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Abstract: The benefits of using mobile sinks or data mules for data collection in Wireless Sensor
Network (WSN) have been studied in several works. However, most of them consider only the WSN
limitations and sensor nodes having no more than one data packet to transmit. This paper considers
each sensor node having a relatively larger volume of data stored in its memory. That is, they have
several data packets to send to sink. We also consider a drone with hovering capability, such as
a quad-copter, as a mobile sink to gather this data. Hence, the mobile collector eventually has to
hover to guarantee that all data will be received. Drones, however, have a limited power supply
that restricts their flying time. Hence, the drone’s energy cost must also be considered to increase
the amount of collected data from the WSN. This work investigates the problem of determining the
best drone tour for big data gathering in a WSN. We focus on minimizing the overall drone flight
time needed to collect all data from the WSN. We propose an algorithm to create a subset of sensor
nodes to send data to the drone during its movement and, consequently, reduce its hovering time.
The proposed algorithm guarantees that the drone will stay a minimum time inside every sensor
node’s radio range. Our experimental results showed that the proposed algorithm surpasses, by up
to 30%, the state-of-the-art heuristics’ performance in finding drone tours in this type of scenario.

Keywords: wireless sensor network; WSN; mobile sink; path planning; UAV

1. Introduction

Wireless Sensor Network (WSN) is a computer network composed of small devices called sensor
nodes. These devices are spatially distributed to monitor physical or environmental conditions to
detect some phenomena located around them. They communicate by radio and can relay packets
received from other nodes to forward them to a special node called sink, which is the interface with
the users. Hence, these nodes create multihop networks to support many applications that require
unattended operations. Traditionally in the literature, the major challenge for this kind of network is
collecting, gathering, storage, and processing sensed data in an energy-efficient way since each sensor
node has a battery as its energy supply [1]. A well-known strategy to reduce energy consumption and
extend the WSN lifetime is adopting a mobile collector. As defined here, the term mobile collector
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is correlated to the terms mobile sink [2] or data mule [3] found in the literature. It consists of a
particular node able to move within the area monitored by the WSN to gather data from the sensor
nodes. Compared with the fixed collector, mobile collectors better distribute the sensor nodes’ energy
consumption, avoiding premature disconnections. Furthermore, it decreases the energy consumption
since the average size of the path followed by each data packet is reduced. The literature presents
several works that consider mobile collectors in WSNs, such as [4–11].

A WSN can generate a very large volume of data due to the high number of devices scattered
across vast geographic areas or the relatively significant volume of data stored in each sensor node [8].
According to [9], this is called Big Data, and the traditional data processing algorithms are inadequate
to manipulate it. Despite our research efforts, almost all studies in the literature do not guarantee
that the mobile collector will stay a minimum time covered by every sensor node’s radio to receive a
large volume of data. Furthermore, the analyzed works only consider WSN limitations. The mobile
collectors have no restrictions; that is, paths followed by these collectors have no length limitation.
The collector can stop at any place inside the monitored area, and they have no time limitation to
complete their trips for data gathering.

This work considers a drone with hovering capability (such as quad-copters) as a mobile collector
and WSNs composed of sensor nodes with many data packets to transmit to the mobile collector
(Big Data), as in [12]. The problem studied here is how to find a drone tour that minimizes the data
gathering time. We focus on finding drone trajectories to reduce the drone’s time to gather all data
stored in the sensor node memories. This type of drone can hover over any point in the monitored
area. However, they have limited flying time due to their batteries. Hence, the algorithms for Big Data
Gathering must consider both limitations of the sensor nodes and mobile collectors. Since each sensor
node has a large volume of data stored in their memory, the drone must stay at least a minimum time
inside each sensor node’s radio range to receive all data. Hence, we assume the drone eventually
has to hover over some locations to perform the total data gathering. The majority of related works
found in the literature consider sensor nodes having only a single data package to transmit. Therefore,
the mobile collector does not need to stop for data gathering, and they do not consider the minimum
time it must stay inside the sensor nodes’ radio range.

Silva and Nascimento [12] proposed two heuristics to define a sequence of points (hovering points)
where the drone has to hover to gather data and the subset of sensor nodes that will send its data to the
drone over each hovering point. They considered that sensor nodes contain a relatively large volume
of data stored in their memories. The drone only receives data packets when it is hovering; there is no
transmission when the drone is moving. This strategy guarantees that the mobile collector will stay a
minimum time inside each sensor node’s radio range to receive all data. The proposed heuristics aim
to reduce the overall time for data gathering since the drone has limited flight time.

This work proposes to improve the heuristics presented by Silva and Nascimento [12] by
considering data gathering also during the drone movement. We also focus on reducing the drone
data gathering time. The algorithm proposed here uses the strategies presented in the mentioned work
to define the sequence of hovering points where the drone has to hover to gather data. However, our
algorithm defines a subset of sensor nodes that will send data packets to the drone when traveling
between each hovering point pair. We guarantee that the drone will stay at least a time long enough
to receive all data packets sent from every sensor node in the path during the movement. Using this
strategy, the drone reduces the hovering time and the overall time for data gathering.

The remainder of this paper is organized as follows. Next, we reviewed some related works.
In Section 3, the problem is defined. Section 4 describes how to model the problem as graphs
and Section 5 presents the heuristics proposed by [12]. Section 6 describes the proposed algorithm.
Section 7 presents the simulation results to evaluate our proposal. Finally, Section 8 presents our
conclusions and future works.
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2. Related Works

There are several types of research about mobile collectors in WSN. Some of them focused on data
gathering in large scale WSN. However, most of them only focus on network energy-saving and do
not consider the mobile collector’s limitations. Furthermore, they do not consider sensor nodes storing
a large volume of data to send to the mobile collector.

Wang et al. [13] present an algorithm for data collection based on neural networks. The algorithm
first divides the sensor field into several equal squares to create clusters, and each cluster selects a
cluster head (CH). Then, the cluster members transmit data to their corresponding CH, directly or
using relay nodes. Data fusion is conducted on each CH by using a pretrained neural network when
the CH receives data from all its members. Finally, the merged data is sent to the mobile collector.
However, the authors do not consider the amount of data to be transmitted by each sensor or the drone
battery’s limitation.

Zhang et al. [14] focused on the data gathering problem of maximizing the volume of information
obtained by a mobile sink from rechargeable sensor nodes. The sensor nodes store data collected from
the environment and harvest energy from the sun or wind. The mobile sink has to move on a straight
road within the monitored area to gather the highest possible volume of data, considering sensor
nodes with different energy levels. The authors proposed the Distributed Data Gathering Approach
(DDGA), a distributed algorithm to obtain the near-optimal solution by generating data gathering
routes. However, they do not control the sink movement to optimize energy consumption.

Pang et al. [15] developed a scheme for collaborative data collection using multiple mobile nodes
(MN) as a sink. The randomly arranged sensor nodes are divided into clusters, and manually the
cluster heads (CH) are positioned in the center of each cluster, with higher energy levels. The CHs
receive and store data from all nodes in their respective clusters and wait for an MN to send data.
This work studies routing strategy and path planning for multiple MNs to reduce network energy
consumption. However, the authors do not consider the amount of data sent by each sensor node.
Hence, they do not guarantee that the MNs will stay a minimum time inside each CH’s radio range.

