
Swarm and Evolutionary Computation 51 (2019) 100601

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

An adaptive multi-objective algorithm based on decomposition and large
neighborhood search for a green machine scheduling problem

Luciano P. Cota a,∗, Frederico G. Guimarães b, Roberto G. Ribeiro a, Ivan R. Meneghini b,
Fernando B. de Oliveira c, Marcone J.F. Souza d, Patrick Siarry e

a Instituto Tecnológico Vale, Ouro Preto, MG, Brazil
b Machine Intelligence and Data Science (MINDS) Laboratory, Department of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte,
MG, 31270-010, Brazil
c Department of Computer and Systems, Universidade Federal de Ouro Preto, João Monlevade, MG, 35931-008, Brazil
d Department of Computer Science, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
e Université Paris-Est Créteil, LiSSi, 61 Avenue du Général de Gaulle 94010 Créteil, Cedex, France

A R T I C L E I N F O

Keywords:
Green scheduling
Multi-objective optimization
Parallel machines
Adaptive large neighborhood search
Learning automata
Decomposition and aggregation

A B S T R A C T

Green machine scheduling consists in the allocation of jobs in order to maximize production, in view of the
sustainable use of energy. This work addresses the unrelated parallel machine scheduling problem with setup
times, with the minimization of the makespan and the total energy consumption. The latter takes into account the
power consumption of each machine in different operation modes. We propose multi-objective extensions of the
Adaptive Large Neighborhood Search (ALNS) metaheuristic with Learning Automata (LA) to improve the search
process and to solve the large scale instances efficiently. ALNS combines ad-hoc destroy and repair (also named
removal and insertion) operators and a local search procedure. The LA is used to adapt the selection of insertion
and removal operators within the framework of ALNS. Two new algorithms are developed: the MO-ALNS and
the MO-ALNS/D. The first algorithm is a direct extension of single objective ALNS by using multi-objective local
search. As this method does not offer much control of the diversification of the Pareto front approximation, a
second strategy employs the decomposition approach similar to MOEA/D algorithm. The results show that the
MO-ALNS/D algorithm has better performance than MO-ALNS and MOEA/D in all indicators. These findings
show that the decomposition strategy is beneficial not only for evolutionary algorithms, but it is indeed an
efficient way to extend ALNS to multi-objective problems.

1. Introduction

Sustainable use of energy is essential into the next industrial rev-
olution, so-called Industry 4.0. Reference [1] links the thoughts of
this new revolution with the incorporation of advancements in Infor-
mation Technology, including computational optimization techniques,
into manufacturing technology and systems. According to Ref. [2], the
concepts behind sustainable manufacturing are conservation of energy,
material and value-added products, waste prevention and environmen-
tal protection. Regarding saving energy in the context of advanced man-
ufacturing systems, one kind of problem which needs attention is the
green machine scheduling. The mentioned problem consists of balanc-
ing the makespan and the total energy consumption of the machines.

∗ Corresponding author.
E-mail addresses: luciano.p.cota@itv.org (L.P. Cota), fredericoguimaraes@ufmg.br (F.G. Guimarães), rogorib@ufmg.br (R.G. Ribeiro),

ivan.reinaldo@ifmg.edu.br (I.R. Meneghini), fboliveira@ufop.edu.br (F.B. de Oliveira), marcone@ufop.edu.br (M.J.F. Souza), siarry@u-pec.fr (P. Siarry).

It is a challenging multi-objective optimization problem with combina-
torial nature. Therefore, for large instances, heuristic-based approaches
are required given the practical limits of exact methods.

Machine scheduling problems have great relevance for the indus-
tries. These problems involve the maximization of the production by
allocating the jobs to the available resources in an optimal way. Accord-
ing to Ref. [3], this type of problem addresses the allocation of resources
for tasks or services by periods to optimize one or more objectives. Sin-
gle objective scheduling seeking to minimize the makespan, defined by
the notation RM|Sijk|Cmax, is treated in various works in the literature.
This kind of scheduling problem appears in many manufacturing indus-
tries, such as textile, chemical, semiconductor and ink [4]. Besides, this
problem belongs to the -hard class. It is a generalization of the par-

https://doi.org/10.1016/j.swevo.2019.100601
Received 11 February 2019; Received in revised form 17 July 2019; Accepted 22 October 2019
Available online XXX
2210-6502/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.swevo.2019.100601
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2019.100601&domain=pdf
mailto:luciano.p.cota@itv.org
mailto:fredericoguimaraes@ufmg.br
mailto:rogorib@ufmg.br
mailto:ivan.reinaldo@ifmg.edu.br
mailto:fboliveira@ufop.edu.br
mailto:marcone@ufop.edu.br
mailto:siarry@u-pec.fr
https://doi.org/10.1016/j.swevo.2019.100601

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

allel machine scheduling problem with identical machines and without setup
times, which has been proven to belong to that class in Refs. [5,6]. Ref-
erence [7] presents a comprehensive up to date survey which addresses
the topic, classifying and comparing 500 papers of scheduling prob-
lems. We review some of these works as follows. In Ref. [4] the authors
proposed a metaheuristic for randomized priority search and a math-
ematical model. Genetic algorithms and a mathematical model have
been implemented in Ref. [8]. In the works [9–11], the authors have
proposed several algorithms that combine the Iterated Local Search
and Variable Neighborhood Descent [12] metaheuristics. Two hybrid
models based on logic-based Benders decomposition and Branch-and-
check have been defined in Ref. [13]. An Adaptive Large Neighborhood
Search metaheuristic with Learning Automata has been presented in
Ref. [14].

As reported by the US Energy Information Administration, the indus-
try sector is responsible for the consumption of 54% of the total energy
generated in the world. The predominant energy sources are natural
gas and electricity. Since the machines are responsible for most of
the electricity consumption in the industries, machine scheduling prob-
lems have great relevance in this scenario. Scheduling problems have
been studied since the years before World War II [15]. Nevertheless,
the sustainable use of energy has become relevant only more recently.
Research in this area is defined as green scheduling, see for instance
Ref. [16].

Green scheduling in machine scheduling problems is still under-
explored in the literature. Many studies in the literature deal with flow
shop scheduling problems, as follows. In Ref. [17], the authors have
constructed a mathematical model for solving a problem with the objec-
tive of minimizing the electricity costs and carbon emissions. In Ref.
[18] the authors have implemented a multi-objective Iterated Greedy
algorithm for solving a problem seeking to minimize the makespan and
total carbon emissions. In Ref. [2] a mathematical model and a con-
structive heuristic have been proposed to solve a problem attempting
to minimize the makespan and total energy consumption. In Ref. [19]
the authors have implemented a mathematical model to minimize elec-
tricity consumption and total weighted tardiness. In Ref. [20] a genetic
algorithm has been defined to solve a problem seeking to minimize the
makespan and the energy consumption.

With regard to energy optimization aspects, production scheduling
with electrical energy constraint has been addressed in Ref. [21]. Total
energy cost in a single-machine manufacturing environment has been
studied in Ref. [22], and the complexity analysis of those problems on
energy states of machines has been reviewed in Ref. [23]. The objective
is to minimize the total energy consumption costs. Besides, the trade-
off between makespan and energy consumption has been investigated
in Ref. [24] for two-machine permutation flowshop scheduling problem
with sequence dependent setup times. Those machines have a variable
speed and this feature was incorporated in the mathematical model.
Pareto fronts were used to present that trade-off in this problem.

Bi-objective optimization in green scheduling problems are per-
formed in different context. The single machine batch scheduling is pro-
posed by Ref. [25] and the objectives are to minimize the makespan and
the total energy costs. The scheduling problem with identical parallel
machine has been studied in Ref. [26]. The objectives are to minimize
total energy consumption and makespan. The problem with parallel
machine is also addressed in Ref. [27]. Besides, those authors consider
machines with different processing cost rates. The makespan and the
total cost (namely total green cost) are minimized. A memetic differ-
ential evolution algorithm has been proposed in Ref. [28] to solve an
unrelated parallel machine scheduling problem. The objectives are to
minimize total energy consumption and makespan.

Metaheuristics based on local search methods, such as Iterated Local
Search [29] and Adaptive Large Neighborhood Search (ALNS) [30],
have been successfully applied to solve single objective combinatorial
optimization problems, including scheduling problems, in a number of
studies [9,14,31–33]. In the literature, there are several adaptations of

these metaheuristics to solve multi-objective problems [34–36]. How-
ever, many of those adaptations do not have the proper structure to deal
with the essential requirements of the multi-objective problems, such
as the diversity control in the Pareto front approximation. Population-
based metaheuristics have been very effective for approaching multi-
objective problems, with the advantage of evolving a set of solutions
simultaneously and having specific operations to enforce diversity on
the Pareto front approximation [37]. Evolutionary algorithms such as
MOEA/D [38], NSGA-II [39], NSGA-III [40], and SPEAII [41], that are
based on genetic operators to explore the search space, are among the
most well-known algorithms. Nevertheless, there is enough evidence
that embedding local search methods in these evolutionary algorithms
brings a great impact on their performance in combinatorial optimiza-
tion problems [42–44]. Accordingly, the combination of metaheuristics
based on extensions of local search methods and pure population-based
multi-objective metaheuristics might generate effective and powerful
algorithms for solving multi-objective scheduling problems. This is the
main motivation for the present study.

