings, the

tested values, and highlight in bold the values returned by irace.

Table 4.3: Parameters of the proposed algorithm

Parameter Description Tested and returned values

percDutiesTested

Percentage of crew members evaluated. It
is used in Algorithm 9, described in Subsec-
tion 3.3.5.2.

0.0,0.25, 0.5, 0.75, 1.0

sortP ieces_const

Deőnes whether or not the set of pieces
of work should be ordered by the pieces’
start time. It is used in Algorithm 10
(constructive_CSP), presented in Subsec-
tion 3.3.5.3.

(a) Yes

(b) No

sortP ieces_pert

Deőnes whether the set of pieces of work
should be ordered by the pieces’ start time.
It is used in Algorithm 6 (perturbation), de-
scribed in Subsection 3.3.4.

(a) Yes

(b) No

(c) Set randomly

perc_r

Percentage of the size of the neighborhood
N c

r
(sc) to be explored. It is used in (3.16) of

Subsection 3.3.5.4.

0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6,0.7, 0.8, 0.9, 1.0

perc_e

Percentage of the size of the neighborhood
N c

r
(sc) to be explored. It is deőned in Sub-

section 3.3.5.4.

0.0, 0.1,0.2, 0.3, 0.4, 0.5,
0.6, 0.7

lmax

Perturbation levels used in the ILS-MDVCSP
matheuristic algorithm. Levels 1 to 6 are de-
scribed in Subsection 3.3.4.

(a) From 1 to 3

(b) From 1 to 4

(c) From 1 to 5

(d) From 1 to 6

Among the eight groups of instances of the literature deőned in Subsection 4.1.1,

we randomly choose an instance from each group of instances with 80, 200, 400, and 800

trips for the irace tuning phase.

We run irace in its default conőguration, except for the option maxExperiments,

for which we assign the value 250. This option deőnes the number of times that the

ILS-MDVCSP algorithm will be executed during the tuning process.

From statistical tests, irace iteratively generates and tests different parameter con-

őgurations for the ILS-MDVCSP algorithm. At the end of its execution, irace returns the

elite conőguration, that is, the conőguration for the parameters that provided the best

average performance of the algorithm.

According to the values tested for each parameter in Table 4.3, there are more

than 10500 possible parameter conőgurations. Therefore, the manual tuning of the ILS-

MDVCSP algorithm’s parameters would be highly costly and possibly inefficient, which

justiőes the use of irace.

4.1. Literature Instances 73

For more details on the irace package, we recommend the user’s guide López-Ibáñez

et al. [2016a].

4.1.3 Results

All 80 instances were solved ten times by the ILS-MDVCSP algorithm. We őxed

the run time of ILS-MDVCSP at 15 minutes for small instances (with 80, 100, 160, and

200 trips) and 40 minutes for the large ones (with 320, 400, 640, and 800 trips).

Table 4.4 reports the best results found by the proposed algorithm, comparing

them with those of the literature methods, namely: HK_19 [Horváth and Kis, 2019],

KAA_12 [Kliewer et al., 2012], SGSK_10 [Steinzen et al., 2010], BLW_08 [Borndörfer

et al., 2008], and HFW_05 [Huisman et al., 2005]. These papers deal with the MDVCSP

as proposed in Huisman et al. [2005].

In Table 4.4, cpu is the average time, in minutes, reported for solving each group

of instances. In line cpu adj., we adjust this value to match the machine where the tests

were performed with the machine described in Borndörfer et al. [2008], which has the

most simple conőguration machine considered in this comparison. For this match, we use

the cpu benchmark website PassMark Software Pty Ltd [1998], which provides benchmark

results for CPUs for more than 600,000 systems, covering more than 1200 different types

of CPUs. This adjustment allows for a fair comparison of the run time of the approaches.

Lines vehicles, crews, and v+ c of Table 4.4 report the average number of vehicles,

crews, and sum of vehicles and crews for each group of instances, respectively. This table

does not report the following characteristics used to evaluate a solution ((3.13) and (3.14)):

vehicle operating time, the crew working time, and cost. We did so because Kliewer et al.

[2012], Steinzen et al. [2010], Borndörfer et al. [2008], and Huisman et al. [2005] did not

provide this information.

We use the Relative Percentage Deviation (RPD
Alg
i) to evaluate the average sum

of vehicles and crews, v + c, generated by each method Alg for the group of instances i.

It is calculated according to (4.1):

RPD
Alg
i =

(v + c)Alg
i − (v + c)besti

(v + c)besti

, (4.1)

where (v + c)Alg
i is the v + c obtained by method Alg for the group of instances i and

(v+ c)besti is the best known v+ c for the group of instances i. Then, the RPD
Alg
i informs

the deviation percentage of the v + c found by method Alg concerning the best known

v + c for the group of instances i.

4.1. Literature Instances 74

In Table 4.4, we present the RPD for each method and group of instances that

we are considering. Moreover, the best results for each evaluation criterion (number

of vehicles, crews, vehicles plus crews, and RPD) are highlighted in bold. Note that

the methods in the literature did not handle some large instances. In these cases, no

information appears in Table 4.4. Besides, Huisman et al. [2005] did not report the run

time of their algorithm and Kliewer et al. [2012] did not detail the average number of

vehicles and crews separately for the group of instances with 640 trips.

Concerning the average sum of vehicles and crews v+c of Table 4.4, we can see that

the proposed algorithm gives the smallest values for six of the eight analyzed groups of

instances. Furthermore, our algorithm is the only one to őnd the best results on instance

groups with 200, 640, and 800 trips. It only loses to HK_19, KAA_12, and SGSK_10

in small instances, involving 80 and 100 trips.

Regarding the average number of vehicles in Table 4.4, the ILS-MDVCSP algorithm

was able to obtain the smallest values for all the groups of instances. So, after the MDVSP

solving in optimality by the proposed algorithm, the improvement step of the solution for

MDVCSP has not compromised the quality of the vehicle scheduling.

The HK_19 method is the only one that obtains the exact solution to the problem.

However, this approach was able to solve only small instances, with 80 or 100 trips. Of

the 20 instances considered, they found the optimal solutions in four instances, and, for

seven instances, the lower limit gap was less than 0.5%. As shown in Table 4.4, they

tested instances with 160 trips, but the procedure for generating columns at the root

node consumed alone more than three hours on average. Thus, for large instances, the

solution process is very time-consuming and fails to generate better quality solutions than

those found in the present work.

Regarding the adjusted run time of Table 4.4, as the instance’s size increases, our

approach becomes substantially less costly than the others presented in the literature.

For the largest group of instances treated by KAA_12 and SGSK_10, with 640 trips,

the ILS-MDVCSP algorithm performed best with less than 10% of the processing time

they used. Besides, our algorithm was the only one to treat the group of instances with

800 trips. These observations show the ability of the proposed algorithm to handle large

instances satisfactorily.