Xu et al. [10] proposed the Data Quality Maximization (DQM) routing protocol to transmit data
to a mobile collector. This protocol assumes the mobile sink movement’s predictability and selects as
gateways the sensor nodes adjacent to the path followed by the collector. The sensor nodes use the
Floyd-Warshall algorithm [16] to establish the shortest data path between each node and the closest
gateway. The gateways aggregate received data and wait until the mobile is close enough to transmit.
The authors consider the mobile sink moving with constant speed; hence the sink does not have time
to receive a large volume of data.

Khan et al. [17] proposed an algorithm based on virtual grids to divide the WSN into clusters and
define routes to deliver data to the mobile sink. Each cluster elects a node as its cluster head, which is
responsible for receiving data from the other nodes in the cluster. The cluster heads together form
a backbone to relay data to the mobile sink, which moves counterclockwise inside the sensor field.
The uthors focused on reducing the network energy consumption by defining the data routes from the
backbone to the mobile sink in constant movement.

Chen et al. [18] proposed algorithms to schedule data mules dispatching for data gathering in
WSN. They proved that the problem can be solved by linear time complexity algorithms when the
handling time is uniform and that the problem is NP-Complete when the handling time is nonlinear.
Hence, the article proposed a linear algorithm and an approximate algorithm (with a guaranteed
approximation ratio) to solve the analyzed problem. However, they focused on reducing the number
of data mules to gather data and did not consider the data mule limitation.

He et al. [11] proposed a mobile sink trajectory algorithm to reduce the delay for data delivery
and prolong the network lifetime. It shortens the trajectory length of the mobile sink and balances
the load of rendezvous nodes. This algorithm is based on multiobjective particle swarm optimization.
To shorten the mobile sink’s trajectory length, the authors designed a mechanism to select potential
visiting points within communication overlapping ranges of sensor nodes. Additionally, according to
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the mobile sink’s trajectory characteristics, they designed an effective trajectory encoding method to
generate a trajectory containing an unfixed number of visiting points. Hung et al. [19] also proposed a
mobile sink trajectory algorithm. However, they focused on reducing the network energy consumption
for data gathering. This algorithm is based on LEACH_C to create clusters and on Dijkstra to define
the mobile sink trajectory. The authors of both works did not consider the limitation of the mobile
collector. Furthermore, they consider sensor nodes with only one data packet to send.

Hou et al. [20] proposed an algorithm to define the tour followed by mobile sinks to collect
data from WSNs. It also creates a virtual grid to divide the nodes into clusters, each with a cluster
head. The proposed algorithm defines where the sink has to go after each data gathering. The author
mentioned that one of the major problems is the mobile sink’s slow speed, which demands too much
time to collect all data. They consider a sink with no trip distance limitation.

Takaishi et al. [21] also considered mobile collectors for data collection in large-scale WSN.
They proposed a clustering algorithm to calculate the optimal number of cluster members to minimize
energy consumption. However, again they do not care about the limitation of the battery of the
mobile collector.

Finally, Ang et al. [8] proposed an analytical model to determine sensor nodes’ energy
consumption in large-scale WSN using mobile collectors. They proposed a model to determine
how nodes are divided into clusters to minimize energy consumption. In this work, the WSNs are
disconnected, that is, they are subdivided into groups of geographically separated nodes. So, the nodes
of a group do not communicate with other groups. They consider neither the mobile collector
limitations nor nodes storing a large volume of data.

3. Problem Definition

The problem considered here consists of minimizing the overall data gathering time Ttotal of
a drone as mobile collectors in a WSN with a large volume of data stored in its sensor nodes (Big
Data). It is named here GBD (Gathering Big Data from WSNs). As input data, we consider M as a 2D
rectangular monitored field whose area is a× l, infinite points inside it and S = {s1, s2, . . . , s|S|} a set
of randomly distributed points in M, which correspond to the location of fixed sensor nodes, such as
shown in Figure 1a. We also assumed each sensor node knows its own location. Moreover, each node
has m bits of data stored in its flash memory to send to the drone. The radio range is r meters, and the
link bandwidth is b bps. Consequently, each sensor node needs m

b seconds to send the data stored in
its memory to the drone.

The output or solution for the GBD problem is composed of P, Ssubsets and Dmov. P is a sequence of
points P = (p1, p2, . . . , p|P|) where the drone has to hover to gather data (hovering points). P defines a
tour to be followed by the drone. However, the drone must start and finish its tour in the point p0 = 0, 0.
Ssubsets = {N1, N2, . . . , N|P|} is composed of subsets of sensor nodes. Each subset represents the group
of sensor nodes that have to send their data to the drone over a hovering point in P. The nodes
belonging to the subset N1 will send their data when the drone is hovering over the point p1. Nodes in
N2 send data to the drone over p2 and so forth. Dmov = {d0↔1, d1↔2, d2↔3, . . . , d|P|↔0} is composed of
subsets of sensor nodes that will send their data to the drone when it is moving. The sensor nodes
in the subset d0↔1 have to send data to the drone when it is flying between the points p0 and p1,
the subset d1↔2 has to send data to the drone traveling from p1 to p2, and so forth. Analyzing the
output, Ssubsets ∪ Dmov = S and Ssubsets ∩ Dmov = ∅.

Figure 1b presents an example of an output: P = (p1, p2, p3), Ssubsets = {{s1, s4}, {s8, s9}, {s6, s10}}
and Dmov = {{s2}, {s3, s5}, {s7}, {}}. After receiving the sequence of points P, the drone begins its
tour through the point p0 = (0, 0) and flies to the point p1. During this part of the tour, the drone
receives data from the sensor node in the subset d0↔1 = {s2}. Hence, the drone hover over p1 to gather
data from the subset of nodes N1 = {s1, s4} and moves to the next point p2. During this movement,
it receives data from the sensor nodes in the subset p1−2 = {s3, s5}. Then, the drone hovers over p2
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to gather data from N2 = {s8, s9} and repeats this operation until the data from all sensor nodes is
collected. At the end of the tour, the drone returns to the point p0.

Figure 1. (a) a set of sensor nodes. (b) Example of output: a sequence of hovering points where
the drone has to hover, a subset of sensor nodes to send data to the drone over each hovering point,
and a subset of sensor nodes to send data to the drone during its movement between each pair of
hovering points.

We define Ttotal as the drone’s overall time to follow the sequence of hovering points in P and
gather all data from all sensor nodes’ memories. This time is calculated according to Equation (1):

Ttotal = Ttrip + Tcollecting (1)
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where Ttrip is the time the drone spend moving from p0, following each point in P and returning to
p0. Ttrip considers only the drone movement; hence, it depends on the drone speed and the distance
between each couple of hovering points in the sequence defined by P. Tcollecting is the time the drone
spends hovering over the points in P to collect all data from the nodes in Ssubsets. The following
equation defines it:

Tcollecting = Tallnodes − Tmoving (2)

In Equation (2), Tmoving is the time the drone spends receiving data when it is moving. In other
words, it is the time needed to collect data from the sensor nodes in Dmov. Tallnodes it the time to receive
data from all sensor nodes without considering drone movement during the data gathering. Tallnodes is
calculated by finding the shortest path between each sensor node and one of the hovering points in P,
summing the size in hops of each path, and multiplying it by the time spent by a sensor node to send
all data in its memory on one hop.