More recently, in Ref. [45], the authors presented a new formulation
for the unrelated parallel machine scheduling problem with setup times,
attempting to minimize the makespan and the total energy consumption.
The energy consumption is calculated considering the power consump-
tion of each machine in different operation modes. In Ref. [45], the
authors developed a Mixed Integer Linear Programming (MILP) model
for the problem and show that the objectives makespan and total energy
consumption are conflicting. In addition, the authors have shown the
importance of considering energy consumption in the problem. Two
exact methods to solve the problem RM|Sijk|(Cmax,TEC) have been pre-
sented. Due to the limitation of the exact methods in solving large prob-
lems in a restricted time, only small and medium-sized instances were
solved. The aim of our work is to propose multi-objective algorithms
to solve the large-sized instances efficiently. The main objective is to
develop multi-objective algorithms with learning techniques to improve
the search process. This strategy is a significant extension on previous
work proposed in Ref. [14]. That algorithm is an ALNS with Learning
Automata that is able to learn the best momentary choice of insertion
and removal methods. The ALNS with Learning Automata obtained a
good performance to solve the single objective problem RM|Sijk|Cmax.
In this paper we extend this ALNS framework to deal with the prob-
lem RM|Sijk|(Cmax,TEC). This paper extends the previous work by pre-
senting: (i) multi-objective algorithms based on decomposition features
of the MOEA/D and the Learning Automata strategy used; (ii) a solu-
tion for large-sized instances of a green scheduling machine problem.
Although the fact that this problem is quite relevant in the industry 4.0
context, the literature did not show until nowadays a sufficient scien-
tific effort to tackle it. Therefore, we seek to generate advanced meta-
heuristics to address this green manufacturing problem.

Regarding such metaheuristics, we create two multi-objective algo-
rithms for solving large-sized instances of RM|Sijk|(Cmax,TEC) problems.
The first algorithm is a multi-objective version of the mono-objective
ALNS with Learning Automata, which is called MO-ALNS, employing
Pareto local search. A local search is added to explore the changes in
modes of operation. This algorithm does not control the diversifica-
tion of the Pareto front approximation. This characteristic might be a
disadvantage. The second algorithm is a combination of the MOEA/D
algorithm [38] and the single-objective ALNS with Learning Automata.
This method is called MO-ALNS/D. In the classical MOEA/D, a multi-
objective problem is decomposed into S single objective optimization
subproblems using aggregation methods. The subproblems are gener-
ated using weight vectors uniformly distributed; the exploration of the
subproblems is performed by means of genetic operators. The MO-
ALNS/D has the decomposition structure of classical MOEA/D, but it
uses the ALNS with Learning Automata to explore the scalar subprob-
lems instead of the genetic operators. Unlike the MO-ALNS, the MO-
ALNS/D has better control of the diversification of the Pareto front
approximation. This characteristic is inherited from the MOEA/D.

2

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

The rest of this paper is organized as follows. The addressed prob-
lem is detailed in Section 2. The proposed multi-objective algorithms
are introduced in Section 3. In Section 4, the results on computational
experiments are reported and discussed. Finally, Section 5 presents the
conclusions and future works.

2. Problem definition

The problem has the following characteristics. There are a set of
non-preemptive jobs, a set of parallel and independent machines and
a set of different operation modes. Each operation mode is related
to a corresponding speed of processing the job and power consump-
tion. Therefore, there is a processing time to perform a job on a given
machine. There is a setup time to prepare the machine for processing
the jobs, and this setup time depends on the order of allocation of the
jobs. Each machine has a power consumption with normal speed of
operation.

The objectives are to allocate all the jobs on the machines
using the operation modes, seeking to minimize the makespan and
the total energy consumption. This problem can be described as
RM|Sijk|(Cmax ,TEC), according with the classical notation for machine
scheduling problems [46]. RM represents the unrelated parallel
machines, Sijk the setup times, Cmax the makespan and TEC the total
energy consumption. These two objectives have great importance in the
problem. The minimization of the makespan usually implies an efficient
use of the machines [47]. Meanwhile, the minimization of total energy
consumption implies reducing costs for industries and the conscious use
of environmental resources. Furthermore, the objectives have conflict-
ing nature because there is a trade-off between maximizing production
with respect to completion time and minimizing power consumption
by allocating jobs to those machines with low power consumption and
processing jobs at lower speeds.

The mathematical model for the problem RM|Sijk|(Cmax,TEC) has
been defined initially in Ref. [45] and we reproduce it here for the
sake of completeness. Let:

• M = {1,… ,m}: set of machines with m being the number of
machines;

• N = {1,… , n}: set of jobs with n being the number of jobs;
• L = {1,… , o}: set of o different modes of operation with o being

the number of modes of operation. Each mode is related to a corre-
sponding speed of operation and power consumption;

• pik: processing time of job k in machine i [minutes];
• Sijk: setup time necessary for processing the job k in machine i after

job j [minutes];
• 𝜋i: power consumption of machine i at normal speed of operation

[kW];
• vl: multiplying factor of speed at normal operation, with l ∈ L;
• 𝜆l: multiplying factor of power at normal speed, with l ∈ L;
• B: big constant.

The factor vl is a non-decreasing function of 𝜆l, and these factors are
the same on all machines. The relation between these factors is given
below.

vl and 𝜆l =
⎧⎪⎨⎪⎩

vl = 1 and 𝜆l = 1, normal speed of machine operation
0 < vl < 1 and 0 < 𝜆l < 1, speed slower than normal, then the machine consumes less power
vl > 1 and 𝜆l > 1, speed greater than normal, then the machine consumes more power

Decision variables used in the mathematical model are:

xijkl =
{

1, if job k, with operation mode l, is allocated immediately after job j in machine i
0, otherwise

Auxiliary variables used in the model are:

• Cj: completion time of job j;

• Oi: completion time of machine i;
• Cmax: maximum processing time of all machines (makespan);
• TEC: total energy consumption [kWh].

In the model, a fictitious job 0 is allocated at the beginning
of each machine with processing time and setup time equal to 0
(pi0 = 0∀i ∈ M and Si0k = 0∀i ∈ M,∀k ∈ N). The mathematical
model is described in Eqs. (1)–(12):

min Cmax (1)

min TEC (2)

Subject to:
m∑

i=1

n∑
j=0
j≠k

o∑
l=1

xijkl = 1∀k ∈ N (3)

m∑
i=1

n∑
k=1
j≠k

o∑
l=1

xijkl ≤ 1∀j ∈ N (4)

n∑
k=1

o∑
l=1

xi0kl ≤ 1∀ i ∈ M (5)

n∑
k=0
k≠j

o∑
l=1

xijkl −
n∑

h=0
h≠j

o∑
l=1

xihjl = 0∀j ∈ N,∀i ∈ M (6)

Ck − Cj + B
(
1 − xijkl

)
≥ Sijk +

pik
vl

∀j ∈ N0,∀k ∈ N,

j ≠ k,∀l ∈ L,

∀i ∈ M (7)

C0 = 0 (8)

n∑
j=0

n∑
k=1
k≠j

o∑
l=1

(
Sijk +

pik
vl

)
xijkl = Oi∀i ∈ M (9)

Cmax ≥ Oi∀i ∈ M (10)

TEC ≥

m∑
i=1

n∑
j=0

n∑
k=1
j≠k

o∑
l=1

(
𝜆l ×

𝜋i
60

× pik
vl

)
xijkl (11)

xijkl ∈ {0, 1} ∀j ∈ N0,∀k ∈ N,

j ≠ k,∀i ∈ M,

∀l ∈ L (12)

The objective function is to minimize the makespan (1) and the
total energy consumption (2). Constraint (3) defines that each job will

be allocated to only one machine and it has a predecessor. This con-
straint also defines that the allocation has a unique operation mode.

3

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Table 1
Setup times of machines M1 and M2.

M1 1 2 3 4 5 6 M2 1 2 3 4 5 6

1 0 1 8 1 3 9 1 0 5 1 6 1 7
2 4 0 7 3 7 8 2 6 0 7 7 6 2
3 7 3 0 2 3 5 3 7 6 0 9 6 9
4 3 8 3 0 5 2 4 3 7 3 0 1 7
5 8 3 7 9 0 5 5 5 8 5 6 0 9
6 8 8 1 2 2 0 6 7 4 1 7 9 0

Constraints (4) and (5) ensure that each job will have, at most, one
successor job. Constraint (6) defines the right order for allocating job.
Constraint (7) calculates the accumulated time of each job. If xijkl = 1,

the accumulated time of k is Cj plus Sijk and
(

pik
vl

)
. If xijkl = 0, the con-

stant B will ensure the constraints are satisfied. Constraint (8) defines
that the accumulated time of the fictitious job is equal to 0. Constraint
(9) defines the calculation of the accumulated costs for each machine,
given by the sum of the setup time and the processing time of all
jobs allocated to a given machine. Constraint (10) defines the value
of the makespan (or Cmax). Constraint (11) defines the calculation of
total energy consumption (or TEC). This calculation uses the processing
times (pik∕vl), the power input of each machine at normal speed of oper-
ation (𝜋i), and the multiplying factors (𝜆l) and (vl). The machine power
is divided by 60 because the units of measurement. The power is given
in kW, while the processing time is given in minutes, and the TEC is
calculated in kWh. Finally, constraint (12) defines which variables are
binary. N0 is the set of jobs with the fictitious job 0. This mathematical
model has n2mq binary variables, n + m + 2 continuous variables and
2n + 3 m + nm + 2n2mq + 2 constraints.

An instance with six jobs, two machines and one operation mode
(normal speed of operation with vl = 1 and 𝜆l = 1) was chosen to
illustrate this problem. The processing times and the power consump-
tion with normal speed of operation of the machines M1 and M2 are
given below. Setup times of those machines are shown in Table 1.