In Table 4.5, we analyze the variability of the solutions obtained by the ILS-

MDVCSP algorithm concerning the sum of vehicles and crews (v + c). In this table,

best and average refer, respectively, to the best and average values of v + c per group of

instances and in ten runs. The RPD
avg
i informs the deviation percentage of the average

of v + c concerning the best value of v + c for the group of instances i. It is calculated

according to Equation (4.2):

RPD
avg
i =

(v + c)avgi − (v + c)besti

(v + c)besti

, (4.2)

4.1. Literature Instances 75

Table 4.4: Results from literature instances

Approach
Group of instances

80 100 160 200 320 400 640 800

ILS-MDVCSP 1

cpu 15.00 15.00 15.00 15.00 40.00 40.00 40.00 40.00
cpu adj. 33.45 33.45 33.45 33.45 89.20 89.20 89.20 89.20
vehicles 9.20 11.00 14.80 18.40 26.70 32.90 56.90 66.90

crews 19.70 23.10 31.70 38.50 55.80 67.90 119.40 142.20

v + c 28.90 34.10 46.50 56.90 82.50 100.80 176.30 209.10

RPD (%) 3.21 2.40 0.00 0.00 0.00 0.00 0.00 0.00

HK_19 2

cpu 15.24 16.78 >> 180.00 - - - - -
cpu adj. 32.77 36.08 >> 387.00 - - - - -
vehicles 9.50 11.40 - - - - - -
crews 18.50 21.90 - - - - - -
v + c 28.00 33.30 50.50 - - - - -
RPD (%) 0.00 0.00 8.60 - - - - -

KAA_12 3

cpu 5.43 8.72 22.80 30.40 158.85 183.63 455.60 -
cpu adj. 11.13 17.88 46.74 62.32 325.64 376.44 933.98 -
vehicles 9.20 11.00 14.80 18.40 26.70 32.90 - -
crews 19.20 22.80 31.70 39.00 56.40 69.50 - -
v + c 28.40 33.80 46.50 57.40 83.10 102.40 178.50 -
RPD (%) 1.43 1.50 0.00 0.88 0.73 1.59 1.25 -

SGSK_10 4

cpu 3.92 6.15 26.32 45.50 238.75 338.67 953.92 -
cpu adj. 4.31 6.77 28.95 50.05 262.63 372.53 1049.31 -
vehicles 9.20 11.00 14.80 18.40 26.70 32.90 56.90 -
crews 19.10 22.70 31.80 38.80 55.80 67.90 120.40 -
v + c 28.30 33.70 46.60 57.20 82.50 100.80 177.30 -
RPD (%) 1.07 1.20 0.22 0.53 0.00 0.00 0.57 -

BLW_08 5

cpu 13.00 21.00 44.00 106.00 328.00 720.00 - -
cpu adj. 13.00 21.00 44.00 106.00 328.00 720.00 - -
vehicles 9.20 11.20 15.00 18.50 26.70 33.10 - -
crews 20.40 24.50 32.70 40.50 56.10 68.90 - -
v + c 29.60 35.70 47.70 59.00 82.80 102.00 - -
RPD (%) 5.71 7.21 2.58 3.69 0.36 1.19 - -

HFW_05
cpu - - - - - - - -
cpu adj. - - - - - - - -
vehicles 9.20 11.00 14.80 18.40 - - - -
crews 20.50 25.30 34.10 41.60 - - - -
v + c 29.70 36.30 48.90 60.00 - - - -
RPD (%) 6.07 9.01 5.16 5.45 - - - -

1 Intel Xeon E5-2640 2.50 GHz/4 GB using only one single thread.
2 Intel Xeon X5650 2.67 GHz/4 GB using only one single thread.
3 Dell OptiPlex 755, Intel Core 2 Duo 3.0 GHz/4 GB using only one single thread.
4 Dell OptiPlex GX620, Intel Pentium IV 3.4 GHz/2 GB using only one single thread.
5 Dell Precision 650, Intel Dual Xeon 3.0 GHz/4 GB using only one single thread.

4.2. Belo Horizonte Instances 76

where (v+ c)avgi is the average of v+ c and (v+ c)besti is the best value of v+ c in ten runs

for the group of instances i.

Table 4.5: Variability of the solutions obtained by the ILS-MDVCSP algorithm

v + c
Group of instances

80 100 160 200 320 400 640 800

best 28.90 34.10 46.50 56.90 82.50 100.80 176.30 209.10

average 29.40 34.79 47.32 57.84 83.84 102.05 178.28 210.90

RPD
avg
i (%) 1.73 2.02 1.76 1.65 1.62 1.24 1.12 0.86

Table 4.5 shows that the deviation between the average and best value of v + c

for each group of instances is slight. Note that the values of RPD
avg
i vary from 0.86% to

2.02% only.

4.2 Belo Horizonte Instances

In this section, we describe the instances of Belo Horizonte in Subsection 4.2.1. In

Subsection 4.2.2, we compare the companies’ solutions and the results of our algorithm

in two versions, ILS-MDVCSP and ILS-SDVCSP. The ILS-SDVCSP solves the VCSP for

each depot separately.

4.2.1 Instances Description

The real-world instances considered in this work come from a given region of Belo

Horizonte/MG, Brazil. In these instances, there are four depots (D01, D02, D03, and

D04), which operate on four days of the week with different timetables (Monday, Friday,

Saturday, and Sunday). Timetables from Tuesday to Thursday are the same as Monday.

The companies studied őrstly assign trips to depots. Then, they generate the

vehicle and crew schedules sequentially, considering one depot at a time. In Table 4.6,

instances 1 to 16 were provided by some companies. The other instances were created

by us from the original ones and considered two, three, or four depots together. In all

instances, each depot contains a limited ŕeet of identical vehicles. Table 4.6 shows the

4.2. Belo Horizonte Instances 77

characteristics of these instances. For each instance, we report the number of trips, the

total time of trips (in the format hours : minutes), the number of relief points, the size

of the available ŕeet currently in each depot, and the number of depots considered.