The heuristics proposed by Silva and Nascimento [12] do not consider the drone gathering data
when it is moving, hence Tcollection = Tallnodes. The main contribution of our work is to consider data
gathering during the drone movement. The algorithm proposed here keeps the same Ttrip found in
the aforementioned work and reduces Tcollection by Tmoving, according to Equation (2). Figure 2 presents
an example of output created by the heuristics proposed by Silva and Nascimento [12]. Figure 1b
presents an example of output created by the algorithm proposed here. We can verify that the proposed
algorithm reduces the time the drone has to hover to gather data and, consequently, reduces Ttotal.
Summarizing, the problem here is how to increase Tmoving in order to decrease Ttotal.

Figure 2. Example of output created by Silva and Nascimento [12].

The GBD problem belongs to the NP-hard class since it has, as a particular case, the Traveling
Salesman Problem (TSP), which is NP-hard [22]. In fact, in this analogy, it is enough to consider each
city as one point in P and the traveling salesman as the drone with sufficient capacity to collect all
sensor nodes’ data. The drone must exit from p0 and go through all the points to collect the information
and return to p0 traveling the shortest path.

In Table 1, we present the notations for this problem.
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Table 1. Problem Notation.

Notation Description

b The bandwidth of a link between sensor nodes or between a drone and a sensor node

CG Connecting Graph, CG = (V, E) such that V is the set of vertices representing PDPs and the sensor
nodes, and E is the set of edges representing communication links between the sensor nodes and the
drone over a PDP

di↔i+1 Subset of sensor nodes that send data to the drone when it is flying between two consecutive hovering
points pi and pi+1 in a tour

Dmov Set of subsets of sensor nodes that have to send data to the drone when it is moving

disti The Euclidean Distance of the sensor node si to the path (line) between two consecutive hovering
points in a tour

E Set of edges representing communication links between the sensor nodes and the drone over a PDP in
the Connecting Graph

F Set of edges representing the shortest distance between every pair of PDPs in the Trip Graph

m Amount of data stored in the memory of each sensor node

M 2D rectangular monitored area

Nj Subset of sensor nodes that have to send data to the drone when it is over the hovering point pj

p0 Initial and final point in the drone tour, p0 = 0, 0

pj Hovering point in the drone tour, pj ∈ P

P Sequence of hovering points forming a tour, P ⊆ Pgrid

Pgrid Set of all PDPs forming a grid
PDP Possible Drone Points where the drone can hover to gather data

r Radio range of the sensor nodes and the drone

Ri The i-th tour created in the i-th iteration of the heuristics

si A sensor node, si ∈ S

S Set of all sensor nodes

Ssubsets Set of subsets of sensor nodes; a set for each hovering point in P

Tallnodes Time to drones receive data from all sensor nodes, without considering the drone movement

Tcollecting Collecting time: it is the time the drone spends hovering to gather data

Tmoving Time the drone spends receiving data when it is moving

Ttotal Overall data gathering time

Ttrip Trip time, is the time the drone spend in movement

TG Trip Graph, TG = (Pgrid, F). F is the set of edges linking PDPs, the weights are the Euclidean distance

trs The minimal distance the drone has to fly inside the area covered by the radio of a sensor node to
enable this node to send all m bits of data to the drone or to relay nodes

V Vertices representing all sensor nodes and the PDPs in the Connecting Graph

wj Weight attributed to PDPj according to Equation (3)

4. Modeling the GBD Problem

Since the monitored area is composed of an infinite set of points (M), we defined Pgrid as a finite
set of points where the drone can hover to gather data. These points are named Possible Drone Points
(PDP), such that Pgrid = {PDP1, PDP2, . . . , PDP|Pgrid|} and Pgrid ⊂ M. The PDPs form a grid inside the

monitored area. The distance between two adjacent PDPs horizontally or vertically is r
√

2 meters,
where r is the radio range of the sensor nodes (same as the drone). Figure 3 illustrates a monitored
area, a set of PDPs forming a grid and the radio range. In this way, if a drone hovers over all PDPs in
Pgrid, we guarantee that the drone can establish direct communication with all sensor nodes inside the
monitored area.
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Figure 3. Finite set of points, named Possible Drone Points (PDPs), forming a grid. The drone can
hover over these points for data gathering.

The problem of gathering big data in WSNs was modeled by Silva and Nascimento [12] using
two graphs, named Trip Graph (TG) and Connectivity Graph (CG).

TG = (Pgrid, F), where Pgrid is the set of all PDPs and F is a set of edges that represents the shortest
distance between every pair of two PDPs. The Euclidean distance between two PDPs is the weight of
each edge. Ttrip is calculated by using TG.

The Connectivity Graph represents the data paths between the drone hovering over each PDP and
every sensor node. CG = (V, E), where V is a set of vertices that represents the sensor nodes and the
PDPs, such that V = S ∪ Pgrid. E is a set of edges. Each edge represents the data path between the
drone over a PDP in Pgrid and a sensor node. Each vertex representing a PDP is connected to every
vertex representing sensor nodes by an edge, which has a weight representing the distance in hops
between them (One hop is a link of direct communication between two sensor nodes or between a
sensor node and the drone. A path with two hops has three sensor nodes: a source, a destination,
and a node between these two to relay packets.). There is no edge connecting vertex representing
sensor nodes.

Figure 4a shows an example of a WSN and Figure 4b the correspondent CG. Figure 4a
presents a WSN composed of three sensor nodes (S = {s1, s2, s3}) and four PDPs
(Pgrid = {PDP1, PDP2, PDP3, PDP4}). Figure 4a also shows all possible links of communications
between two sensor nodes and between the drone over every PDP and the sensor nodes. The CG
presented by Figure 4b has weights on each edge. These weights represent the distance in hops
between the drone over a PDPs and a sensor node. Let us take the sensor node s3 as an example. It has
three edges, two of them have weight 1. These edges represent possible direct communication between
s3 and the drone hovering over PDP3 and PDP4. The other edge of s3 has weight 3, representing a data
path with 3 hops linking s3 and PDP1 (s3 −→ s2 −→ s1 −→ PDP1).
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Figure 4. (a) Example of Wireless Sensor Network (WSN) and (b) correspondent Connectivity
Graph (CG).

5. Heuristics for the GBD Problem

Silva and Nascimento [12] proposed two heuristics, named Incremental and Decremental, to treat
the GBD problem. They create tours composed of a sequence of hovering points, where the drone
hovers to gather data from the sensor nodes. The drone does not receive data when it is moving
between two hovering points. Here, we propose to improve these heuristics by considering data
gathering during the drone movement. The improvement proposed here starts from a tour created
by any of these heuristics and seeks subsets of sensor nodes that will send data to the drone when
it is moving. Hence, it is essential to describe these heuristics to understand the improvements
proposed here.

The Incremental and Decremental heuristics have a construction phase to create a new solution in
each loop iteration and a local search phase to improve the current solution. Both heuristics stop their
loop iteration when the current solution is not better than the last one. Both follow the well-known
Proximate Optimality Principle [23]. According to POP, “good solutions at one level are likely to
be found close to good solutions at an adjacent level”. Here, the term level refers to a stage of the
constructive process. In the following, Section 5.1 describes the Incremental Heuristic and Section 5.2
the Decremental Heuristic.

5.1. Incremental Heuristic

The Incremental Heuristic creates a drone tour at each loop iteration. The first tour R1 is composed
of only one PDP. Then, it performs the local search to improve R1 (described in Section 5.3). In the
second iteration, the heuristic adds a new PDP to R1 in order to create the tour R2 (composed of two
PDPs) and performs the local search again. In other words, at each iteration a new PDPj is added
to the tour (Ri+1 = Ri ∪ PDPj), the local search is performed over this tour and Ttotal is calculated.
The algorithm ends when the Ttotal value does not decrease further with the addition of a new PDP in
the tour.