M1 ∶ p1j = {70,87,28,32,38,9}, 𝜋1 = 70

M2 ∶ p2j = {4,21,68,17,43,48}, 𝜋2 = 179

The solver IBM ILOG CPLEX version 12.5 was used to solve this
instance. Fig. 1 illustrates the optimal solution for the scheduling mini-
mizing only the makespan. In this solution, the makespan is equal to 75
and the total energy consumption is equal to 283.36. Meanwhile, Fig. 2
illustrates the optimal solution for scheduling minimizing only the total
energy consumption. The makespan of this allocation is equal to 119
and the total energy consumption is equal to 199.41.

It is possible to observe that the job allocations and objective func-
tion values are quite different in both figures. This example illustrates
the conflicting nature of the two objectives in this machine scheduling
problem, even with only one operation mode.

Fig. 1. Optimal solution for the minimization of the makespan.

Fig. 2. Optimal solution for the minimization of the total energy consumption.

3. Proposed multi-objective algorithms

This section presents the two proposed multi-objective algorithms.
At first, a solution representation and evaluation are shown. Then, algo-
rithms are defined.

3.1. Solution representation and evaluation

A solution is represented by two data structures. One structure is
applied to represent job allocations on machines and another one to
represent the operation mode, in which each job is processed. Each
operation mode is related to a corresponding speed of operation and
power consumption.

In order to represent the allocation of jobs, a vector of integers with
m positions is used, in which m is the total number of machines. A list
is associated with each position of this vector and represents the jobs
allocated to each machine. The operation modes are represented by a
vector of integers. Fig. 3 shows a possible solution for an instance with
two machines, seven jobs and three operation modes. Jobs 7, 3 and
4 are allocated on machine M1, in that order. Jobs 2, 1, 6 and 5 are
allocated on machine M2, in that order. Operation modes are defined
as follows: i) operation mode 1: jobs 3 and 4; ii) operation mode 2: jobs
1, 5 and 7; iii) and operation mode 3: jobs 2 and 6.

A solution is evaluated by means of makespan (as defined in Eq.
(10), Section 2) and the total energy consumption (as defined in Eq.
(11), Section 2).

3.2. MO-ALNS algorithm

Reference [14] addresses the Unrelated Parallel Machine Schedul-
ing Problem with Setup Times with the single objective of minimizing
the makespan. The authors propose an Adaptive Large Neighborhood
Search [30] metaheuristic that uses Learning Automata to learn the
best momentary choice of insertion and removal methods. The results
show that the ALNS algorithm with Learning Automata is an attractive
method to solve single objective machine scheduling problems. Taking
this into account, the MO-ALNS algorithm is a multi-objective version
of the ALNS with Learning Automata, by including a multi-objective
local search procedure.

LA is an adaptive decision unit that improves its performance by
means of repeated interactions in an unknown random environment
[48–50], Narendra et al. [51] defines it as the following 6-tuple:

4

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 3. Solution representation.

(𝜑, 𝛼, 𝛽,A, 𝜋, p). The terms 𝜑, 𝛼 and 𝛽 denote sets of internal states,
outputs or actions of learning automata and responses from the envi-
ronment, respectively. The term A represents a Learning Automaton,
while 𝜋 ∶ 𝜑 ↦ 𝛼 is a function that maps the current state into a cur-
rent output, while p is a vector that defines a selection probability of an
action on each stage.

The action is randomly chosen by means of a probability distribu-
tion over a set of actions. At each interaction, the selected action j ∈ 𝛼

is used as input to the random environment for further learning. As a
response, such environment returns to the LA the applied action with
a noise signal. Let 𝛽k be a response from the environment in step k
with 𝛽k ∈ {0,1}, in which responses 0 and 1 mean “agreeable” and
“disagreeable”, respectively. If the response is “agreeable”, the proba-
bility of each action i ∈ 𝛼 might be updated with Equation (13). Oth-
erwise, if the response is “disagreeable”, the probability of each action
i ∈ 𝛼 is updated with Equation (14) [52].

pi(k + 1) =
{

pi(k) + a(1 − pi(k)) if i = j
pi(k)(1 − a) if i ≠ j

(13)

pi(k + 1) =
⎧⎪⎨⎪⎩

pi(k)(1 − b) if i = j
b

r − 1
+ pi(k)(1 − b) if i ≠ j

(14)

The parameters a, b and r are the reward, the penalty, and the num-
ber of actions, respectively. The initial probabilities of all actions are
equal. We define in the present work a Learning Automata (LA) for
the removal methods (LAN−) and another one for the insertion meth-
ods (LAN+). A semi-greedy constructive heuristic is used to generate
the initial solution. A multi-objective random variable neighborhood
descent method (MO-RVND) is used to perform a local search. Algo-
rithm 1 shows the pseudo-code of MO-ALNS.

The parameters a1, a2 and a3 are rewards and the parameter b1 is a
penalty. The parameter q defines the number of jobs that are removed
from and inserted in the current solution at each iteration of the algo-
rithm. The parameter K defines the periodicity that the probabilities are
updated. tmax is the maximum execution time and it is used as the stop
criterion of the algorithm.

Initially, a solution s is constructed and a set of non-dominated solu-
tions D is created. The set D is updated by means of the addSolution
method, detailed in Ref. [53]. The initial temperature is calculated such
that a current solution has 50% of chance of acceptance if it is 5% worse

than the initial solution. It is considered the weighted sum of the objec-
tives of the initial solution, in which each objective has a weight equal
to 0.5.

The steps of the MO-ALNS at each iteration are:

1. A removal method 𝛼−i ∈ 𝛼− and an insertion method 𝛼+j ∈ 𝛼+ are
selected by a roulette method, using the probabilities of those meth-
ods. The removal and insertion methods are the same used in the
ALNS with Learning Automata;

2. q jobs are removed from the current solution with the 𝛼−i method,
and re-inserted with the 𝛼+j method. These two first steps are exactly
the same of the ALNS with Learning Automata;

3. The multi-objective local search method MO-RVND is applied to the
current solution s;

4. As in the ALNS with Learning Automata, the probabilities p− and
p+ are updated. If the solution s′ is accepted, Eq. (13) is used. Oth-
erwise, if the solution s′ is not accepted, Eq. (14) is applied. If the
current solution s′ dominates the solution s or if there is no domi-
nance between them, an attempt to insert s′ into D using addSolution
method is performed. If the current solution is accepted according
to the temperature criterion, a solution s″ receives the solution s′;

5. A new solution s is randomly selected among all solutions of the set
D and the solution s″;

6. As in the ALNS with the Learning Automata, at every K iterations
the probability values are updated within each LA;

7. In the end, the set D of non-dominated solutions is returned.

A solution might be accepted in three different situations and for
each of them a reward parameter (a1, a2 and a3) is applied in the LA
updating. These three situations are: i) a1: if the solution s′ dominates
the solution s; ii) a2: if there is no domination between solutions s′ and
s; iii) a3: if the solution s′ is dominated by the solution s, however it is
accepted according to the temperature criterion. If the solution found
is not accepted, the penalty parameter (b1) is used to update the LA.

3.2.1. Constructive procedure
The constructive heuristic selects jobs to the machines and a ran-

dom operation mode l ∈ L for each allocation. The operation of this
heuristic is given as follows. The heuristic has a time limit equals to
1% of the tmax (time limit for execution of the MO-ALNS). Initially,
the method selects a random operation mode l ∈ L for each allocation
(vector of integers in Fig. 3). A new solution is generated at each itera-
tion of the heuristic and only the best solution is stored. New solutions
are generated by means of the semi-greedy constructive heuristic Adap-
tive Shortest Processing Time (ASPT) rule [54], which is guided by the
makespan.

In the semi-greedy constructive heuristic, all jobs are inserted in a
list of candidates LC. On each iteration, the insertion of each job j ∈ LC
at the end of each machine i ∈ M is evaluated, considering the process-
ing and setup times. A second list bestLC stores the top 20% allocations
that generated a lower cost for the corresponding machine. A job k is
randomly selected in bestLC and it is inserted into the corresponding
machine. This process is repeated until all jobs in LC are allocated.

3.2.2. Insertion and removal heuristics
The removal and insertion methods used in the MO-ALNS are sum-

marized in Tables 2 and 3. These heuristics use only the comple-
tion time in their evaluations. The removal methods are presented in
Table 2. All methods remove q jobs. The insertion methods are shown
in Table 3. The removed q jobs are shuffled at random before executing
each insertion method.

3.2.3. Local search procedure
The multi-objective Random Variable Neighborhood Descent

method is used as local search procedure. This algorithm is a multi-

5

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Algorithm 1 MO-ALNS.

objective version of the Random Variable Neighborhood Descent [55],
in which the local searches are applied in random order. This method
is more efficient than the classical Variable Neighborhood Descent
[12], because the best order to apply the local searches may not only
depend on the addressed problem, but also on the instances character-
istics. Four neighborhood structures used in MO-RVND are described
below.

1. Multiple insertion – NSMI(s): move of reallocating a job from a
machine to another position in the same machine, or of reallocating
a job in any position in another machine. Fig. 4a illustrates an exam-
ple of this move, in which the job 4 on machine 2 is transferred to
the second position on machine 1.

2. Swap in the same machine – NSSSM(s): move of swapping two jobs
in the same machine. Fig. 4b illustrates an example of this move, in
which the jobs 1 and 6 on machine 2 are swapped.

3. Swap between different machines – NSSDM(s): move of swapping
two jobs from different machines. Fig. 4c illustrates an example of
this move, in which the job 3 on machine 1 is swapped with job 1
on machine 2.

4. Swap operation modes – NSSMO(s): move of swapping operation
mode of an allocation. Fig. 4d illustrates an example of this move,
in which operation mode of job 3 is swapped from 1 to 3.