Table 4.6: Characteristics of the Belo Horizonte instances

#id Instances
Number of Time of trips Number of Fleet Number of

trips (h:m) relief points size depots

1 D01_MON 260 443:19

3 41 1
2 D01_FRI 260 453:39
3 D01_SAT 172 270:40
4 D01_SUN 90 158:33

5 D02_MON 468 527:02

3 35 1
6 D02_FRI 468 524:27
7 D02_SAT 359 388:32
8 D02_SUN 298 315:00

9 D03_MON 206 406:32

2 29 1
10 D03_FRI 203 407:43
11 D03_SAT 130 255:20
12 D03_SUN 108 218:02

13 D04_MON 639 844:57

3 64 1
14 D04_FRI 639 856:32
15 D04_SAT 441 552:42
16 D04_SUN 332 434:43

17 D01-D02_MON 728 970:21

4

D01: 41

2
18 D01-D02_FRI 728 978:06 D02: 35
19 D01-D02_SAT 531 659:02
20 D01-D02_SUN 388 473:33

21 D01-D02-D03_MON 934 1376:53

5

D01: 41

3
22 D01-D02-D03_FRI 931 1385:49 D02: 35
23 D01-D02-D03_SAT 661 914:21 D03: 29
24 D01-D02-D03_SUN 496 691:35

25 D01-D02-D03-D04_MON 1573 2221:50

6

D01: 41

4
26 D01-D02-D03-D04_FRI 1570 2242:21 D02: 35
27 D01-D02-D03-D04_SAT 1102 1467:03 D03: 29
28 D01-D02-D03-D04_SUN 828 1126:18 D04: 64

4.2.2 Results

The hybrid algorithm ILS-MDVCSP developed for the MDVCSP was adapted to

handle the SDVCSP (single-depot vehicle and crew scheduling problem) (ILS-SDVCSP).

To this end, we use the same mathematical model developed for the MDVSP to solve

the SDVSP and consider only the ILS-MDVCSP perturbation levels 2 to 6, described in

Subsection 3.3.4. We prevented the depot exchange.

4.2. Belo Horizonte Instances 78

We ran the ILS-SDVCSP and ILS-MDVCSP algorithms ten times for each instance.

The results reported below refer to the averages obtained. For the tests related to two

and three depots, we set the time t for each algorithm to run at t = d hours, with d

being the number of depots of the instance. For the tests considering four depots, we set

t = 3.75d hours to solve the instances of the Monday and Friday and t = 1.25d hours to

solve the instances of the Saturday and Sunday.

Tables 4.7, 4.8, and 4.9 show the features of the solutions obtained for, respectively,

the D01 and D02 depots; D01, D02, and D03 depots; and D01, D02, D03, and D04 depots.

For the company and the ILS-SDVCSP algorithm, the data correspond to the union of

the solutions obtained for each depot solved separately (instances 1 to 16 in Table 4.6).

That is, only the ILS-MDVCSP solved the instances with, respectively, two, three, and

four depots simultaneously (instances from 17 to 28 in Table 4.6).

The attributes in Tables 4.7, 4.8, and 4.9 that we have not yet described are:

vehicle time ś the total operating time of the vehicles (in minutes), crew time ś the

working time considering all crews (in minutes), and total cost ś which represents the

cost of the solution calculated as speciőed in Subsection 3.3.3. We also show separately

the number of vehicles (v) and crews (c) used by each depot (i.e., Di: v / c for the i -th

depot).

As the companies did not provide their crew schedules, we did not report this

information. Moreover, we consider the same types of duties proposed by Huisman et al.

[2005] for deőning the crew scheduling in the ILS-SDVCSP and ILS-MDVCSP algorithms.

According to Tables 4.7, 4.8, and 4.9, for all instances, the ILS-SDVCSP algorithm

solutions are better than those used by the companies considering the features vehicles

and vehicle time. When we analyze the depots D01 and D02 together (Table 4.7), the

ILS-SDVCSP saved on average 5.75 vehicles per day and reduced on average by about

11% the daily operating time of the vehicles (considering the four days of the week with

different timetables). Analyzing the depots D01, D02, and D03 together (Table 4.8), the

ILS-SDVCSP saved on average 8.5 vehicles per day and reduced on average by about

10% the daily operating time of the vehicles (considering the four days of the week with

different timetables). Examining the depots D01, D02, D03, and D04 together (Table 4.9),

the ILS-SDVCSP saved on average 19 vehicles per day and reduced on average by about

11% the daily operating time of the vehicles (considering the four days of the week with

different timetables). This result shows that although the companies did not provide the

crew schedules, their ŕeet’s higher operational time indicates the need for more labor time

(crews) concerning the solutions from the ILS-SDVCSP (see constraint C8 of Section 3.1).

Tables 4.7, 4.8, and 4.9 also show that the ILS-MDVCSP was the approach that

obtained the best results. Its solutions are of higher quality than those of the companies

and ILS-SDVCSP for all evaluation criteria. Regarding the companies’ solutions, when we

analyze the depots D01 and D02 together (Table 4.7), the ILS-MDVCSP saved on average

4.2. Belo Horizonte Instances 79

8.25 vehicles per day and reduced on average by about 14% the daily operating time of

the vehicles (considering the four days of the week with different timetables). Examining

the depots D01, D02, and D03 together (Table 4.8), the ILS-MDVCSP saved on average

12.25 vehicles per day and reduced on average by about 15% the daily operating time of

the vehicles (considering the four days of the week with different timetables). Analyzing

the depots D01, D02, D03, and D04 together (Table 4.9), the ILS-MDVCSP saved on

average 25.25 vehicles per day and reduced on average by about 16% the daily operating

time of the vehicles (considering the four days of the week with different timetables).

Comparing the solutions of the ILS-SDVCSP and ILS-MDVCSP algorithms, we observed

that ILS-MDVCSP generated better vehicle and crew schedules for all instances. Thus,

we show the relevance of considering more than one depot simultaneously, as already

pointed out by the literature, and the potential of the matheuristic proposed in this work,

particularly in the context of real-world and large-scale problems.

We also note that, for the instances with fewer trips, referring to Saturday and

Sunday, it is possible to completely avoid using the depots without violating the other

depots’ capacities. In this way, a reduction in these depots’ operating costs is allowed on

these two days of the week.

As described in Subsection 3.3.4, the ILS-MDVCSP algorithm generates an initial

solution for the MDVCSP addressing MDVSP and CSP sequentially. It solves the MDVSP

in optimality and solves each CSP with a constructive procedure and a B-VND local search

heuristic. From this initial complete solution, the ILS-MDVCSP iteratively approaches

the integrated problem. Thus, Table 4.10 reports, for each MDVCSP instance, the initial

and őnal solutions average cost obtained by the ILS-MDVCSP algorithm and the average

improvement achieved in percentage. Furthermore, Table 4.10 shows the average cost

variations that occurred separately in the solutions of the MDVSP and CSP between the

initial and őnal solutions of the MDVCSP.

From Table 4.10, we can see that the ILS-MDVCSP improved its initial solutions

considerably. The improvements range from 9.4% for D01-D02-D03_SAT instance to

12.4% for D01-D02-D03-D04_SUN instance. We also notice that vehicle scheduling suffers

a slight cost increase in favor of a relevant reduction in the crew scheduling cost for all

instances. In this sense, it is worth remembering that the initial solution of the MDVSP

is optimal. Furthermore, a characteristic favorable to a solution for the MDVSP does

not always reŕect satisfactorily in the CSP and vice versa. Thus, the results show the

relevance of the integrated resolution of these problems.