The algorithm creates a weight wj for each PDP in Pgrid. At each iteration, it chooses a PDP to add
to Ri as the PDP with the highest wj. However, the chosen PDP must be at least 2r away from the
other PDPs in Ri. If there is no PDP with this characteristic, the minimum distance will be divided by
2. Using this strategy, this algorithm avoids PDPs close to each other in Ri. The weight wj is calculated
according to Equation (3):

wj =
z

∑
h=1

hoph
h

(3)
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where hoph is the number of sensor nodes in CG that are connected to the PDP pj by edges with weight
equal to h, and z is the biggest weight of the edges that link PDPj to the sensor nodes in CG. Since
the weights of the edges in CG correspond to the distance in hops between a sensor node and the
drone over PDPj, the PDPs on crowded regions receive the highest weight. Figure 5a presents how
to calculate the weight of each PDP. As an example, the drone over the PDP1 uses one hop (direct
communication) to communicate with two sensor nodes, two hops to communicate with one node,
three hops to communicate with two nodes, and four hops to communicate with one sensor node.
Hence, the weight of the PDP1 is w1 = 2

1 + 1
2 + 2

3 + 1
4 = 3.41.

The Incremental algorithm works according to Algorithm 1. The lines 6 and 20 are not in the
original Incremental algorithm. We added them to this pseudocode to show how to use the proposed
algorithm. Incremental receives as parameters the set S with the locations of all sensor nodes, the set of
all PDPs in Pgrid, the amount of data stored in each sensor node m, the network bandwidth b, and the
drone speed dspeed. In line 2, the variable that will store the best Ttotal is initialized with infinity. In lines
3 and 4, the set forming the best drone tour P and the set with the data paths between sensor nodes
and each hovering point in P are initialized to empty. In line 5, the variable route also receives empty; it
stores the tour created at each iteration. As aforementioned, the line 6 is not in the original Incremental
algorithm. We put this line in the pseudocode to show how to use the proposed algorithm for Big Data
Gathering During Drone Movement. In this line, we initialized the set of subsets of sensor nodes that
have to send data to the drone when it is moving. The Connecting Graph (CG) and the Trip Graph
(TG) are created in lines 7 and 8. The counter i is initialized with 0. It represents the amount of PDPs in
the current solution. Line 10 initializes the set Ri to empty, which will be increased with a new PDP at
each loop iteration.

From line 11 to 28, there is a loop, so that each iteration creates a new solution with one more
PDP than the last iteration. The line 12 includes in Ri the PDP returned by the function NewPDP().
This function chooses the PDP to be added. In line 13, the counter i is incremented. Ttotal is calculated
from line 14 to line 18. In line 19, the LSearch() function is called to perform the Local Search
algorithm (described in Section 5.3) in order to try to reduce the value of Ttotal calculated at each
iteration. When this function finds a smaller Ttotal , it also returns route, that is, the drone tour of the
current iteration, and st as the graph with the data routes between every sensor nodes and the PDP.
In line 20, the Ttotal is recalculated but now considering the data gathering with the drone in motion.
This calculation is not in the original Incremental algorithm, but it is used at this point to show how to
call the proposed algorithm for Big Data Gathering During Drone Movement.

From line 21 to 27, the algorithm evaluates if the current solution has a Ttotal value smaller than
the best solution value found so far. Otherwise, the loop is finished. The show function in line 29
reports P and Ssubsets as results. On the original result, we added Dmov that represents the result of the
algorithm proposed here.

As an example, consider the sensor network presented by Figure 5a, r = 60 m and the distance
between two PDPs is 84 m. Figure 5b presents the first iteration, that creates R1 = {PDP4},
since the PDP4 has the largest weight w4 = 4.83. Figure 5c presents the second iteration, that creates
R2 = {PDP4, PDP2}, that is, PDP2 has been added to R1 to form R2. PDP1 and PDP5 have weight
greater than PDP2 (w1 = 3.41, w5 = 4.33); however, they were not added to R1 since they are at distances
less than 2r.



Sensors 2020, 20, 6954 11 of 27

Figure 5. Example of how the Incremental Algorithm works. (a) Sensor nodes, PDPs and possible
direct communication between two sensor nodes and between sensor nodes and the drone hovering
each PDP. It also shows how to calculate the weights of each PDP. (b) First tour (R1 = {PDP4})
created at the first loop iteration. PDP4 has the biggest weight. (c) Second tour (R2 = {PDP2, PDP4})
created at the second loop interaction. PDP1 and PDP5 were not included to R2 because they are less
then 2r from PDP1.
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Algorithm 1 Incremental Heuristic.
1: procedure INCREMENTAL(S, Pgrid, m, b, dspeed)
2: besttime←− ∞
3: P←− �
4: Ssubsets ←− �
5: route←− �
6: Dmov ←− �
7: CG←− CreateCG(S, Pgrid)

8: TG←− CreateTG(Pgrid)

9: i←− 0
10: Ri ←− �
11: while i ≤ |Pgrid| do
12: Ri+1 ←− Ri ∪ {NewPDP(CG, Ri , TG)}
13: i←− i + 1
14: st←− SpanningTree(Ri , CG)

15: Tcollecting ←− CollectingTime(st, d, b)
16: route←− TSP(Ri , TG)

17: Ttrip ←− TripTime(route, TG, dspeed)
18: Ttotal ←− Tcollecting + Ttrip
19: Ttotal ←− LSearch(Ri , CG, TG, d, &st, &route)
20: Ttotal ←− CreateSubsets(P, S, dspeed, b, m, r, &Dmov)

21: if Ttotal < besttime then
22: besttime←− Ttotal
23: Ssubsets ←− st
24: P←− route
25: else
26: break
27: end if
28: end while
29: show(P, Ssubsets, Dmov)

30: end procedure

5.2. Decremental Heuristic

At each iteration, the Decremental heuristic reduces by one the number of PDPs in the tour
compared to the previous iteration and calculates Ttotal. The loop finishes when the tour has no PDPs
or when Ttotal increases if compared with the previous iteration. The first step of the Decremental
heuristic is to create the tour Ri composed of all vertices of CG that represents the PDPs and has at
least one edge connected to it. The variable i contains the amount of PDPs in Ri. At each iteration,
the algorithm removes a PDP from the tour Ri to create the tour Ri − 1 and calculates Ttotal. For each Ri,
the algorithm creates a graph st ⊆ CG, whose vertices are the PDPs in Ri and all sensor nodes. For each
sensor node in st, the algorithm creates an edge connecting this node to the closest PDP. The weights
of these edges are the distance in number of hops from every node to the PDP. st represents the data
paths of all sensor nodes and the drone hovering a PDP.

The heuristic chooses the PDP to be removed from Ri based on the impact of removal on the value
of Tcollecting. When PDPj is removed from Ri, the edges connecting it to the sensor nodes in st also
have to be removed. Hence, the nodes connected to PDPj must be connected to other PDPs. Thus, st
receives other edges from CG. The impact of removal is calculated by subtracting the sum of the new
edges’ weights from the sum of the weights of the removed edges.

Algorithm 2 presents the pseudocode of this heuristic. It receives as parameters the set S with the
locations of all sensor nodes, Pgrid the set of all PDPs, the amount of data stored in each sensor node m,
the links bandwidth b, and the drone speed dspeed.