Four local searches are used to explore the search space using the
neighborhood structures described previously. All local searches use the
first improvement strategy. Three of those local searches were proposed
in previous works, namely: i) FIMI [9,14]: it uses the neighborhood
structure NSMI ; ii) FISDM [10,14]: it uses the neighborhood structure
NSSDM ; and iii) FISSM [14]: it uses the neighborhood structure NSSSM .
The only difference in this work is in the acceptance criterion. In the
multi-objective version, a current solution s′ is accepted if it dominates
the solution s or if there is no dominance between them. That rule is
also applied to the acceptance criteria of MO-RVND.

The fourth local search is called FISMO. It uses the neighborhood
structure NSSMO. The pseudo-code of this local search is given in Algo-
rithm 2. Initially, all machines are sorted in descending order by the
completion time. The machines are selected starting from longest to
shortest completion time. For each machine, all changes between oper-
ation modes of its jobs are evaluated. The multi-objective evaluation

6

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Table 2
Removal methods.

Methods Operation

1 Random removal Removes jobs randomly.
2 Greedy expensive

cost removal
Removes most expensive jobs
considering the setup and processing
time.

3 Semi-greedy
expensive cost
removal

It is a semi-greedy version of the
previous method. At each iteration
randomly removes one job from the
20% more expensive.

4 Random machine
removal

Removes jobs from a randomly
selected machine.

5 Highest cost
machine removal

Removes jobs from machine with the
highest cost.

6 Shaw removal Removed jobs are considered similar.
The similarity criterion is the sum of
processing cost and setup time of
allocated jobs.

function was detailed in Eqs: (1) and (2). If a neighbor s′ ∈ NSSSM

dominates the solution s or if there is no dominance between them,
then the solution s′ is accepted and the search ends; otherwise, it con-
tinues until all machines are analyzed.

3.2.4. Method for updating non-dominated solutions
The addSolution method is used to update the set of non-dominated

solutions (D) [53]. This method uses simple Pareto dominance to evalu-
ate solutions. The pseudo-code of this method is presented in Algorithm
3.

Table 3
Insertion methods.

Methods Operation

1 Greedy
insertion

Insert the jobs in the best position considering all
positions of all machines.

2 Semi-greedy
insertion

It is a semi-greedy version of the previous method.
At each iteration, it inserts a job in a random
position between the 20% best positions.

3 Lambda
insertion

Insert 50% of the jobs using greedy insertion
method and the other 50% of the jobs are
randomly inserted.

4 ILS insertion For each job a random machine is selected and the
job is inserted in the best position of this machine.

5 Regretting
insertion

Insert first the jobs with larger regretting cost.
This cost is the difference between the best
position and the second best solution considering
all machines.

6 Hungarian
insertion

Creates a square matrix where the lines are
machines m ∈ M and the columns are m first jobs
of q. The data of the matrix are the best cost of
allocation of each job on each machine. The
Hungarian method is used to found the best
allocation for each matrix. This process is repeated
until all jobs of q are inserted.

3.3. MO-ALNS/D algorithm

A limitation of the MO-ALNS algorithm (presented in the previous
subsection) is that there is no control of diversification in the Pareto
front approximation. As it can be verified in the line (30) of Algorithm
1, it just selects a random solution between solutions of the set D and
the solution s”. Nonetheless, a distinguishing mark of the MOEA/D algo-

Fig. 4. Examples of movements.

7

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Algorithm 2 Local search FISMO,

Algorithm 3 addSolution.

rithm is the sectorization of search in the Pareto front approximation.
It divides the multi-objective problem into S mono-objective problems
based on aggregations by means of different weight vectors.

The proposed algorithm here is called MO-ALNS/D. This algorithm
has the structure of the classical MOEA/D, but it uses the ALNS with
Learning Automata to solve the scalar subproblems. The pseudo-code
of the MO-ALNS/D is shown in Algorithm 4.

The input parameters of Algorithm 4 can be divided into two groups:
MO-ALNS/D parameters and ALNS with Learning Automata parame-
ters. The parameters of the MO-ALNS/D are: i) S: total of subproblems
generated by decomposition; ii) T: number of neighbors of each sub-
problem; and iii) G: maximum number of generations. The parameters
of ALNS are the remaining (tmax,K, q, a1, a2, a3, b1), and are the same
described in Section 3.2.

A set of weights w for all subproblems is constructed using the
Scheffé’s method [56]. This method is also used in the classical
MOEA/D. This method was proposed on experiments with mixtures
and is defined by proposition {r,wmax}-simplex lattice. r is the num-
ber of objectives in optimization problems. In the Scheffé’s method,(

r+wmax−1
wmax

)
points in r-dimensional space are generated, with wmax + 1

points equally spaced in the boundary of the simplex and satisfying the
condition: ∥ w ∥1 = w1 + w2 + · · · + wr = 1.

After that, T nearest neighbors for each subproblem i are stored in
the set Bi. The constructive procedure described in Section 3.2.1 is used
to generate individuals from the population (Pop). Each individual is
associated with a subproblem i ∈ S. After generation of the population,
a vector z∗ is constructed with the best solution for each objective.

The steps of the algorithm at each iteration are:

1. A neighbor v of subproblem i is randomly selected from Bi;
2. The neighbor v is optimized using the mono-objective ALNS with

Learning Automata algorithm. An initial solution is not generated
in this mono-objective version, because the initial solution (Popv)
is passed as a parameter by the MO-ALNS/D. The evaluation func-
tion used in the ALNS with Learning Automata is replaced for the
Tchebycheff Approach (TCH) aggregation function. This function is
applied to the objective functions makespan and total of energy con-
sumption;

3. Differently from MO-ALNS, single-objective local search is used in
the RVND method, considering the aggregation method.

4. The vector of best solutions z∗ is updated;

8

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

5. For each neighbor j ∈ Bi, it is verified if solution solv is better than
the corresponding solution Popj using the TCH aggregation function.
If it is, Popj receives the solution solv;

6. These steps are repeated until the number of generations (G) is
exhausted. Next, the non-dominated solutions Pop are stored in the
set D, using the addSolution method (described in Section 3.2.4). At
the end, the set D is returned.

The removal and insertion methods described in Section 3.2.2 and
the four local searches described in Section 3.2.3 are used by ALNS with
Learning Automata. In local searches the only difference is about the
criterion of acceptance, in which the evaluation is done by the aggre-
gation function TCH.

3.3.1. Tchebycheff Approach aggregation function
The Tchebycheff aggregation function is used in the classical

MOEA/D. The i-th subproblem is defined as follows [57]:

minimize gte(x ∣ wi, z∗) = max
1≤r≤R

{wr
i |fr(x) − z∗r |} (15)

in which z∗ = (z∗1,… , z∗R)
T is the ideal reference point with:

z∗r ≤ min{fr (x) ∣ x ∈ Ω} forr = 1,2,… ,R. (16)

4. Computational experiments

The computational experiments were performed in a computer with
Intel Core i7, 1.9 GHz processor, 6 GB RAM and Ubuntu 16.04 operat-
ing system. The algorithms have been implemented in the JAVA lan-
guage with Netbeans IDE 8.0.2.

4.1. Analysis of parameters of the MO-ALNS and MO-ALNS/D algorithms

In this subsection the values used for each parameter of the MO-
ALNS and MO-ALNS/D algorithms are presented. The values are shown
in Table 4.

The parameters were calibrated with empirical tests using five
instances, one from each group of jobs. The calibration was performed
using one factor at a time. For each parameter, a set of values was tested
by fixing the others. The stopping criterion used for the MO-ALNS/D
algorithm is a total of 50 generations (G = 50). This value was gen-
erated by empirical tests using a range from 20 to 200. The value 50
was the minimum number of generations for convergence of the algo-
rithm. As the stopping criterion of the MO-ALNS algorithm is the run

Table 4
Values of hyper-parameters for the MO-ALNS and MO-ALNS/D algorithms.

Parameters Value in Value in
MO-ALNS MO-ALNS/D

Stopping criterion -
Maximum execution time
(tmax)

Time spent by MO-ALNS/D –

Stopping criterion - Number
of generations (G)

– 50

Periodicity that the
probabilities are updated (K):

6 × max(|𝛼−|, |𝛼+|) 6 × max(|𝛼−|, |𝛼+|)
Number of jobs that are
removed and then re-inserted
(q)

5% of the jobs 5% of the jobs

First reward (a1) 0.2 0.2
Second reward (a2) 0.1 0.1
Third reward (a3) 0.05 0.05
Penalty (b1) 0.02 0.02
Total of subproblems (S) – 50
Number of neighbors (T) – 2
Maximum run time of
single-objective ALNS (tALNS

max)
– 20 × n (ms)

Fig. 5. Example of the hypervolume indicator.

time (tmax), we used tmax equal to the time spent by MO-ALNS/D. The
parameter K defines the periodicity that the probabilities of the Learn-
ing Automata are updated. 𝛼− is the set of removal methods and 𝛼+ is
the set of insertion methods. The Learning Automata needs a minimum
number of iterations with the environment to learning. The value 6 was
chosen in a range from 2 to 20 after several empirical tests.

The parameter q defines the number of jobs that are removed from
the current solution and then re-inserted. The value of this parame-
ter was defined by empirical tests using all instances and variations
from 4% to 30%. Rewards and penalty values are used to update the
Learning Automata according to the results obtained. These values were
based on discussions and tuning in Refs. [14,52]. The parameter S is the
total number of subproblems generated in MO-ALNS/D algorithm. This
parameter defines the granularity of weights in the search. The value of
this parameter was defined by empirical tests using a range from 20 to
200. The parameter T is the number of neighbors of each subproblem.
This parameter is commonly used with the value equal to 2 in MOEA/D
implementations. The parameter tALNS

max defines the maximum execution
time of the single objective ALNS in the MO-ALNS/D algorithm, where
n is the number of jobs (problem size). The value of this parameter was
defined by empirical tests using a range of 10 × n (ms) to 60 × n (ms).
The purpose of these tests was to identify a minimum time for the ALNS
to satisfactorily solve each subproblem.