Table 4.11 provides the number of nodes, arcs, and network layers of the time-space

network of each Brazilian instance of the VSP. This table also reports the branch-and-

bound method’s average run time, in seconds and format hours : minutes (hh:mm).

Subsection 3.2.2 describes the network structure and mathematical formulation for the

MDVSP. See that the number of arcs of the underlying vehicle scheduling network deter-

4.2. Belo Horizonte Instances 80

Table 4.7: Results from the Belo Horizonte instances (2 depots)

Depots D01 and D02

Day Feature Company ILS-SDVCSP ILS-MDVCSP

MONDAY

vehicles 75.0 70.0 67.0
crews - 139.9 131.9
v + c - 209.9 198.9
vehicle time 58,221.0 51,276.3 49,997.7
crew time - 62,984.9 61,714.0
D01: v / c 41.0 / - 40.0 / 71.8 32.0 / 65.6
D02: v / c 34.0 / - 30.0 / 68.1 35.0 / 66.3
vehicle cost 133,221.0 121,276.3 116,997.7
crew cost - 146,198.6 138,071.4
total cost - 267,474.9 255,069.1

FRIDAY

vehicles 75.0 70.0 67.0
crews - 144.4 135.9
v + c - 214.4 202.9
vehicle time 58,686.0 52,923.6 51,660.0
crew time - 64,717.9 63,897.0
D01: v / c 40.0 / - 39.0 / 74.4 32.0 / 69.7
D02: v / c 35.0 / - 31.0 / 70.0 35.0 / 66.2
vehicle cost 187,149.0 122,923.6 118,660.0
crew cost 150,871.9 142,289.7
total cost - 273,795.5 260,949.7

SATURDAY

vehicles 50.0 43.0 40.0
crews - 89.2 81.4
v + c - 132.2 121.4
vehicle time 39,552.0 35,421.5 34,065.3
crew time - 44,127.7 42,146.1
D01: v / c 23.0 / - 23.0 / 39.1 5.1 / 8.5
D02: v / c 27.0 / - 20.0 / 50.1 34.9 / 72.9
vehicle cost 89,552.0 78,421.5 74,065.3
crew cost 93,612.9 85,614.7
total cost - 172,034.4 159,680.0

SUNDAY

vehicles 32.0 26.0 25.0
crews - 63.8 58.5
v + c - 89.8 83.5
vehicle time 28,413.0 24,886.5 23,982.2
crew time - 31,602.3 29,595.5
D01: v / c 11.0 / - 10.0 / 22.5 0.0 / 0.0
D02: v / c 21.0 / - 16.0 / 41.3 25.0 / 58.5
vehicle cost 60,413.0 50,886.5 48,982.2
crew cost 66,960.3 61,459.6
total cost - 117,846.8 110,441.8

mines the number of ŕow variables and most of the constraints.

The numbers of nodes, arcs, and network layers determine the size of an instance

in the time-space network representation. Table 4.11 shows that the size of each MDVSP

instance increases considerably and in a non-linear manner concerning the sizes of the

single-depot instances associated.

Lastly, in Table 4.11, we observed that the time for exact MDVSP resolution

increased much for instances with four depots together. The branch-and-bound spent

4.2. Belo Horizonte Instances 81

Table 4.8: Results from the Belo Horizonte instances (3 depots)

Depots D01, D02, and D03

Day Feature Company ILS-SDVCSP ILS-MDVCSP

MONDAY

vehicles 104.0 96.0 92.0
crews - 199.5 187.8
v + c - 295.5 279.8
vehicle time 82,613.0 73,986.1 70,937.8
crew time - 91,991.7 88,322.0
D01: v / c 41.0 / - 40.0 / 71.8 41.0 / 84.8
D02: v / c 34.0 / - 30.0 / 68.1 35.0 / 66.8
D03: v / c 29.0 / - 26.0 / 59.6 16.0 / 36.2
vehicle cost 186,613.0 169,986.1 162,937.8
crew cost - 208,699.3 196,632.2
total cost - 378,685.4 359,570.0

FRIDAY

vehicles 104.0 98.0 94.0
crews - 202.8 189.3
v + c - 300.8 283.3
vehicle time 83,149.0 75,693.1 72,626.6
crew time - 94,103.0 90,639.0
D01: v / c 40.0 / - 39.0 / 74.4 41.0 / 84.3
D02: v / c 35.0 / - 31.0 / 70.0 35.0 / 67.1
D03: v / c 29.0 / - 28.0 / 58.4 18.0 / 37.9
vehicle cost 187,149.0 173,693.1 166,626.6
crew cost 212,210.4 198,363.9
total cost - 385,903.5 364,990.5

SATURDAY

vehicles 66.0 57.0 51.0
crews - 123.3 108.2
v + c - 180.3 159.2
vehicle time 54,872.0 49,454.3 45,807.7
crew time - 63,006.0 56,395.0
D01: v / c 23.0 / - 23.0 / 39.1 16.0 / 34.7
D02: v / c 27.0 / - 20.0 / 50.1 35.0 / 73.5
D03: v / c 16.0 / - 14.0 / 34.1 0.0 / 0.0
vehicle cost 120,872.0 106,454.3 96,807.7
crew cost 129,600.7 113,839.5
total cost - 236,055.0 210,647.2

SUNDAY

vehicles 50.0 39.0 38.0
crews - 92.8 82.6
v + c - 131.8 120.6
vehicle time 41,495.0 36,158.3 33,578.9
crew time - 46,567.3 41,228.7
D01: v / c 11.0 / - 10.0 / 22.5 3.1 / 7.5
D02: v / c 21.0 / - 16.0 / 41.3 34.9 / 75.1
D03: v / c 18.0 / - 13.0 / 29.0 0.0 / 0.0
vehicle cost 91,495.0 75,158.3 71,578.9
crew cost 97,456.8 86,722.9
total cost - 172,615.1 158,301.8

by more than ten hours resolving the largest instances (D01-D02-D03-D04_MON and

D01-D02-D03-D04_FRI). Nevertheless, the run time of the ILS-MDVCSP (15 hours) was

sufficient to solve the MDVCSP and, simultaneously, satisfactorily meet the practical

context of the operational planning.