In line 2, the variable besttime is initialized with infinity. It will store the best Ttotal. In lines 3 and 4,
the set forming the best drone tour P and the set with the data paths between sensor nodes and drone
Ssubsets are initialized to empty. In line 5, the set of subsets of sensor nodes that have to send data to the
drone when it is moving is initialized. This set is not part of the original Decremental algorithm. It is
used in the proposed algorithm for Big Data Gathering During Drone Movement. The Connecting
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Graph (CG) and the Trip Graph (TG) are created in lines 6 and 7. The SpanningTree() function is called
in line 8. It creates st, which is a graph with vertices representing the PDPs in the current tour (Ri) and
all sensor nodes. This graph has an edge for each sensor node, which represents the smallest data path
connecting each sensor node to a PDP in Ri. In line 9, the counter i is initialized with 0. It represents
the amount of PDPs in the current solution. In line 10, the set Ri is initialized to empty. It represents
the current solution at each loop iteration.

From line 11 to 16, there is a loop to create the first tour. It look at the graph st and adds to Ri only
the PDPs connected to at least one sensor node. At the end of this loop, Ri has no vertex representing a
PDP without edges and i has the amount of PDPs in Ri. The lines from 17 to 28 are the main loop of
the algorithm. At each iteration, it calculates Ttotal for the current solution Ri (lines 18–22), performs
the Local Search to verify if Ttotal can be reduced (line 23), and calls CreateSubsets() (line 24) to find the
sensor nodes that will send data to drone during its motion. This call is not in the original algorithm;
it is used at this point to show how to use the proposed algorithm for Big Data Gathering During
Drone Movement. Right after, Incremental checks and stores if Ttotal is the smallest one calculated so
far (lines 25 to 31 and removes one PDP from Ri to create the next solution Ri−1 (line 32). If Ttotal is
greater than the best value found so far, the loop finishes in line 30. The algorithm returns the best
solution found in line 35.

As an example, lets start with the graph st presented by Figure 6a. It has the shortest paths
between each sensor node and a PDP. This graph was created from the Connecting Graph presented
by Figure 4b. First, the Decremental heuristic creates the tour R3 = {PDP1, PDP3, PDP4}, such as
presented by Figure 6b. PDP2 was not considered because it has no edge connected to it. The first loop
iteration removes PDP4 and an edge connecting this PDP to a sensor node. Another edge is included
in the graph to keep the WSN connected. Since both edges have weight 1, the impact of the removal
of PDP4 is 0. Figure 6c presents the resulting graph. PDP1 is removed in the second loop iteration.
As shown in Figure 6d, PDP1 has an impact of removal equal to 1 (the smallest) since the heuristic
replaces an edge with weight 1 with another with weight 2. The heuristic stops in the next iteration.
The weights of the inserted edges are obtained in the Connecting Graph presented by Figure 4b.

Figure 6. Example of the Decremental Heuristic. (a) The graph representing the shortest path (in hops)
between each sensor node and a PDP. (b) The first tour R3 = {PDP1, PDP3, PDP4}. PDP2 was
removed because it has no edge connecting it to a sensor node. (c) The second tour R2 = {PDP1, PDP3}.
PDP4 was removed because its impact removal is the smallest, i.e., 0. (d) The third tour R1 = {PDP1}.
PDP3 was removed because its impact of removal is the smallest, i.e., 1.
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Algorithm 2 Construction Phase: Decremental Heuristic.
1: procedure DECREMENTAL(S, Pgrid, m, b, dspeed)
2: besttime←− ∞
3: P←− �
4: Ssubsets ←− �
5: Dmov ←− �
6: CG←− CreateCG(S, Pgrid)

7: TG←− CreateTG(grid)

8: st←− SpanningTree(Pgrid, CG)

9: i←− 0
10: Ri ←− �
11: for each v ∈ Pgrid do
12: if v ∈ st then
13: Ri ←− Ri ∪ {v}
14: i←− i + 1
15: end if
16: end for
17: while |Ri | > 0 do
18: st←− SpanningTree(Ri , CG)

19: Tcollecting ←− CollectingTime(st, d, b)
20: route←− TSP(Ri , TG)

21: Ttrip ←− TripTime(route, TG, dspeed)
22: Ttotal ←− Tcollecting + Ttrip
23: Ttotal ←− LSearch(Ri , CG, TG, d, &st, &route)
24: Ttotal ←− CreateSubsets(P, S, dspeed, b, m, r, &Dmov)

25: if Ttotal < besttime then
26: besttime←− Ttotal
27: Ssubstes ←− st
28: P←− route
29: else
30: break
31: end if
32: Ri ←− Ri \ {SmallRemovalImpact(Ri , st)}
33: i←− i− 1
34: end while
35: show(P, Ssubsets, Dmov)

36: end procedure

5.3. Local Search

Given a tour Ri, the Local Search phase tries to decrease Ttotal by exchanging each PDP in Ri
for one of its four neighbors in the grid (up, down, left and right). The Local Search chooses the
first PDP in Ri, replaces this PDP for one of its neighbors, calculates the new Ttotal and verifies if the
new value is the smallest so far. Then, it repeats these operations with the next PDP in Ri. Finally,
the algorithm returns the smallest Ttotal. The LSearch() function, in addition of returning Ttotal, also
returns by reference the sequence of PDPs, forming the new drone tour (bestroute) and bestst, the graph
with edges representing the new data paths. This function is called at each iteration of the Incremental
and Decremental heuristics. We verify this at line 23 of Algorithm 2 and line 19 of Algorithm 1.

Figure 7 exemplifies the Local Search. In (a), the initial tour Ri = {PDP3, PDP5} is presented.
In (b), the Local Search replaces PDP3 with its neighbor PDP2 and calculates Ttotal. In (c), it replaces
PDP3 with PDP6 and also calculates Ttotal. After that, the Local Search replaces PDP5 with each of
its neighbors (PDP2, PDP4, PDP6 and PDP8) and also calculates Ttotal for each exchange. The Local
Search returns the tour that provides the smallest Ttotal.
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Figure 7. Example of the Local Search. (a) The initial tour Ri = {PDP3, PDP5}. (b) PDP3 was replaced
by PDP2 and Ttotal is calculated. (c) PDP3 was replaced by PDP6 and Ttotal is calculated again. After that,
the Local Search replaces PDP5 with PDP2, PDP4 and PDP6; however, the given example does not
present it.

6. Algorithm for Big Data Gathering during Drone Movement

The algorithm proposed here receives a tour created by the Incremental or Decremental heuristics
and defines the sensor nodes that will send their data to the drone when it is moving. A tour created by
these heuristics is a sequence of hovering points and a subset of sensor nodes for each hovering point.
All nodes in a subset have to send data to the drone when it is over a hovering point. The proposed
algorithm creates a subset of sensor nodes for each path between two consecutive hovering points on
tour. The nodes in these subsets have to send their data to the drone during its movement. This reduces
the hovering time (here named Tcollecting) and consequently reduces the total time to gather all data (here
named Ttotal). Furthermore, the proposed algorithm guarantees that the drone will stay a minimum
time inside each sensor node’s radio range in these subsets. This time must be greater or equal to the
time each node needs to transmit all data stored in its memory.
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For instance, consider the example presented by the Figure 8. It shows the sensor nodes s1 and
s2 and two consecutive hovering points p1 and p2 that are part of a tour P created by one of these
heuristics. Each sensor node has r meter of radio range, m bits of data storage in its memory and link
with b bits per second. The algorithm proposed here has to create the subset of sensor nodes d1↔2,
such that during the drone flight from p1 to p2, it stays inside the radio range of all nodes in d1↔2 for
a period of time greater or equal to m

b seconds. Since we consider the drone flying straight to each
hovering point in constant speed dspeed, the path between p1 and p2 is a line. Figure 8 shows that
this line is totally out of the radio range of the sensor s1, but part of it is inside the radio range of the
sensor s2. Considering ds2 as the length of this part, the sensor s2 can be part of d1↔2 only if ds2 is long
enough to drone move over for at least m

b seconds. Node s1 is not in the subset d1↔2.
The example presented here has only two hovering points and two sensor nodes. However, a tour

created by the aforementioned heuristics can be composed of a sequence of several hovering points.
The algorithm proposed here analyzes each sensor node for each two consecutive hovering points
on tour.