4.2. Algorithms validation

In this section, MO-ALNS and MO-ALNS/D algorithms are executed
for the small and medium-sized instances proposed in Ref. [45] (80
instances in total). The results of the algorithms are compared to the
values obtained by the MILP model following the 𝜖-constrained method,
which is available in Ref. [45]. The main goal of this section is to
validate the results of MO-ALNS and MO-ALNS/D algorithms for the
addressed problem.

The hypervolume (HV) [58] indicator is used to compare the results
of the algorithms and the 𝜖-constrained method. The hypervolume of
an estimated Pareto front is the sum of the hypercubes that each set of
solutions contains. Fig. 5 illustrates an example of the hypervolume for
an instance in a minimization problem and a reference point rp. The red
dots are the upper limits, the reference point is rp = (200,400), and the
black dots are the non-dominated solutions found.

In this section, the reference point rp of the hypervolume used is
given by the limits generated in Ref. [45]. These limits were gener-
ated by using the 𝜖-constrained method to find the extreme points of
the Pareto front. One extreme point corresponds to the minimization of
only the makespan and the other extreme point corresponds to the mini-
mization of only the total energy consumption. The hypervolume values

9

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Algorithm 4 MO-ALNS/D.

were normalized between 0 and 1, by dividing the sum of the hyper-
cubes by the maximum area containing the Pareto front, as described
in (17). ∑P

i=1 hyi

(fCmax
b − fCmax

a) × (f TEC
b − f TEC

a)
(17)

fCmax
a and fCmax

b are respectively the minimum and maximum values of
Cmax in the Pareto front identified by the 𝜖-constrained method. Like-
wise, f TEC

a and f TEC
b are respectively the minimum and maximum values

of TEC (total energy consumption) in the Pareto front found by the 𝜖-
constrained method.

Due to the stochastic nature of MO-ALNS and MO-ALNS/D algo-
rithms, they were executed five times for each instance (5 × 80 = 400
samples in total) and only the mean value of the hypervolume was con-
sidered. The results of the 𝜖-constrained method1 were extracted from
Ref. [45].

Table 5 presents the results of the algorithms and the 𝜖-constrained
method. The values are grouped by instances with the same number of
jobs.

The best average results of each group of instances are highlighted
in blue with the standard deviation presented between parentheses.
Considering the computational experiment, the results suggest a good
performance of the proposed algorithms, and also suggest that both
methods have a good convergence towards the true Pareto front. In
the results with the 𝜖-constrained method using MILP, only ten values
of 𝜖 were used, which explains why in some cases the average results
achieved by the heuristic methods are higher. We performed a statisti-

1 In Ref. [45] the computer used in the experiments with the 𝜖-constrained
method is the same one used in this work.

Table 5
Results of the HV indicator with small and medium-sized instances.

cal test of Analysis of Variance (ANOVA) [59],2 with 95% confidence
(threshold = 0.05) to verify if there is statistical difference between the
results of the HV indicator for MO-ALNS and MO-ALNS/D algorithms.
The ANOVA test was applied with blocking for the groups of instances
with the same number of jobs. The test found a p-value equal to
0.1479, this result suggests there is no statistical difference between the
results of the HV indicator. This means that both algorithms achieved
convergence to the Pareto-optimal front in small and medium-sized
instances, hence validating them for problem. A graphical analysis of
the algorithms convergence was performed. Two instances were ran-
domly selected to illustrate the results. Figs. 6 and 7 show the results.

Figs. 6 and 7 also suggest that the proposed algorithms have a good

2 The null-hypothesis (H0) is that the average results of the metric are equal.
The alternative hypothesis (H1) is that the average results of the metric are dif-
ferent, that is, at least one of the results is different from the others. We verified
that the data follow a normal distribution using the Shapiro-Wilk [60] test. The
null-hypothesis (H0) of this test is that the population is normally distributed.
Alternative hypothesis (H1), the population is not normally distributed.

10

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 6. Pareto front obtained with the two algorithms proposed and the 𝜖-constrained method for an instance with 8 jobs and 2 machines.

Fig. 7. Pareto front obtained with the two algorithms proposed and the 𝜖-constrained method for an instance with 12 jobs and 4 machines.

Table 6
Characteristics of large size instances.

Parameters Levels Based on

Number of jobs (n): 50, 100, 150, 200, 250 [8]
Number of machines (m): 10, 20, 30 [8]
Number of operation modes (o): 5 [2,61]
Processing time (pij): U[1,99] [8]
Sequence dependent setup time (Sijk): U [1,9], U[1,124] [8]
Machine power (𝜋 i): U[40,200] –
Multiplying factor of speed (vl): 1.2, 1.1, 1, 0.9, 0,8 [2,61]
Multiplying factor of power (𝜆l): 1.5, 1.25, 1, 0.8, 0.6 [2,61]

convergence towards the Pareto front, considering the experimental
environment.

4.3. Large instances generation

In this paper we propose an additional set of large scale instances.
This set has 30 instances from combinations of 50, 100, 150, 200 and
250 jobs with 10, 20 and 30 machines. All combinations have five oper-
ation modes (o = 5). Table 6 presents the characteristics of instances.

The processing times and the setup times were generated using
the uniform distributions proposed by Ref. [8] for a similar problem.
The set of instances of [8] is often used in the literature. The power
consumption of the machines were generated by uniform distribution
between 40 and 200 kW. Five modes of operation were used represent-
ing five speeds: i) very slow; ii) slow; iii) normal; iv) fast; and v) very
fast.

4.4. Comparison between MO-ALNS with and without LA

In this subsection we performed the comparison between the MO-
ALNS and MO-LNS algorithms. The MO-LNS is a multi-objective ver-
sion of the Large Neighborhood Search [62] method. Basically, MO-
LNS uses: the Random machine removal to remove jobs and the Greedy
insertion to insert the jobs. These removal and insertion methods are
described in Subsection 3.2.2. The local search procedure in Subsec-
tion 3.2.3 is used to perform the local searches in both algorithms. The
goal of this experiment is to verify if the adaptation and learning done
by LA is relevant to the performance of MO-ALNS.

The comparison is performed using the large instances. The stopping
criterion of the MO-LNS algorithm is the same used with the MO-ALNS.

11

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Table 7
Results of the HV indicator for MO-ALNS and MO-LNS.

The indicator used to compare the results of the two algorithms is the
HV and the reference point is the largest solution found for each of
the objectives. All solutions found by the two algorithms (MO-ALNS
and MO-LNS) were used to identify the minimum and maximum values
of each objective in the estimated Pareto fronts. The values of the HV
indicator also were normalized between 0 and 1, as in Subsection 4.2.

As the algorithms have stochastic nature, they were executed five
times for each instance (5 × 30 = 150 samples in total) and only the
average result was considered. Table 7 presents the average results
of the algorithms for the HV indicator. The values are grouped by
instances with the same number of jobs.

The best average results in Table 7 are highlighted in blue. The MO-
ALNS algorithm found the best result in most instances. Considering the
complete results, the MO-ALNS achieved the best performance in 93%
of cases. Fig. 8 shows the box plot of these results.

The box plot graph also suggests a better performance of MO-ALNS
algorithm. To check if there is statistical difference between the results
of HV indicator for MO-ALNS and MO-LNS algorithms, the ANOVA sta-
tistical test3 with 95% confidence (threshold = 0.05) was applied. The
ANOVA test was applied with blocking for the groups of instances with
the same number of jobs. The p-value found is equal to 2.25 × 10−9.
This suggests there is statistical difference between the results of HV
indicator.

3 We verified that the data follows a normal distribution using the Shapiro-
Wilk test.

The results of this section show that the MO-ALNS algorithm
is more efficient than the MO-LNS. Therefore, the inclusion of
removal/insertion operators and the Learning Automata in MO-ALNS
do affect performance of the method positively. Therefore, in the next
subsection MO-ALNS algorithm is used in the comparison with the MO-
ALNS/D algorithm and with the classic MOEA/D [38].

4.5. Comparison of MO-ALNS/D, MO-ALNS and MOEA/D results

The MO-ALNS, MO-ALNS/D and the MOEA/D algorithms are evalu-
ated with large instances (Table 6) in this subsection. Regarding the
MOEA/D, the evaluations were conducted using the PlatEMO [63]
with default parameters and suitable operators for the green machine
scheduling problem shown in this work. For the batch of tests con-
ducted on PlatEMO, each solution is represented by a vector of size
2n + m composed by elements that indicate tasks, modes of operations
and marks (non-repeating negative integers) which denote the end of a
sequence of tasks scheduled in a machine. Clearly, the number of marks
depends on the number of machines. Let Y = [Y1,Y2,… ,Y2n+m] be
such a vector. The elements from Y1 to Yn+m−1 denote tasks and marks
and the elements from Yn+m+1 to Y2n+m represents the operation modes
of the n tasks. The element Yn+m contains a fixed value equal to − m.
For example, the solution representation illustrated in Fig. 3, must have
the following format:

[7,3,4,−1,2,1,6,5,−2,2,3,1,1,2,3,2].

12

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 8. Box plot results of the MO-ALNS and MO-LNS algorithms for the HV indicator.

Table 8
Results of the HV indicator for the MO-ALNS, MO-ALNS/D and MOEA/D algorithms.