4.2. Belo Horizonte Instances 82

Table 4.9: Results from the Belo Horizonte instances (4 depots)

Depots D01, D02, D03, and D04

Day Feature Company ILS-SDVCSP ILS-MDVCSP

MONDAY

vehicles 167.0 151.0 146.0
crews - 311.0 297.1
v + c - 462.0 443.1
vehicle time 133,310.0 117,408.1 111,834.0
crew time - 143,836.5 136,411.0
D01: v / c 41.0 / - 40.0 / 71.3 41.0 / 89.1
D02: v / c 34.0 / - 30.0 / 66.2 35.0 / 72.2
D03: v / c 29.0 / - 26.0 / 59.4 6.0 / 12.8
D04: v / c 63.0 / - 55.0 / 114.1 64.0 / 123.0
vehicle cost 300,310.0 268,408.1 257,834.0
crew cost - 325,383.8 310,741.1
total cost - 593,791.7 568,575.1

FRIDAY

vehicles 168.0 157.0 149.0
crews - 320.5 308.1
v + c - 477.5 457.1
vehicle time 134,541.0 121,295.9 116,345.8
crew time - 149,196.6 143,994.0
D01: v / c 40.0 / - 39.0 / 74.1 41.0 / 93.1
D02: v / c 35.0 / - 31.0 / 68.2 35.0 / 70.0
D03: v / c 29.0 / - 28.0 / 58.5 9.0 / 17.7
D04: v / c 64.0 / - 59.0 / 119.7 64.0 / 127.3
vehicle cost 302,541.0 278,295.9 265,345.8
crew cost 335,419.8 322,499.4
total cost - 613,715.5 587,845.2

SATURDAY

vehicles 111.0 86.0 77.0
crews - 190.2 176.2
v + c - 276.2 253.2
vehicle time 88,034.0 78,437.1 73,340.7
crew time - 99,021.3 91,700.0
D01: v / c 23.0 / - 23.0 / 39.3 16.5 / 42.8
D02: v / c 27.0 / - 20.0 / 49.6 35.0 / 79.6
D03: v / c 16.0 / - 14.0 / 34.0 0.0 / 0.0
D04: v / c 45.0 / - 29.0 / 67.3 25.5 / 53.8
vehicle cost 199,034.0 164,437.1 150,340.7
crew cost 200,102.3 185,370.0
total cost - 364,539.4 335,710.7

SUNDAY

vehicles 85.0 61.0 58.0
crews - 145.9 134.6
v + c - 206.9 192.6
vehicle time 67,578.0 58,530.1 55,172.0
crew time - 74,597.3 67,847.0
D01: v / c 11.0 / - 10.0 / 22.1 0.9 / 1.7
D02: v / c 21.0 / - 16.0 / 41.0 35.0 / 85.2
D03: v / c 18.0 / - 13.0 / 29.0 0.0 / 0.0
D04: v / c 35.0 / - 22.0 / 53.8 22.1 / 47.7
vehicle cost 152,578.0 119,530.1 113,172.0
crew cost 153,359.9 141,384.7
total cost - 272,889.9 254,556.7

4.2. Belo Horizonte Instances 83

Table 4.10: Improvement of the initial solutions in the ILS-MDVCSP

Instances
Initial solution Vehicle cost Crew cost Final solution Improvement

cost variation variation cost (%)

D01-D02_MON 286,434.6 662.7 -32,028.2 255,069.1 11.0
D01-D02_FRI 295,746.9 734.0 -35,531.2 260,949.7 11.8
D01-D02_SAT 178,493.7 207.3 -19,021.0 159,680.0 10.5
D01-D02_SUN 122,188.7 62.2 -11,809.1 110,441.8 9.6

D01-D02-D03_MON 402,221.1 1,325.8 -43,976.9 359,570.0 10.6
D01-D02-D03_FRI 411,074.3 1,379.6 -47,463.4 364,990.5 11.2
D01-D02-D03_SAT 232,432.7 273.7 -22,059.2 210,647.2 9.4
D01-D02-D03_SUN 175,541.2 181.9 -17,421.3 158,301.8 9.8

D01-D02-D03-D04_MON 627,269.1 2,016.0 -60,710.0 568,575.1 9.4
D01-D02-D03-D04_FRI 645,271.0 2,599.8 -60,025.6 587,845.2 8.9
D01-D02-D03-D04_SAT 377,718.9 858.7 -42,866.9 335,710.7 11.1
D01-D02-D03-D04_SUN 290,620.6 529 -36,592.9 254,556.7 12.4

Table 4.11: Characteristics of the exact approach for the VSP instances

Instances Nodes Arcs
depot-operating period B&B cpu

(network layers) seconds hh:mm

D01_MON 942 1,836 1 0.03 00:00
D01_FRI 936 1,829 1 0.03 00:00
D01_SAT 700 1,322 1 0.03 00:00
D01_SUN 371 696 1 0.10 00:00

D02_MON 13,920 29,410 10 13.23 00:00
D02_FRI 13,840 29,360 10 10.65 00:00
D02_SAT 8,001 16,387 7 2.21 00:00
D02_SUN 8,901 17,658 9 3.76 00:00

D03_MON 704 1,321 1 0.02 00:00
D03_FRI 721 1,329 1 0.02 00:00
D03_SAT 485 874 1 0.02 00:00
D03_SUN 401 724 1 0.01 00:00

D04_MON 8,710 19,010 5 12.64 00:00
D04_FRI 10,302 22,656 6 12.62 00:00
D04_SAT 7,266 15,666 6 3.82 00:00
D04_SUN 5,382 11,544 6 1.83 00:00

D01-D02_MON 36,812 85,116 19 370.21 00:06
D01-D02_FRI 36,495 84,609 19 398.64 00:07
D01-D02_SAT 28,251 61,434 18 295.58 00:05
D01-D02_SUN 21,588 44,970 18 99.14 00:02

D01-D02-D03_MON 64,104 157,660 29 2,759.18 00:46
D01-D02-D03_FRI 65,653 162,293 30 2,619.55 00:44
D01-D02-D03_SAT 57,055 129,975 32 1,577.85 00:26
D01-D02-D03_SUN 44,560 97,088 32 756.25 00:13

D01-D02-D03-D04_MON 139,855 413,414 50 37,590.30 10:27
D01-D02-D03-D04_FRI 143,195 424,165 51 46,611.44 12:57
D01-D02-D03-D04_SAT 116,533 305,763 50 14,606.74 04:03
D01-D02-D03-D04_SUN 93,350 230,977 50 5,148.50 01:26

84

Chapter 5

Conclusions

This work addressed the MDVCSP. This problem involves public transport companies

by medium and large buses, which have more than one depot to manage their resources,

i.e., the vehicle ŕeet and crews. In the MDVCSP solution, we deal with two problems

in an integrated manner: the MDVSP and the CSP. That is, we simultaneously deőne

vehicle and crew schedules. The objective is to minimize the costs involved and, at the

same time, respect the operational restrictions and work regulations. The MDVCSP is an

NP-hard optimization problem, and to solve it, we propose a matheuristic algorithm. Our

algorithm, called ILS-MDVCSP, uses the Iterated Local Search framework to combine two

methods: a Branch-and-Bound method to solve the MDVSP in optimality and a Variable

Neighborhood Descent-based method to treat the associated CSPs.

For the tests, we initially used a set of instances well known in the literature. We

compared our approach against the main strategies in the literature that addressed the

same problem. Our matheuristic algorithm was able to treat instances with 800 trips, a

dimension not yet addressed by the current specialized literature. Besides, it obtained

the best results for six groups of instances out of the eight groups considered. The run

time of our algorithm was shorter for most groups of instances, and, as the instance’s size

increased, our approach became substantially less costly as compared to the literature.