Figure 8. Analyzing nodes to send data to the drone during movement.

6.1. Verifying If a Sensor Node Can Send Data during the Drone Flight

This subsection presents how to verify if a sensor node si can send data to a drone flying over
the path between the hovering points pa and pb, as exemplified by Figure 9. We consider that the
area covered by a sensor node’s radio is a circle with radius r and center in the sensor node position.
The time an object takes to travel a given distance at constant speed is the distance divided by the
speed. Hence, we define trs as the minimal distance the drone has to fly inside the area covered by a
sensor node to enable it to send data during the drone movement. The length of trs depends on the
drone speed (dspeed), the link bandwidth (m), and the amount of data stored in the memory of each
sensor node. Consequently, trs is calculated with the following equation:

trs =
m
b
× dspeed (4)

Let dsi be the part of the path pa-pb covered by the radio of the sensor node si. The length of dsi is
easily calculated by the following equation:

dsi = 2
√

r2 − (disti)2 (5)

where disti is the Euclidean Distance of the sensor node si to the line pa − pb. Equation (5) is a
manipulation of the Pythagorean theorem, with a = r, b = disti and c = dsi

2 . We can see these variables
in Figure 9.
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The sensor node si can send data to drone flying over the path between pa and pb only if dsi ≥ trs.
Given a tour composed of a sequence of hovering points, the algorithm proposed here calculates
dsi for every sensor node for each path between two hovering points and compares them to trs.
Hence, the algorithm creates a subset of sensor nodes for each path and guarantees that the drone
will stay a minimum time inside the sensor nodes’ radio range. The algorithm is described in the
following subsection.

Figure 9. Verifying if a node si can send data to drone flying between the hovering points p1 and p2.

6.2. The Algorithm to Create the Subsets

A tour P created by Incremental or Decremental heuristic is a sequence of hovering points.
We named as a path, part of the tour between two consecutive hovering points. Each tour has |P|+ 2
paths among its hovering points since the drone always starts flying from the initial point p0 = 0, 0
and always returns to the initial point. Consequently, the proposed algorithm creates |P|+ 2 subsets
of sensor nodes. It uses the Equations (4) and (5) to verify if each sensor node is in every subset.
Algorithm 3 presents the pseudocode to define how the proposed algorithm works.

Algorithm 3 Gathering Big Data During Drone Movement.
1: procedure CREATESUBSETS(P,S,dspeed,b,m,r)
2: trs = MinDist(dspeed, b, m, r)
3: Paths←− {p0}+ P + {p0}
4: CG←− SpanningTree(P, S)
5: Dmov ←− �
6: Tmoving ← 0
7: i = 0
8: for i < |Paths| do
9: d(i↔i+1) ←− �

10: u← 0
11: for u < |S| − 1 do
12: if DS(Pathsi , Pathsi+i , su, r) ≥ trs then
13: if su 6∈ Dmov then
14: d(i↔i+1) ←− su

15: end if
16: end if
17: end for
18: Dmov ←− Dmov ∪OverlappingNodes(d(i↔i+1), CG)

19: end for
20: Tmoving ← CalcTmov(Dmov, CG)

21: show(Dmov, TMoving)

22: end procedure
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Algorithm 3 receives as parameters a tour P, the set S with the locations of all sensor nodes,
the drone speed dspeed, the network bandwidth b, the amount of data stored in the memory of each
sensor node m, and the sensor nodes radio range r, the same as the drone. The line 2 calculates a
threshold (trs) that is the minimal distance the drone has to fly inside the area covered by the radio of a
sensor node to receive data from it. The function MinDist() works according to Equation (5). In line 3,
the variable Paths receives the tour P with the initial point p0 at the beginning and at the end, in order
to represent the entire drone trip. The Connecting Graph is created by the SpanningTree() function in
line 4. Dmov is initialized in line 5. It is the set of subsets of nodes that send data to drone when it is
moving. The variables Tmoving and i are initialized in lines 6 and 7, respectively.

From line 8 to 19, there is a loop that takes separately each pair of consecutive hovering points in
Paths. From line 11 to 17, the loop takes separately each sensor nodes. In line 12, it checks if the drone
will fly at least trs meters inside the radio range of the sensor node. In line 13, it verifies if this sensor
node already is in one of the subsets of Dmov. If not, in line 14, this sensor node is added to the set that
will send data to the drone between the points Paths and Pathsi+1. In line 18, the algorithm searches
for sensor nodes that are in the same coverage region. As only one sensor node can send data at a time,
the procedure OverlappingNodes() checks which sensor node will send data in each region of coverage.
We describe this procedure in Section 6.2.1. In line 20, it calculates Tmoving, which is the time that will
be removed from the collection time (Tcollecting), according to Equation (2). The Section 6.2.2 describes
how to calculate Tmoving. The result is shown in line 21.

6.2.1. Check for Overlapping

Given a path between two consecutive hovering points in a tour, it is possible that during the
drone flight over this path, the drone will be inside of areas covered by more than one sensor node at
the same time. In other words, during the drone flight, it can cross regions with overlapping of radio
ranges. To avoid packet collisions in this scenario, only one node at a time can send data to a drone.
Figure 10a exemplifies this overlapping. It shows a path between the hovering points pi and pi+i,
the sensor nodes s1 and s2, and their radio ranges. Since these nodes are close to each other, the area
covered by their radios on the tour is almost the same.

Figure 10. (a) Example of overlapping of radio ranges. (b) Part of the path where each node has to
send data to the drone.

The proposed algorithm avoids overlapping by defining how the sensor nodes transmit to the
drone and remove some nodes when the overlapped region is not large enough for the drone to receive
data from all sensor nodes. Lets consider di↔i+1 the subset of sensor nodes able to send data to drone
flying on the path between pi and pi+1. First, the algorithm sorts the nodes in di↔i+1 according to
the sequence of nodes perceived by the drone during its flight between pi and pi+1. On this path,
the algorithm defines where each sensor node can communicate with the drone. Then, it allocates
part of the path pi − pi+1 to the first sensor node in di↔i+1. This part starts where the drone enters
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inside of the radio range of this node and has length trs, according to Equation (4). Hence, it verifies
if the next node in di↔i+1 can transmit data after the first node, that is, after the end of the first part.
If so, the algorithm allocates this second part to the second node. If not, it verifies the next sensor
node. This task is repeated until the last sensor node in di↔i+1. Then, the algorithm verifies the next
subset in Dmov. Figure 10b presents the path pi − pi+1 with the first part allocated to sensor node s1

and the second part allocated to sensor node s2.