Taking into account this representation scheme, we created operators
of crossover and mutation for the MOEA/D of PlatEMO. Regarding
the crossover, it was partially based on the crossover operator for sin-
gle machine schedule presented in Ref. [64]. For the green machine
schedule problem, such operator was divided into two parts. The first
addresses the items from Y1 to Yn+m−1. It defines how we must schedule
the tasks in the resulting solution (offspring). The second deals with the

operation modes of this solution, from Yn+m+1 to Y2n+m.
The first part is defined using the same approach presented by Ref.

[64], in which, a randomly generated bit string template determines
for each parent which elements are carried forward into their offspring.
The main difference is the existence of marks (non-repeating nega-
tive integers) that denote the end of a sequence of tasks scheduled in
a machine. In summary, given parent-1 and parent-2, Y from Y1 to

13

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Table 9
Results of CS indicator for the MO-ALNS, MO-ALNS/D and MOEA/D algorithms.

Yn+m−1 is defined using the [64] method. The second part is defined
such a way that the segment of Y that represents the operation modes
can get information from both parents. Thus, a randomly integer R from
n + m + 1 to 2n + m is generated. As a result, the offspring from
Yn+m+1 to YR contains operation modes of parent-1, while from YR+1
to Y2n+m includes operation modes of parent-2. Regarding the mutation
operator, the four examples of movements illustrated in Fig. 4a–d were
randomly (uniform) selected and applied on the offspring.

The HV and coverage between two sets (CS) [58] indicators are
used to compare the convergence of the algorithms. The unary indica-
tors (as the hypervolume) have a limited efficiency because the sets of
non-dominated solutions are analyzed separately [65,66]. Therefore, to
compare the results of the algorithms, the coverage between two sets
(CS) binary indicator is also used. The CS indicator determines the per-
centage of solutions from one set (X″) that a given set (X′) dominates.
Eq. (18) shows the calculation of coverage indicator between sets.

CS(X′,X″) = |a″ ∈ X″; ∃a′ ∈ X′ ∶ a′ cover a″||X″| (18)

The operation a′covera″ determines that a′ dominates a″ or a′ equals
to a″. The results of CS indicator are mapped to [0,1]. If the result of
CS is equal to 1, this indicates that all points of X″ are dominated or
equal to points in X′.

The reference point used in the HV indicator is the largest solution
found for each of the objectives, considering all the solutions found by
the MO-LNS, MO-ALNS and MO-ALNS/D algorithms. The values of the
HV indicator were normalized between 0 and 1, as in the validation
phase (Subsection 4.2). As the algorithms have stochastic nature, they

were executed five times for each instance and only the average results
are considered.

Tables 8 and 9 present the average results obtained for the HV and
CS indicators.

The best results of Tables 8 and 9 are highlighted in blue. The
results suggest that the MO-ALNS/D algorithm achieved better results
in most cases for the HV indicator. Considering the complete results
the MO-ALNS/D achieved the best performance in 70% of cases. The
MO-ALNS/D algorithm also found better results for the CS indicator.
Analyzing the complete results the MO-ALNS/D achieved the best per-
formance in 76% of cases. It can be observed that the MO-ALNS/D
solutions cover some parts of the Pareto front which are not covered
by the MO-ALNS solutions. Figs. 9 and 10 present the box plot of the
results.

These graphs also suggest a better performance of the MO-ALNS/D
algorithm for the HV and CS indicators. A statistical test was applied
to verify if there is statistical difference between the results of HV indi-
cator. It was applied an ANOVA test4 with 95% confidence (thresh-
old = 0.05). The ANOVA test was applied with blocking for the groups
of instances with the same number of jobs. The value obtained for the
p-value is equal to 0.000344. As the p-value is smaller than the thresh-
old, the results suggest there is statistical difference between the results
of the hypervolume.

4 We verified that the data follow a normal distribution using the Shapiro-
Wilk test.

14

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 9. Box plot results of the MO-ALNS, MO-ALNS/D and MOEA/D algorithms for the HV indicator.

Fig. 10. Box plot results of the MO-ALNS, MO-ALNS/D and MOEA/D algorithms for the CS indicator.

To identify a significant difference between the results of paired
algorithms, the Tukey HSD test [59] was done with 95% of confidence
level (threshold = 0.05). Fig. 11 shows the result of this test.

The result of Tukey HSD test suggests that MO-ALNS/D is statisti-
cally better than the other algorithms in a pairwise comparison. This
result also suggests the efficiency of the proposed algorithm under the
defined conditions of the experiment.

A third indicator also is used to evaluate the quality of the Pareto
front approximations obtained by the algorithms. This indicator is the
hierarchical cluster counting (HCC) [67]. The HCC is able to measure
both the uniformity and extension of the estimate set. In this indicator,
the non-dominated solutions (or points) of an estimate set are sequen-
tially grouped into clusters. The agglomerative clustering procedures
start with each point being a cluster. In the next iterations the near-
est clusters are joined together until all the data is grouped in only
one class. The value of HCC is given by the integration (summation)
of fusion distances used at each iteration of the hierarchical agglomera-
tive clustering process. The estimate set that has the higher value for the
HCC indicator has the better description of the Pareto front. The results
of the algorithms for the HCC indicator are presented in Table 10.

The best average results of Table 10 are highlighted in blue. The
MO-ALNS/D algorithm achieved better results in almost all cases for
the HCC indicator. A statistical test was applied to identify if there
is statistical difference between the average results of the HCC indi-

cator. Kruskal-Wallis Test [59] non-parametric test5 with 95% confi-
dence (threshold = 0.05) was used. The result found is p-value equal to
0.005764. This value suggests that there is statistical difference between
the average results of the HCC. The Tukey test was applied with 95%
of confidence level (threshold = 0.05) to verify the difference between
the pairwise differences. The results of the test are shown in Fig. 12.

The results suggest that MO-ALNS/D is statistically better than the
MO-ALNS and MOEA/D algorithms, regarding the HCC metric. There-
fore the Pareto front approximations achieved by MO-ALNS/D have
better uniformity and extension. A graphical analysis is also performed
to evaluate the typical behavior of the two best algorithms. A large
instance was randomly selected and the Pareto front approximations
found by the algorithms are shown in Fig. 13.

Fig. 13 helps to illustrate how algorithms behave in large instances
of the problem. It can be observed that the Pareto front approxima-
tion of MO-ALNS/D is much better than the one of MO-ALNS, probably
because of benefitting from the implicit parallelism of a population-
based search and decomposition.

5 Null-hypothesis (H0) the average results of the metric are equals. Alterna-
tive hypothesis (H1), the average results of the metric are different, that is, at
least one of the results is different from the others. We verified that the data
does not follow a normal distribution using the Shapiro-Wilk test.

15

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 11. Tukey HSD test results for the HV indicator.

Table 10
Results of the HCC indicator for MO-ALNS, MO-ALNS/D and MOEA/D algorithms.

16

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

Fig. 12. Tukey HSD test results for the HCC indicator.

Fig. 13. Pareto front obtained with the MO-ALNS and MO-ALNS/D algorithms for an instance with 50 jobs and 10 machines.

5. Conclusions

This work approached the unrelated parallel machine scheduling
problem with sequence dependent setup times, attempting to minimize
the makespan and total energy consumption, RM |Sijk|(Cmax,TEC) by the
formal definition. This problem was recently defined in the context of
green scheduling. The classical version of the problem seeks to mini-
mize only the makespan. The minimization of the energy consumption
implies in reduction of costs for the industries and the conscious use of
environmental resources.

In the literature this problem was solved using exact methods.
Thereby, only small and medium instances have been treated. The focus
of this work was to propose multi-objective algorithms to solve large
instances of this problem. Two multi-objective algorithms were defined
for this purpose. Both algorithms are based on the ALNS algorithm with
Learning Automata.

The first algorithm is called MO-ALNS and is a multi-objective ver-
sion of the ALNS algorithm with Learning Automata. In the MO-ALNS
the acceptance criterion was modified to account for the Pareto domi-
nance. A new local search has also been added to change the operation
modes. The MO-ALNS does not offer control of the diversification in the
Pareto front approximation because the current solution is chosen ran-
domly at each iteration. The second algorithm has the structure of the
classical MOEA/D, however it uses the ALNS with Learning Automata to
solve the scalar subproblems rather than genetic operators. This algo-
rithm is called MO-ALNS/D. It is noteworthy that decomposition and
aggregation in MOEA/D algorithm controls diversification of the Pareto
front approximation. The MO-ALNS/D algorithm preserves this charac-
teristic.

In the computational experiments the two multi-objective algo-
rithms were validated using the small and medium instances of the
literature, and the results of the 𝜖-constrained method. A set of large
instances was generated to compare the proposed algorithms. The two

17

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

proposed algorithms were compared against the classical MOEA/D for a
set of large instances. The hypervolume, coverage of two sets and hier-
archical cluster counting indicators were used to measure the quality of
the results. It was observed that the MO-ALNS/D algorithm found better
results than MO-ALNS in most cases for the three indicators. Statistical
tests were applied to verify if there is statistical difference between the
results of the hypervolume and hierarchical cluster counting indica-
tors. The results of these statistical tests indicated that such differences
are significant, thus confirming the benefit of Learning Automata and
decomposition in the MO-ALNS/D algorithm. These findings show that
the decomposition approach can be beneficial to the search not only for
evolutionary based algorithms but also for other metaheuristic meth-
ods based on local search. We believe this is a significant contribution
of this study.

In principle, it is believed that the MO-ALNS/D algorithm might
be successfully applied to other multi-objective scheduling problems.
It combines two very interesting algorithms, the ALNS that has been
successfully applied to solve several single objective scheduling prob-
lems and the MOEA/D that has obtained excellent results in solving
various multi-objective and many-objective problems. Furthermore, the
problem addressed is general in the parallel machine scheduling class.
All components of the proposed algorithms can be expanded to several
other instances of real parallel scheduling problems.