We also solved the MDVCSP of a region in the city of Belo Horizonte, MG, Brazil.

To address the particularities of this problem, we proposed a mathematical formulation

based on a time-space network to represent the MDVSP. Regarding the companies’ solu-

tions, our algorithm’s solutions were considerably better.

Furthermore, we compared the solutions obtained from two integrated approaches:

SDVCSP and MDVCSP. So, we developed two algorithms: ILS-SDVCSP and ILS-MDVCSP.

The ILS-MDVCSP outperformed the ILS-SDVCSP for all instances.

Therefore, the experiments showed the effectiveness of our matheuristic algorithm

to deal with real-world and large-scale problems. We also veriőed that solving the MDVSP

and CSP problems in an integrated manner reduces costs concerning these problems’

sequential resolution. Moreover, by considering more than one depot at the same time,

we can further reduce costs.

The MDVCSP is a complex problem and little explored in the literature. In prac-

85

tice, this problem’s efficient resolution can bring high savings to the public bus transport

sector.

In future work, we aim to propose heuristic algorithms to tackle the MDVSP.

These algorithms will be based on metaheuristics and/or the mathematical formulation

we proposed for the MDVSP. Thus, we will be able to compare the solutions obtained by

the exact and heuristic resolution of the MDVSP. Suppose a heuristic algorithm őnds good

solutions for MDVSP in an acceptable time. In that case, we will increase the scalability

of ILS-MDVCSP and use this heuristic to solve even larger instances of MDVCSP. We

also intend to do tests considering different evaluation functions and cost values for the

MDVCSP. In the problems we solved, the main objective was to reduce the number of

vehicles and crews. However, depending on the context, companies may need to prioritize

other schedule’ characteristics. So, we plan to consider different real-world scenarios.

Moreover, we aim to compare the performance of our algorithm against other methods

based on mathematical programming and metaheuristics. Our goal will be to identify the

potentials of different optimization techniques to address MDVCSP and related problems.

Finally, we note that public bus transport companies often have to deal with delays and

interruptions in schedule due to traffic conditions, mechanical troubles with vehicles,

crews’ no show, and other unexpected events. These delays and interruptions affect the

quality of the service provided, user satisfaction, and the companies’ operating costs.

Thus, it would be interesting to propose an approach for MDVCSP that dynamically

updates the schedule to adapt it to some identiőed unexpected events in real-time.

86

Bibliography

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows, theory, algorithms,

and applications. Prentice-Hall, New Jersey.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (2001). Minimum cost ŕow problem.

In Floudas, C. A. and Pardalos, P. M., editors, Encyclopedia of Optimization, pages

1382ś1392. Springer US, Boston, MA.

Amaral, H. F., Urrutia, S., and Hvattum, L. M. (2021). Delayed improvement local search.

Journal of Heuristics, 27:923ś950.

Amberg, B., Amberg, B., and Kliewer, N. (2019). Robust efficiency in urban public

transportation: Minimizing delay propagation in cost-efficient bus and driver schedules.

Transportation Science, 53(1):89ś112.

Andrade-Michel, A., Ríos-Solís, Y. A., and Boyer, V. (2021). Vehicle and reliable driver

scheduling for public bus transportation systems. Transportation Research Part B:

Methodological, 145:290ś301.

Balas, E. and Padberg, M. W. (1975). Set partitioning. In Roy, B., editor, Combina-

torial Programming: Methods and Applications, pages 205ś258, Dordrecht. Springer

Netherlands.

Ball, M. O., Bodin, L. D., and Dial, R. (1983). A matching based heuristic for scheduling

mass transit crew and vehicles. Transportation Science, 1(17):4ś31.

Bertossi, A. A., Carraresi, P., and Gallo, G. (1987). On some matching problems arising

in vehicle scheduling models. Networks, 17(3):271ś281.

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-race and iterated

f-race: An overview. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and Preuss,

M., editors, Experimental Methods for the Analysis of Optimization Algorithms, pages

311ś336. Springer Berlin Heidelberg, Berlin, Heidelberg.

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A. (2011). Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135ś4151.

Booler, J. M. P. (1975). A method for solving crew scheduling problems. Journal of the

Operational Research Society, 26:55ś62.

Bibliography 87

Borndörfer, R., Löbel, A., and Weider, S. (2004). A bundle method for integrated multi-

depot vehicle and duty scheduling in public transit. Technical Report ZR 04-14. Konrad-

Zuse Zentrum fuer Informationstechnik, Berlin, Germany.

Borndörfer, R., Löbel, A., and Weider, S. (2008). A bundle method for integrated multi-

depot vehicle and duty scheduling in public transit. In Hickman, M., Mirchandani, P.,

and Voß, S., editors, Computer-aided Systems in Public Transport, pages 3ś24, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Borndörfer, R., Schulz, C., Seidl, S., and Weider, S. (2017). Integration of duty scheduling

and rostering to increase driver satisfaction. Public Transport, 9(1):177ś191.

Boyer, V., Ibarra-Rojas, O. J., and Ríos-Solís, Y. Á. (2018). Vehicle and crew scheduling

for ŕexible bus transportation systems. Transportation Research Part B: Methodological,

112:216ś229.

Carosi, S., Frangioni, A., Galli, L., Girardi, L., and Vallese, G. (2019). A matheuristic

for integrated timetabling and vehicle scheduling. Transportation Research Part B:

Methodological, 127:99ś124.

Ciancio, C., Laganà, D., Musmanno, R., and Santoro, F. (2018). An integrated algorithm

for shift scheduling problems for local public transport companies. Omega, 75:139ś153.

Dauer, A. T. and Prata, B. A. (2021). Variable őxing heuristics for solving multiple depot

vehicle scheduling problem with heterogeneous ŕeet and time windows. Optimization

Letters, 15:153ś170.

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M., and Soumis,

F. (1997). Crew pairing at Air France. European Journal of Operational Research,

97(2):245ś259.

Desaulniers, G. and Hickman, M. D. (2007). Chapter 2 public transit. In Barnhart, C. and

Laporte, G., editors, Transportation, volume 14 of Handbooks in Operations Research

and Management Science, pages 69 ś 127. Elsevier.

Desfontaines, L. and Desaulniers, G. (2018). Multiple depot vehicle scheduling with

controlled trip shifting. Transportation Research Part B: Methodological, 113:34ś53.

Dumitrescu, I. and Stützle, T. (2003). Combinations of local search and exact algorithms.

In Cagnoni, S., Johnson, C. G., Cardalda, J. J. R., Marchiori, E., Corne, D. W., Meyer,

J.-A., Gottlieb, J., Middendorf, M., Guillot, A., Raidl, G. R., and Hart, E., editors,

Applications of Evolutionary Computing, pages 211ś223, Berlin, Heidelberg. Springer

Berlin Heidelberg.