6.2.2. Calculating Tmoving

The Incremental and Decremental heuristics consider data gathering only when the drone is
hovering. Hence, the time the drone spends hovering (Tcollecting) is the time all nodes need to send data
to a drone (Tallnodes). It considers multihop data paths from sensor nodes to the drone. The overall time
to gather all data from the WSN (Ttotal) is the sum of Tcollecting with the time the drone spends flying to
reach each hovering point (Ttrip), according to Equation (1).

The proposed algorithm has a procedure to create the set Dmov composed of a subset of sensor
nodes for each path between two consecutive hovering points on tour. Tmoving is the time the drone
spends receiving data during its movement. It reduces Tcollecting since it decreases the number of
sensor nodes to send data when the drone is hovering. This is the main contribution of this work
since the state-of-the-art heuristics for the scenario considered here does not support data gathering
when the sink is moving. The reduction in Ttotal can be noted by comparing the same heuristic to
create tours with and without the proposed algorithm. These results are explored in the next section.
The procedure described here calculates Tmoving according to Equation (6). It sums the time each sensor
node in Dmov would spend to send data to the drone when it is hovering. The Connecting Graph,
defined in Section 4, is used to verify the data paths’ length.

Tmoving =
|Dmov|

∑
k=1

m
b
× pathlength(sk) (6)

where |Dmov| is the cardinality of the set Dmov, m is the amount of data storage in the memory of each
sensor node, b is the link bandwidth, and pathlength(sk) is a function that is obtained from the Connect
Graph, the data path length of the sensor node sk.

7. Experiments

We create simulated experiments to evaluate the proposed algorithm’s performance for big data
gathering in WSN during the mobile collector movement. We have implemented the Incremental
and Decremental heuristics proposed by Silva and Nascimento [12]. The only change made on these
heuristics was the algorithm for solving the TSP. We included the Concorde Solver [24], a state-of-the-art
algorithm to solve the TSP, to reduce the execution time of these heuristic methods. The original
heuristics used a brute force algorithm that increased the execution time for larger monitored areas
too much. It is important to mention that the metric execution time is not analyzed here. Both the
Concorde and the brute force TSP solver provide the same results since they are exact algorithms.
However, Concorde was used to reduce the time we executed our simulation. Then, we applied our
algorithm on each tour created by every loop iteration of these heuristics (after lines 19 and 23 of
the Algorithms 1 and 2, respectively) and saved the best solution. Hence, the graphs presented in
the following show four heuristic methods: Incremental and Decremental, representing the original
heuristics, and Incremental-Move and Decremental-Move representing the heuristics with the proposed
algorithm. We implemented all methods in Java 8–64 bits. The computer used to run the experiments
has a processor Intel Core I7 8565U 1.8GHz and 8 GB of RAM.

The experiments were performed in the same scenarios and used the same characteristics
described in [12], where the Incremental and Decremental heuristics were described. We divided
these experiments into two phases. In the first phase, we defined the Scenario 1, that is a small square
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monitored area with 200 m of side and 30 fixed sensor nodes. In the second phase, we consider a larger
monitored area and a larger number of sensor nodes to evaluate the heuristics’ performance in WSN
with data routes longer than in the first scenario. This phase has Scenarios 2, 3, and 4. All of them have
a square monitored area with 400 m of side. Scenarios varied the amount of data stored in each sensor
node memory from 20 to 120 kbits. Scenario 3 varied the number of sensor nodes from 100 to 250.
Finally, Scenario 4 varied the drone speed from 0.5 to 3.0 m/s. Table 2 summarizes all characteristics of
the four scenarios.

Table 2. Characteristics of each scenario.

Scenario Monitored Area (m2) Number of Sensor Nodes Drone
Speed
(m/s)

Data in Each Sensor Node (kbits)

1 200 30 2 20 to 120
2 400 150 2 20 to 120
3 400 100 to 250 2 60
4 400 150 0.5 to 3.0 60

We consider a drone with hovering capability as the mobile sink, such as a quadcopter. It is able
to fly and hover over any point in the monitored area. The mobile sink has a radio like the sensor
nodes, with the same range of the nodes (r = 60 m). The transmission rate of every link the WSN is
20 kbps. In all scenarios, Pgrid is composed of PDPs with 84 m of distance between two of them (up,
down, left, and right). In this way, every point inside the monitored area is less than 60 m far from
a PDP. The time to propagate queries is not considered here. The drone moves at a constant speed
and collects data when it is hovering and when it is moving. The main metric is Ttotal. Every point
plotted on the graphs represents the average of 33 simulations using different WSN topologies, which
provides a 95% confidence interval.

In Sections 7.1 and 7.2, we compare the performance of the Incremental, Decremental,
Incremental-Move, and Decremental-Move methods in the small and large monitored areas,
respectively. In Section 7.3, we verify if there is a statistical difference among the methods
evaluated here.

7.1. Small Monitored Area

Here, we consider Scenario 1 that is composed of 30 sensor nodes uniformly randomly deployed
on a 2D square monitored area with 200 m of side. The drone flies at a constant speed of 2 m/s
and hovers over the tour’s hovering points. In the graph of Figure 11, we increased the amount of
data stored in each sensor node and plotted these values on the X-axis. The Y-axis represents Ttotal
obtained by the four heuristic methods. We verify that Ttotal increases when the amount of data in the
sensor nodes increases, as expected. Incremental-Move outperformed Incremental in all scenarios,
mainly in scenarios where the sensor nodes have more data to transmit. The same happens with
Decremental-Move and Decremental. This shows that the proposed algorithm can effectively find
sensor nodes able to send data to the drone in movement and, consequently, reduce the hovering time.
Comparing only the heuristics that received the proposed algorithm, we verify that in scenarios when
nodes are storing a smaller amount of data, Incremental-Move outperformed Decremental-Moved.
However, in scenarios when nodes store a larger amount of data, Decremental-Moved presents the
best results. This happens because the Decremental heuristic tends to find tours with more hovering
points than the Incremental heuristic. Hence, the drone’s path tends to be larger, and the number of
sensor nodes able to send data during the drone movement increases.

The graphs of Figures 12 and 13 help us to understand the behaviors presented by the methods
in Figure 11. The time for data gathering (Ttotal) is the sum of the times spent by the drone flying
to reach each hovering point (Ttrip) and the time it hovers to gather data (Tcollecting), according to
Equation (1). Figure 12 shows Ttrip only for Incremental and Decremental because Incremental-Move
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and Decremental-Move do not change the path created by these heuristics and followed by the drone.
This graph shows that when increasing the amount of data stored in each sensor node memory the
tour also increases, that is, the number of hovering points in the tour also increases. Figure 13 shows
that Tcollecting grows when the amount of data in the sensor node memories increases. However,
the growth of Incremental-Move and Decremental-Move is smaller than the growth of Incremental
and Decremental. This is because the heuristics create longer tours when the nodes have more data to
transmit, and the longer the tour is the larger will be the number of sensor nodes able to send data
during the drone movement. Since the drone will receive data from more sensor nodes during its
flight, it will reduce Tcollecting, consequently also reducing Ttotal.

These experiments show that the proposed algorithm for gathering data during the drone
movement (Algorithm 3) can effectively reduce the overall data gathering time. Furthermore, it
presents a better performance when the tour is longer and when the sensor nodes have more data to
send to the drone.

Figure 11. Overall data gathering time (Ttotal) in a small monitored area.