As future work we intend to apply the MO-ALNS/D to other real
multi-objective and many-objective scheduling problems. In addition,
we plan to improve the algorithm with the use of more efficient tech-
niques for generating weights and other decomposition functions.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgement

The authors would like to thank the support given by the Insti-
tuto Tecnológico Vale and the Brazilian agencies CAPES, CNPq, and
FAPEMIG.

References

[1] N.E. Karkalos, A.P. Markopoulos, J.P. Davim, Computational Methods for
Application in Industry 4.0, Springer, 2019.

[2] S.A. Mansouri, E. Aktas, U. Besikci, Green scheduling of a two-machine flow shop:
trade-off between makespan and energy consumption, Eur. J. Oper. Res. 248
(2016) 772–788.

[3] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer, 2018.
[4] G. Rabadi, R.J. Moraga, A. Al-Salem, Heuristics for the unrelated parallel machine

scheduling problem with setup times, J. Intell. Manuf. 17 (1) (2006) 85–97.
[5] M. Garey, D. Johnson, Computers and intractability: A Guide to the Theory of

NP-Completeness, WH Freeman & Co., San Francisco 174.
[6] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer

Computations 40 (4) (1972) 85–103.
[7] A. Allahverdi, The third comprehensive survey on scheduling problems with setup

times/costs, Eur. J. Oper. Res. 246 (2) (2015) 345–378.
[8] E. Vallada, R. Ruiz, A genetic algorithm for the unrelated parallel machine

scheduling problem with sequence dependent setup times, Eur. J. Oper. Res. 211
(3) (2011) 612–622.

[9] L.P. Cota, M.N. Haddad, M.J.F. Souza, V.N. Coelho, AIRP: a heuristic algorithm for
solving the unrelated parallel machine sheduling problem, in: Proceedings of the
2014 IEEE Congress on Evolutionary Computation, CEC 2014), Beijing, 2014, pp.
1855–1862.

[10] M.N. Haddad, L.P. Cota, M.J.F. Souza, N. Maculan, AIV: a heuristic algorithm
based on iterated local search and variable neighborhood descent for solving the
unrelated parallel machine scheduling problem with setup times, in: Proceedings
of the 16th International Conference on Enterprise Information Systems, ICEIS
2014, Lisbon, Portugal, 2014, pp. 376–383, https://doi.org/10.5220/
0004884603760383.

[11] M.N. Haddad, L.P. Cota, M.J.F. Souza, N. Maculan, Solving the unrelated parallel
machine scheduling problem with setup times by efficient algorithms based on
iterated local search, Lecture Notes in Enterprise Information Systems 227 (2015)
131–148.

[12] P. Hansen, N. Mladenovic, J.A.M. Pérez, Variable neighborhood search: methods
and applications, 4OR, Quartely Journal of the Belgian, French and Italian
operations research societies 6 (2008) 319–360.

[13] T.T. Tran, A. Araujo, J.C. Beck, Decomposition methods for the parallel machine
scheduling problem with setups, Inf. J. Comput. 28 (1) (2016) 83–95, https://doi.
org/10.1287/ijoc.2015.0666.

[14] L.P. Cota, F.G. Guimarães, F.B. Oliveira, M.J.F. Souza, An adaptive large
neighborhood search with learning automata for the unrelated parallel machine
scheduling problem, in: Proceedings of the 2017 IEEE Congress on Evolutionary
Computation (CEC 2017), Donóstia - San Sebastian, 2017, pp. 185–192, https://
doi.org/10.1109/CEC.2017.7969312.

[15] K.R. Baker, D. Trietsch, Principles of Sequencing and Scheduling, John Wiley &
Sons, Inc., 2009https://doi.org/10.1002/9780470451793.

[16] S. A. Mansouri, E. Aktas, U. Besikci, Minimizing energy consumption and
makespan in a two-machine flowshop scheduling problem, J. Oper. Res.
Soc.:10.1057/jors.2016.4.

[17] H. Zhang, F. Zhao, K. Fang, J.W. Sutherland, Energy-conscious flow shop
scheduling under time-of-use electricity tariffs, Proceedings of the Annals -
Manufacturing Technology 63 (2014) 37–40.

[18] J. Ding, S. Song, C. Wu, Carbon-efficient scheduling of flow shops by
multi-objective optimization, Eur. J. Oper. Res. 248 (2016) 758–771.

[19] Y. Liu, H. Dong, N. Lohse, S. Petrovic, A multi-objective genetic algorithm for
optimisation of energy consumption and shop floor production performance, Int. J.
Prod. Econ. 179 (2016) 259–272, https://doi.org/10.1016/j.ijpe.2016.06.019.

[20] S.A. Mansouri, E. Aktas, Minimizing energy consumption and makespan in a
two-machine flowshop scheduling problem, J. Oper. Res. Soc. 67 (11) (2016)
1382–1394, https://doi.org/10.1057/jors.2016.4.

[21] C. Artigues, P. Lopez, A. Haït, The energy scheduling problem: industrial
case-study and constraint propagation techniques, Int. J. Prod. Econ. 143 (1)
(2013) 13–23, https://doi.org/10.1016/j.ijpe.2010.09.030, http://www.
sciencedirect.com/science/article/pii/S0925527310003683.

[22] M. Aghelinejad, Y. Ouazene, A. Yalaoui, Production scheduling optimisation with
machine state and time-dependent energy costs, Int. J. Prod. Res. 56 (16) (2018)
5558–5575, https://doi.org/10.1080/00207543.2017.1414969.

[23] M. Aghelinejad, Y. Ouazene, A. Yalaoui, Complexity analysis of energy-efficient
single machine scheduling problems, Operations Research Perspectives 6 (2019)
100105, https://doi.org/10.1016/j.orp.2019.100105, http://www.sciencedirect.
com/science/article/pii/S2214716018301702.

[24] S.A. Mansouri, E. Aktas, U. Besikci, Green scheduling of a two-machine flowshop:
trade-off between makespan and energy consumption, Eur. J. Oper. Res. 248 (3)
(2016) 772–788, https://doi.org/10.1016/j.ejor.2015.08.064, http://www.
sciencedirect.com/science/article/pii/S0377221715008206.

[25] S. Wang, M. Liu, F. Chu, C. Chu, Bi-objective optimization of a single machine
batch scheduling problem with energy cost consideration, J. Clean. Prod. 137
(2016) 1205–1215, https://doi.org/10.1016/j.jclepro.2016.07.206, http://www.
sciencedirect.com/science/article/pii/S0959652616311118.

[26] S. Wang, X. Wang, J. Yu, S. Ma, M. Liu, Bi-objective identical parallel machine
scheduling to minimize total energy consumption and makespan, J. Clean. Prod.
193 (2018) 424–440, https://doi.org/10.1016/j.jclepro.2018.05.056, http://www.
sciencedirect.com/science/article/pii/S0959652618313866.

[27] H. Safarzadeh, S.T.A. Niaki, Bi-objective green scheduling in uniform parallel
machine environments, J. Clean. Prod. 217 (2019) 559–572, https://doi.org/10.
1016/j.jclepro.2019.01.166, http://www.sciencedirect.com/science/article/pii/
S0959652619301854.

[28] X. Wu, A. Che, A memetic differential evolution algorithm for energy-efficient
parallel machine scheduling, Omega 82 (2019) 155–165, https://doi.org/10.1016/
j.omega.2018.01.001, http://www.sciencedirect.com/science/article/pii/
S0305048317307922.

[29] H.R. Lourenço, O. Martin, T. Stützle, Iterated local search, in: F. Glover, G.
Kochenberger (Eds.), Handbook of Metaheuristics, Vol. 57 of International Series
in Operations Research & Management Science, Kluwer Academic Publishers,
Norwell, MA, 2003, pp. 321–353.

[30] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows, Transp. Sci. 40 (2006) 455–472.

[31] A.C. Beezzão, J.-F. Cordeau, G. Laporte, H.H. Yanasse, Scheduling identical parallel
machines with tooling constraints, Eur. J. Oper. Res. 257 (3) (2017) 834–844.

[32] V. Ghilas, E. Demir, T. Van Woensel, An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines, Comput. Oper. Res. 72 (C) (2016) 12–30, https://doi.org/10.1016/j.cor.
2016.01.018.

[33] G. Mattos Ribeiro, G. Laporte, An adaptive large neighborhood search heuristic for
the cumulative capacitated vehicle routing problem, Comput. Oper. Res. 39 (3)
(2012) 728–735, https://doi.org/10.1016/j.cor.2011.05.005.

[34] J.E.C. Arroyo, R.S. Ottoni, A.P. Oliveira, Multi-objective variable neighborhood
search algorithms for a single machine scheduling problem with distinct due
windows, Electronic Notes in Theoretical Computer Science, in: Proceedings of the
2011 Latin American Conference in Informatics (CLEI), vol. 281, 2011, pp. 5–19,
https://doi.org/10.1016/j.entcs.2011.11.022.

[35] M.J. Geiger, Decision support for multi-objective flow shop scheduling by the
pareto iterated local search methodology, Comput. Ind. Eng. 61 (3) (2011)
805–812, https://doi.org/10.1016/j.cie.2011.05.013.

[36] A.P. Rifai, H. Nguyen, S.Z.M. Dawal, Multi-objective adaptive large neighborhood
search for distributed reentrant permutation flow shop scheduling, Appl. Soft
Comput. 40 (2016) 42–57, https://doi.org/10.1016/j.asoc.2015.11.034.

[37] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective
evolutionary algorithms: a survey of the state of the art, Swarm and Evolutionary
Computation 1 (1) (2011) 32–49, https://doi.org/10.1016/j.swevo.2011.03.001.