Bibliography 88

Elias, S. E. G. (1964). The use of digital computers in the economic scheduling for both

man and machine in public transportation. Manhattan, Kansas.

Er-Rbib, S., Desaulniers, G., Hallaoui, I. E., and Bani, A. (2021). Integrated and se-

quential solution methods for the cyclic bus driver rostering problem. Journal of the

Operational Research Society, 72(4):764ś779.

Fischetti, M., Martello, S., and Toth, P. (1989). The őxed job schedule problem with

working-time constraints. Operations Research, 37(3):395ś403.

Freling, R. (1997). Models and techniques for integrating vehicle and crew scheduling.

PhD thesis, Erasmus University Rotterdam, Amsterdam.

Freling, R., Boender, C. G. E., and Paixão, J. M. P. (1995). An integrated approach to

vehicle and crew scheduling. Technical Report 9503/A. Econometric Institute, Erasmus

University Rotterdam, Rotterdam.

Freling, R., Huisman, D., and Wagelmans, A. P. M. (2003). Models and algorithms for

integration of vehicle and crew scheduling. Journal of Scheduling, 6(1):63ś85.

Freling, R., Wagelmans, A. P. M., and Paixão, J. M. P. (1999). An overview of models

and techniques for integrating vehicle and crew scheduling. Computer-Aided Transit

Scheduling, 471:441ś460.

Gaffi, A. and Nonato, M. (1999). An integrated approach to ex-urban crew and vehicle

scheduling. In Computer-Aided Transit Scheduling, pages 103ś128. Springer Verlag,

Berlin, Germany.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., San Francisco.

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual.

Haase, K., Desaulniers, G., and Desrosriers, J. (2001). Simultaneous vehicle and crew

scheduling in urban mass transit systems. Transportation Science, 35(3):286ś303.

Hansen, P., Mladenović, N., Brimberg, J., and Pérez, J. A. M. (2019). Variable neighbor-

hood search. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuristics,

pages 57ś97. Springer International Publishing, Cham.

Hansen, P., Mladenović, N., Todosijević, R., and Hanaő, S. (2017). Variable neighborhood

search: basics and variants. EURO Journal on Computational Optimization, 5(3):423ś

454.

Bibliography 89

Horváth, M. and Kis, T. (2019). Computing strong lower and upper bounds for the

integrated multiple-depot vehicle and crew scheduling problem with branch-and-price.

Central European Journal of Operations Research, 27(1):39ś67.

Huisman, D. (2003). Random data instances for multiple-depot vehicle and crew schedul-

ing, accessed Sept. 6, 2019. http://people.few.eur.nl/huisman/instances.htm.

Huisman, D. (2004). Integrated and dynamic vehicle and crew scheduling. Ph.D. thesis,

Erasmus University of Rotterdam, The Netherlands.

Huisman, D., Freling, R., and Wagelmans, A. P. M. (2004). A robust solution approach

to the dynamic vehicle scheduling problem. Transportation Science, 38(4):447ś458.

Huisman, D., Freling, R., and Wagelmans, A. P. M. (2005). Multiple-depot integrated

vehicle and crew scheduling. Transportation Science, 39(4):491ś502.

Hussain, K., Salleh, M., Cheng, S., and Shi, Y. (2019). Metaheuristic research: a com-

prehensive survey. Artiőcial Intelligence Review, 52:2191ś2233.

Ibarra-Rojas, O. J., Delgado, F., Giesen, R., and Muñoz, J. C. (2015). Planning, opera-

tion, and control of bus transport systems: A literature review. Transportation Research

Part B: Methodological, 77:38ś75.

Jourdan, L., Basseur, M., and Talbi, E.-G. (2009). Hybridizing exact methods and meta-

heuristics: A taxonomy. European Journal of Operational Research, 199(3):620ś629.

Kang, L., Chen, S., and Meng, Q. (2019). Bus and driver scheduling with mealtime

windows for a single public bus route. Transportation Research Part C: Emerging

Technologies, 101:145ś160.

Kirkman, F. (1968). Problems of innovation in the transport industry: a bus scheduling

program. In Proceedings of PTRC Public Transport Analysis Seminar, Planning and

Transport Research and Computation Co. Ltd., volume 1, pages 1ś15.

Kliewer, N., Amberg, B., and Amberg, B. (2012). Multiple depot vehicle and crew schedul-

ing with time windows for scheduled trips. Public Transport, 3:213ś244.

Kliewer, N., Mellouli, T., and Suhl, L. (2006). A time-space network based exact optimiza-

tion model for multi-depot bus scheduling. European Journal of Operational Research,

175(3):1616 ś 1627.

Kulkarni, S., Krishnamoorthy, M., Ranade, A., Ernst, A. T., and Patil, R. (2018). A new

formulation and a column generation-based heuristic for the multiple depot vehicle

scheduling problem. Transportation Research Part B: Methodological, 118:457ś487.

Bibliography 90

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete program-

ming problems. Econometrica, 28(3):497ś520.

Laurent, B. and Hao, J. (2008). Simultaneous vehicle and crew scheduling for extra urban

transports. In New Frontiers in Applied Artiőcial Intelligence, pages 466ś475.

Liang, M., Wang, W., Dong, C., and Zhao, D. (2020). A cooperative coevolutionary

optimization design of urban transit network and operating frequencies. Expert Systems

with Applications, 160.

López-Ibáñez, M., Cáceres, L. P., Dubois-Lacoste, J., Stützle, T., and Birattari, M.

(2016a). The irace package: User guide. IRIDIA, Université Libre de Bruxelles, Bel-

gium, Tech. Rep. TR/IRIDIA/2016-004.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle, T.

(2016b). The irace package: Iterated racing for automatic algorithm conőguration.

Operations Research Perspectives, 3:43ś58.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search: Framework

and applications. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuris-

tics, pages 363ś397. Springer US, Boston, MA.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2019). Iterated local search: Framework

and applications. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuris-

tics, pages 129ś168. Springer International Publishing, Cham.

Mahey, P., Mateus, G. R., Ravetti, M. G., and Souza, M. C. (2017). Optimization in

networks: Modeling, algorithms and applications, accessed jan. 28, 2022. Pesquisa

Operacional [online], 37(3):435ś436.

Maniezzo, V., Boschetti, M. A., and Stützle, T. (2021). Matheuristics: Algorithms and

Implementations. EURO Advanced Tutorials on Operational Research. Springer, Cham,

1 edition.

Marsten, R. E. and Shepardson, F. (1981). Exact solution of crew scheduling problems

using the set partitioning model: Recent successful applications. Networks, 11(2):165ś

177.

Mesquita, M., Moz, M., Paias, A., and Pato, M. (2013). A decomposition approach for

the integrated vehicle-crew-roster problem with days-off pattern. European Journal of

Operational Research, 229(2):318ś331.