Figure 12. Drone moving time (Ttrip) in a small Monitored Area.
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Figure 13. Drone hovering time for data gathering (Tcollecting) in a small monitored area.

7.2. Larger Monitored Area

The larger monitored area considered here is a 2D square with 400 m of side. The graphs presented
here show Ttotal of the four heuristic methods, in three different scenarios.

In Scenario 2, whose results are illustrated in Figure 14, we consider 150 uniformly randomly
deployed sensor nodes and the drone’s speed of 2 m/s. We increased the amount of data stored in each
sensor node (X-axis) and analyzed Ttotal (Y-axis). Incremental-Move and Decremental-Move presented
the best performance in practically all experiments. The strategy to gather data during the drone
movement reduced the overall time up to 25% when the nodes had more data stored than the original
heuristics. In this scenario, the data routes tend to be longer than in the previous scenario. The tour
created by the original heuristics considers several nodes to send data to the drone by data routes with
many hops. Since some of these nodes send data to the drone in movement, the reduction of Ttotal is
bigger. Here, we also verify that Decremental-Move outperformed all heuristics. This occurs because
the Decremental heuristic tends to create a longer tour, increasing the number of nodes able to send
data during the drone movement.

Figure 15 presents the results of the experiments in Scenario 3. In this figure, the X-axis represents
the number of sensor nodes varying from 100 to 250, and the Y-axis represents Ttotal. We consider 60 Kb
of data stored in each sensor node, and the drone speed is 2 m/s. The two heuristics with the proposed
Algorithm 3 outperformed the original heuristics in practically all experiments. It is important to note
that the growth of all heuristics is linear. Hence, the heuristics analyzed here can be used in scenarios
with more sensor nodes.

In Scenario 4, we analyze the influence of the drone’s speed on the overall data gathering time.
Figure 16 presents the results of the experiments in this scenario. We consider 60 Kbits of data in each
sensor node, and the number of nodes in the monitored area is 150. In this scenario, all heuristics take
advantage of the higher drone speed. Even Incremental-Move and Decremental-Move, which consider
data gathering during the drone movement, reduced Ttotal with the speed growth.
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Figure 14. Overall data gathering time (Ttotal) in a large monitored area.

Figure 15. Varying the number of nodes in the WSN—Large Monitored Area.



Sensors 2020, 20, 6954 24 of 27

Figure 16. Varying the drone speed (m/s)—Larger Monitored Area.

7.3. Statistical Analysis

We perform experiments to verify if the results obtained by the heuristics using the proposed
algorithm are statistically better than the results obtained by the original heuristics proposed by [12].

We performed the paired t-test on the data of each graph presented in the previous section to
verify if the means of Ttotal obtained by Incremental-Move are statistically smaller than the means
obtained by Incremental and the same with Decremental-Move and Decremental. The t-test is a type of
statistical test used to compare the means of two groups of values and evaluate if they are significantly
different from each other [25]. The t-tests can be divided into two types: independent and paired.
The independent t-test is used when the two groups under comparison have no relation to each other.
The paired t-test is used when the two groups under comparison are dependent on each other [26].
In our analyses, we used the paired t-test because both individuals in each pair used the same heuristic
to create the tour and the same network topologies.

Since the t-test can be used only to analyze samples with normal distribution, we first applied
the Shapiro-Wilk test [27] on each sample that generated a mean to plot in the graphs. All samples
presented normal distribution. Then, we applied the t-test on each pair of samples with the same
heuristic and the same value in the X-axis. For example, in the Scenario 1 (Section 7.1), we calculated
all the values of the t observed for Incremental vs. Incremental-Move, when X = 20, 40, 60, 80, 100, and
120 Kbps. The same was made for Decremental vs. Decremental-Move. These values are in Table 3.
The values of the observed t for the Scenarios 2, 3, and 4 (Section 7.2) are presented in Tables 4–6,
respectively. However, in Scenario 1, we analyzed only the samples plotted in the Figure 11. It is
because this graphs presents the main metric (Ttotal). The other graphs in this subsection were created
only to explain the curves’ behavior in the first graph.
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Table 3. t-Test for Scenario 1.

Heuristics
Data Stored in Each Sensor Node

20 40 60 80 100 120

Incremental 29.82 30.15 30.29 19.83 18.37 17.63
Decremental 21.29 24.07 23.99 24.80 25.75 25.88

Table 4. t-Test for Scenario 2.

Heuristics
Data Stored in Each Sensor Node

20 40 60 80 100 120

Incremental 31.64 28.74 32.52 34.87 40.80 44.53
Decremental 23.49 34.69 40.04 34.90 34.86 34.08

Table 5. t-Test for Scenario 3.

Heuristics
Number of Sensor Nodes

100 150 200 250

Incremental 26.35 32.52 34.95 50.24
Decremental 24.22 40.04 44.18 45.87

Table 6. t-Test for Scenario 4.

Heuristics
Drone Speed

20 40 60 80 100 120

Incremental 25.60 27.59 31.02 32.52 32.99 35.97
Decremental 25.36 30.34 36.50 40.04 35.96 34.06

The number of degrees of freedom of these experiments is N − 1 = 29, where N is the number of
executions with different network topologies. We set the significance level to 0.001 (0.1%). The critical t,
obtained from the table, is 3.659.

In all scenarios, we can verify that the observed value t is greater than the critical value t.
Hence, we can affirm with 99.9% confidence that the proposed algorithm reduces the overall data
gathering time substantially.

8. Conclusions and Future Works

This work analyzed the problem of finding the best drone tour plan for big data gathering in WSN.
We considered the drone a quad-copter with hovering capability as a mobile sink, flying and hovering
over all the monitored areas. However, it has a flying time limited by its battery. We also considered
sensor nodes storing a relatively large volume of data to be gathered by the drone. Hence, the drone
needs time to receive all data packets from every sensor node. We focused on finding the drone’s tour
plan with the shortest time to gather data from all sensor nodes.

The state-of-the-art methods for this scenario are from Silva and Nascimento [12]. They proposed
two heuristics to define drone tours to reduce the data gathering time. A tour is a sequence of locations,
or hovering points, inside the monitored area. Each hovering point has a subset of sensor nodes that
will send data to the drone when it is hovering over this point. The drone has to follow the sequence
and hover over each hovering point for data gathering. Here, we proposed a new algorithm that
receives a tour defined by one of these heuristics and creates a subset of nodes that will send data to
the drone during its movement. The proposed algorithm guarantees that the drone will stay inside
each sensor node’s radio range for a minimum time to receive all data. It also defines nodes’ sequence
to send data to avoid two or more nodes sending data simultaneously.
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Our simulated experiments showed that the proposed algorithm reduces up to 30% of the overall
data gathering. Since the heuristics mentioned above create a better tour in each loop iteration,
we applied the proposed algorithm in each tour. Then, we saved that one with the shortest overall
data gathering time. We verified that the proposed algorithm provides better results for longer tours
and when the sensor nodes have more data to transmit to a drone. We performed the t-test to affirm,
with 99.9% confidence, that the heuristics’ results using the proposed algorithm are statistically better
than those obtained from the original heuristics by Silva and Nascimento [12].

As future work, we intend to consider other sets of PDPs. The possible drone positions, or PDPs,
are locations inside the monitored area where the drone can hover. These PDPs form a fixed grid,
and the tour is a subset of these PDPs. We intend to vary the original PDPs to find better locations to
drone gather data. Furthermore, we intend to develop other strategies to create tours.
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