18

http://refhub.elsevier.com/S2210-6502(19)30113-0/sref1
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref2
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref3
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref4
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref6
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref7
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref8
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref9
https://doi.org/10.5220/0004884603760383
https://doi.org/10.5220/0004884603760383
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref11
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref12
https://doi.org/10.1287/ijoc.2015.0666
https://doi.org/10.1287/ijoc.2015.0666
https://doi.org/10.1109/CEC.2017.7969312
https://doi.org/10.1109/CEC.2017.7969312
https://doi.org/10.1002/9780470451793
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref17
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref18
https://doi.org/10.1016/j.ijpe.2016.06.019
https://doi.org/10.1057/jors.2016.4
https://doi.org/10.1016/j.ijpe.2010.09.030
http://www.sciencedirect.com/science/article/pii/S0925527310003683
http://www.sciencedirect.com/science/article/pii/S0925527310003683
https://doi.org/10.1080/00207543.2017.1414969
https://doi.org/10.1016/j.orp.2019.100105
http://www.sciencedirect.com/science/article/pii/S2214716018301702
http://www.sciencedirect.com/science/article/pii/S2214716018301702
https://doi.org/10.1016/j.ejor.2015.08.064
http://www.sciencedirect.com/science/article/pii/S0377221715008206
http://www.sciencedirect.com/science/article/pii/S0377221715008206
https://doi.org/10.1016/j.jclepro.2016.07.206
http://www.sciencedirect.com/science/article/pii/S0959652616311118
http://www.sciencedirect.com/science/article/pii/S0959652616311118
https://doi.org/10.1016/j.jclepro.2018.05.056
http://www.sciencedirect.com/science/article/pii/S0959652618313866
http://www.sciencedirect.com/science/article/pii/S0959652618313866
https://doi.org/10.1016/j.jclepro.2019.01.166
https://doi.org/10.1016/j.jclepro.2019.01.166
http://www.sciencedirect.com/science/article/pii/S0959652619301854
http://www.sciencedirect.com/science/article/pii/S0959652619301854
https://doi.org/10.1016/j.omega.2018.01.001
https://doi.org/10.1016/j.omega.2018.01.001
http://www.sciencedirect.com/science/article/pii/S0305048317307922
http://www.sciencedirect.com/science/article/pii/S0305048317307922
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref29
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref30
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref31
https://doi.org/10.1016/j.cor.2016.01.018
https://doi.org/10.1016/j.cor.2016.01.018
https://doi.org/10.1016/j.cor.2011.05.005
https://doi.org/10.1016/j.entcs.2011.11.022
https://doi.org/10.1016/j.cie.2011.05.013
https://doi.org/10.1016/j.asoc.2015.11.034
https://doi.org/10.1016/j.swevo.2011.03.001

L.P. Cota et al. Swarm and Evolutionary Computation 51 (2019) 100601

[38] Q. Zhang, H. Li, Moea/d: a multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731, https://doi.
org/10.1109/TEVC.2007.892759.

[39] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: nsga-ii, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,
https://doi.org/10.1109/4235.996017.

[40] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577–601, https://
doi.org/10.1109/tevc.2013.2281535.

[41] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength pareto
evolutionary algorithm for multiobjective optimization, in: K. Giannakoglou et al.
(Ed.), Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001), International Center for
Numerical Methods in Engineering (CIMNE), 2002, pp. 95–100.

[42] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and
conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268–308, https://doi.
org/10.1145/937503.937505.

[43] I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Inf.
Sci. 237 (2013) 82–117, https://doi.org/10.1016/j.ins.2013.02.041.

[44] P. Siarry (Ed.), Metaheuristics, Springer International Publishing, 2016.
[45] L.P. Cota, V.N. Coelho, F.G. Guimarães, M.J.F. Souza, Bi-criteria formulation for

green scheduling with unrelated parallel machines with sequence dependent setup
times, Int. Trans. Oper. Res. (2018), https://doi.org/10.1111/itor.12566.

[46] R. Graham, E. Lawler, J. Lenstra, A. Kan, Optimization and approximation in
deterministic sequencing and scheduling: a survey, Annals of discrete Mathematics
5 (2) (1979) 287–326.

[47] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, third ed., Springer
Publishing Company, Incorporated, 2008.

[48] M.M. Alipour, A learning automata based algorithm for solving traveling salesman
problem improved by frequency-based pruning, Int. J. Comput. Appl. 46 (17)
(2012) 7–13, https://doi.org/10.5120/7007-9328.

[49] K.S. Narendra, M.A.L. Thathachar, Learning automata - a survey, IEEE
Transactions on Systems, Man, and Cybernetics SMC- 4 (4) (1974) 323–334,
https://doi.org/10.1109/TSMC.1974.5408453.

[50] K.S. Narendra, K.S. Thathachar, Learning Automata: an Introduction,
Prentice-Hall, New York, 1989.

[51] K.S. Narendra, M.A. Thathachar, Learning Automata: an Introduction, Courier
Corporation, 2012.

[52] R. Vafashoar, M.R. Meybodi, Multi swarm bare bones particle swarm optimization
with distribution adaption, Appl. Soft Comput. 47 (2016) 534–552, https://doi.
org/10.1016/j.asoc.2016.06.028.

[53] T. Lust, J. Teghem, Two-phase pareto local search for the biobjective traveling, J.
Heuristics 16 (2010) 475–510.

[54] K.R. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons, Inc.,
1974.

[55] M. Souza, I. Coelho, S. Ribas, H. Santos, L. Merschmann, A hybrid heuristic
algorithm for the open-pit-mining operational planning problem, Eur. J. Oper. Res.
207 (2) (2010) 1041–1051.

[56] H. Scheffé, Experiments with mixtures, J. R. Stat. Soc. 20 (2) (1958) 344–360.
[57] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective

evolutionary algorithms based on decomposition, IEEE Trans. Evol. Comput. 21
(3) (2017) 440–462, https://doi.org/10.1109/TEVC.2016.2608507.

[58] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach, IEEE Trans. Evol. Comput. 3 (1999)
257–271.

[59] D. Montgomery, Design and Analysis of Experiments, fifth ed., John Wiley & Sons,
New York, NY, 2007.

[60] S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete
samples), Biometrika 52 (1965) 591–611.

[61] C. Ahilan, S. Kumanan, N. Sivakumaran, J.E.R. Dhas, Modeling and prediction of
machining quality in cnc turning process using intelligent hybrid decision making
tools, Appl. Soft Comput. 13 (3) (2013) 1543–1551, https://doi.org/10.1016/j.
asoc.2012.03.071.

[62] P. Shaw, Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998,
pp. 417–431.

[63] Y. Tian, R. Cheng, X. Zhang, Y. Jin, Platemo: a matlab platform for evolutionary
multi-objective optimization [educational forum], IEEE Comput. Intell. Mag. 12
(4) (2017) 73–87.

[64] A. Sadegheih, Scheduling problem using genetic algorithm, simulated annealing
and the effects of parameter values on ga performance, Appl. Math. Model. 30 (2)
(2006) 147–154.

[65] J. Knowles, D. Corne, On metrics for comparing nondominated sets, in:
Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on,
vol. 1, 2002, pp. 711–716, https://doi.org/10.1109/CEC.2002.1007013.

[66] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol.
Comput. 7 (2) (2003) 117–132, https://doi.org/10.1109/TEVC.2003.810758.

[67] F.G. Guimarães, E.F. Wanner, R.H.C. Takahashi, A quality metric for
multi-objective optimization based on hierarchical clustering techniques, in: 2009
IEEE Congress on Evolutionary Computation, 2009, pp. 3292–3299, https://doi.
org/10.1109/CEC.2009.4983362.

19

https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/tevc.2013.2281535
https://doi.org/10.1109/tevc.2013.2281535
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref41
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.ins.2013.02.041
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref44
https://doi.org/10.1111/itor.12566
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref46
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref47
https://doi.org/10.5120/7007-9328
https://doi.org/10.1109/TSMC.1974.5408453
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref50
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref51
https://doi.org/10.1016/j.asoc.2016.06.028
https://doi.org/10.1016/j.asoc.2016.06.028
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref53
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref54
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref55
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref56
https://doi.org/10.1109/TEVC.2016.2608507
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref58
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref59
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref60
https://doi.org/10.1016/j.asoc.2012.03.071
https://doi.org/10.1016/j.asoc.2012.03.071
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref62
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref63
http://refhub.elsevier.com/S2210-6502(19)30113-0/sref64
https://doi.org/10.1109/CEC.2002.1007013
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/CEC.2009.4983362
https://doi.org/10.1109/CEC.2009.4983362

	An adaptive multi-objective algorithm based on decomposition and large neighborhood search for a green machine scheduling problem
	1. Introduction
	2. Problem definition
	3. Proposed multi-objective algorithms
	3.1. Solution representation and evaluation
	3.2. MO-ALNS algorithm
	3.2.1. Constructive procedure
	3.2.2. Insertion and removal heuristics
	3.2.3. Local search procedure
	3.2.4. Method for updating non-dominated solutions

	3.3. MO-ALNS/D algorithm
	3.3.1. Tchebycheff Approach aggregation function

	4. Computational experiments
	4.1. Analysis of parameters of the MO-ALNS and MO-ALNS/D algorithms
	4.2. Algorithms validation
	4.3. Large instances generation
	4.4. Comparison between MO-ALNS with and without LA
	4.5. Comparison of MO-ALNS/D, MO-ALNS and MOEA/D results

	5. Conclusions
	Conflict of interest
	Acknowledgement
	References