Mesquita, M. and Paias, A. (2008). Set partitioning/covering-based approaches for the

integrated vehicle and crew scheduling problem. Computers and Operations Research,

35(5):1562ś1575.

Bibliography 91

Mingozzi, A., Boschetti, M. A., Ricciardelli, S., and Bianco, L. (1999). A set partitioning

approach to the crew scheduling problem. Operations Research, 47(6):873ś888.

Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A.,

Suganthan, P. N., Coello Coello, C. A., and Herrera, F. (2021). A tutorial on the design,

experimentation and application of metaheuristic algorithms to real-world optimization

problems. Swarm and Evolutionary Computation, 64:100888.

PassMark Software Pty Ltd (1998). Cpu benchmark website, accessed jan. 18, 2021.

https://www.cpubenchmark.net.

Patrikalakis, I. and Xerocostas, D. (1992). A new decomposition scheme of the urban pub-

lic transport scheduling problem. In Computer-Aided Transit Scheduling: Proceedings

of the Fifth International Workshop, pages 407ś425.

Pepin, A., Desaulniers, G., Hertz, A., and Huisman, D. (2008). A comparison of őve

heuristics for the multiple depot vehicle scheduling problem. Journal of Scheduling,

12:17ś30.

Perumal, S. S. G., Dollevoet, T., Huisman, D., Lusby, R. M., Larsen, J., and Riis, M.

(2021). Solution approaches for integrated vehicle and crew scheduling with electric

buses. Computers & Operations Research, 132:105268.

Puchinger, J. and Raidl, G. R. (2005). Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classiőcation. In Mira, J. and Álvarez, J. R.,

editors, Artiőcial Intelligence and Knowledge Engineering Applications: A Bioinspired

Approach, pages 41ś53, Berlin, Heidelberg. Springer Berlin Heidelberg.

Raidl, G. R. (2015). Decomposition based hybrid metaheuristics. European Journal of

Operational Research, 244(1):66ś76.

Saha, J. L. (1970). An algorithm for bus scheduling problems. Operational Research

Quarterly, 21:463ś474.

Simões, E. M. L., Mateus, G. R., and Souza, M. J. F. (2011). Algoritmo para programação

integrada de veículos e tripulações no sistema de transporte público por ônibus. In XLIII

Simpósio Brasileiro de Pesquisa Operacional, pages 1459ś1471, Ubatuba-SP.

Sörensen, K., Sevaux, M., and Glover, F. (2018). A history of metaheuristics. In Martí,

R., Pardalos, P. M., and Resende, M. G. C., editors, Handbook of Heuristics, pages

791ś808. Springer International Publishing, Cham.

Steinzen, I. (2007a). Instances for integrated vehicle and crew scheduling problems with

multiple depots, accessed Sept. 6, 2019. http://dsor.uni-paderborn.de/index.php?

id=bustestset&L=0.

Bibliography 92

Steinzen, I. (2007b). Topics in integrated vehicle and crew scheduling in public transport.

Unpublished doctoral dissertation, University of Paderborn, Paderborn, Germany.

Steinzen, I., Becker, M., and Suhl, L. (2007). A hybrid evolutionary algorithm for the

vehicle and crew scheduling problem in public transit. In 2007 IEEE Congress on

Evolutionary Computation, pages 3784ś3789.

Steinzen, I., Gintner, V., Suhl, L., and Kliewer, N. (2010). A time-space network ap-

proach for the integrated vehicle- and crew-scheduling problem with multiple depots.

Transportation Science, 44(3):367ś382.

Stützle, T. and Ruiz, R. (2018). Iterated local search. In Marti, R., Pardalos, P., and

Resende, M., editors, Handbook of heuristics, pages 579ś605. Springer, Cham.

Tahir, A., Desaulniers, G., and El Hallaoui, I. (2019). Integral column generation for the

set partitioning problem. EURO Journal on Transportation and Logistics, 8(5):713ś744.

Talbi, E.-G. (2016). Combining metaheuristics with mathematical programming, con-

straint programming and machine learning. Annals of Operations Research, 240(1):171ś

215.

Wolsey, L. A. (2020). Integer programming. John Wiley & Sons, Ltd.

Wren, A. (1972). Bus scheduling: an interactive computer method. Transportation Plan-

ning and Technology, 1:115ś122.

Wren, A. (1981). Computer Scheduling of Public Transportation: Urban Passenger Vehicle

and Crew Scheduling. Elsevier Science Inc.

	1 Introduction
	1.1 Motivation
	1.2 Purpose of the Thesis
	1.3 Text Organization

	2 Literature Review
	2.1 Related Work
	2.2 Combinatorial Optimization Techniques
	2.2.1 Local Search
	2.2.1.1 Variable Neighborhood Descent

	2.2.2 Metaheuristics
	2.2.2.1 Iterated Local Search

	2.2.3 Branch-and-Bound
	2.2.4 Matheuristics

	2.3 Combinatorial Optimization Problems
	2.3.1 Minimum Cost Flow Problem and Multicommodity Flow Problem
	2.3.2 Set Partitioning Problem

	3 Multiple-Depot Vehicle and Crew Scheduling Problem
	3.1 Problem Definition
	3.2 Modeling Approach
	3.2.1 A Literature Modeling Approach for the MDVCSP
	3.2.1.1 Time-Space Network for the MDVSP
	3.2.1.2 Mathematical Formulations for the MDVSP and MDVCSP

	3.2.2 Proposed Modeling Approach for the MDVSP and MDVCSP
	3.2.2.1 Proposed Time-Space Network for the MDVSP
	3.2.2.2 Proposed Mathematical Formulations for the MDVSP and MDVCSP

	3.3 Solution Approach
	3.3.1 Solution Representation
	3.3.1.1 Solution Representation for the MDVSP
	3.3.1.2 Solution Representation for the CSP
	3.3.1.3 Solution Representation for the MDVCSP

	3.3.2 Neighborhood Structures
	3.3.2.1 MDVSP Neighborhood Structures
	3.3.2.2 CSP Neighborhood Structures

	3.3.3 Evaluating Function
	3.3.4 Matheuristic Algorithm for the MDVCSP
	3.3.5 Heuristic Methods for the CSP
	3.3.5.1 Heuristic Methods for Generating the Pieces of Work
	3.3.5.2 Heuristic Method for Inserting a Piece of Work Into Crew Schedule
	3.3.5.3 Heuristic Method for Generating an Initial Solution for the CSP
	3.3.5.4 Heuristic Method of Local Search for the CSP

	4 Computational Experiments
	4.1 Literature Instances
	4.1.1 Instances Description
	4.1.2 Parameter Settings
	4.1.3 Results

	4.2 Belo Horizonte Instances
	4.2.1 Instances Description
	4.2.2 Results

	5 Conclusions
	Bibliography

