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RESUMO
OptFrame é um framework em C++ que facilita a implementação de meta-heurı́sticas

para otimização. Este ano marca o décimo aniversário da publicação do OptFrame no XLII SBPO.
Na versão mais recente 4.0, a ferramenta conta com novas funcionalidades por meio de recursos
de padrões recentes do C++, como corrotinas e closures. O OptFrame tem sido utilizado em
diversas aplicações da literatura e da indústria, incluindo problemas de roteamento, micro-grids,
previsão em séries temporais, marketing direto, escalonamento e geração automática de músicas.
Neste trabalho, apresentamos os avanços recentes do OptFrame e um estudo com microbenchmarks
para suas componentes básicas, avaliando a sobrecarga computacional. Estudos computacionais
mostram que as estratégias propostas foram capazes de reduzir a sobrecarga de 1700% para 34%,
através de técnicas avançadas de Type Erasure em C++ aplicáveis a demais solvers da literatura.

PALAVRAS CHAVE. Otimização, Framework, Meta-heurı́sticas, Microbenchmark

ABSTRACT
OptFrame is a C++ framework that facilitates the implementation of metaheuristics

for optimization. This year marks the 10th anniversary of the publication of OptFrame in SBPO
XLII. In the most recent 4.0 version, the tool has new functionalities using the latest capabilities of
modern C++ standards such as coroutines and closures. OptFrame has been used in several works
of the literature and industry to solve problems such as routing problems, micro-grid, time-series
forecasting, direct marketing, scheduling, and automatic music generation. In this work, we show
recent improvements in OptFrame with a study based on microbenchmarks for basic components,
especially neighborhood exploration. Empirical studies demonstrate that the devised strategies were
capable of reducing the original version overhead from 1700% to 34% by advanced techniques of
C++ Type Erasure, that can also be applied to other solvers in literature.
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1. Introduction
Metaheuristic usage is a common approach to solve practical-scale instances of many op-

timization problems that are NP-Hard [Gendreau et al., 2010]. Some metaheuristics have similar
components to employ its strategy, like local search, solution construction, solution perturbation and
recombination. Consequently, algorithm developers may reuse those components through distinct
heuristic approaches to various problems. Generally, computational performance and fast develop-
ment are essential concerns when solving optimization problems. Therefore, there is a demand for
frameworks that implement metaheuristics and its typical components for optimization problems.

Many authors have proposed frameworks for optimization problems. Fink e Voß [2003]
introduce HotFrame, a framework developed in C++ that provides adaptable components for vari-
ous metaheuristics and some common problem-specific complements. Di Gaspero e Schaerf [2003]
propose a framework called EasyLocal++, as an object-oriented framework for the design and
analysis of local search algorithms. Cahon et al. [2004] and Liefooghe et al. [2011] present Para-
disEO, which is a framework that offers parallel and distributed metaheuristics. A Java framework
called jMetal is presented in Durillo et al. [2006] for multi-objective optimization. Giagkiozis et al.
[2013] introduce Liger as a framework that is extensible and easy for non-expert usage in the in-
dustry. A comprehensive review of frameworks for optimization problems is found in Lopes Silva
et al. [2018].

OptFrame was first published ten years ago in SBPO XLII through a work entitled ”Opt-
Frame: a computational framework for combinatorial optimization problems” [Coelho et al., 2010].
OptFrame is an open-source project1 that implements a wide range of features for solving optimi-
zation problems with metaheuristics. The original work highlighted the main features of OptFrame,
providing benchmarks for both C++ and Java implementations, as well as usage examples of this
framework. Through the years, new features were introduced to aid in the development of algo-
rithms for solving both single and multi-objective problems [Coelho et al., 2016b]. Through these
years, the authors conceived multiple improvements and updates to the framework. Several indus-
trial applications use OptFrame to implement their solutions. In the literature, OptFrame was used
to devise high-quality applications for several works involving single and multi-objective problems
[Souza et al., 2010; Almeida et al., 2011; Munhoz et al., 2012; Coelho et al., 2012, 2016b,a; Munhoz
et al., 2018; Zudio et al., 2018].

More specifically, OptFrame is an optimization framework that provides C++ interfaces
for conventional components of trajectory and population-based metaheuristics. It includes effici-
ent implementations of standard versions of the most well recognized and applied metaheuristics.
The user can test and adapt them to specific problems. It is possible to fine-tune each component
based on problem-specific characteristics. In addition, the framework user has access to quality
tools for testing, profiling, debugging and validating each implemented heuristic. A non-exhaustive
list of metaheuristics implemented in OptFrame is: Genetic Algorithm [Whitley, 1994], Variable
Neighborhood Search (VNS) [Hansen et al., 2017], Tabu Search [Glover e Laguna, 2013] and Gre-
edy Randomised Adaptative Search (GRASP) [Resende e Ribeiro, 2016]. Nowadays, the latest
improvements in OptFrame use modern C++ features like Type Erasure, coroutines and closures.

In the present paper, we present empirical results focused on state-of-the-art microben-
chmark technologies, comparing framework-induced overheads from a low-level perspective. The
computational experiments show that the original version of OptFrame has approximately 1700%
overhead ratio in some of the fundamental components applied in neighborhood exploration, while
the newer version has 34%. This work describes how these results were obtained, while reviewing

1OptFrame official repository is available at https://github.com/optframe/optframe.



advanced techniques applied with C++ Type Erasure. These techniques can also be applied to
works out of the OptFrame context, while being useful to any application that works with gene-
ric programming, like other solvers in the literature for optimization problems. These results also
motivated future changes in OptFrame, trying to achieve high performance while providing useful
programming abstractions.

The rest of this work is structured as follows: Section 2 details some of the concepts used
through this paper, Section 3 gives an overview of the core components of OptFrame, Section 4
shows the empirical experiments performed with OptFrame using microbenchmarks and Section 5
concludes the work alongside future perspectives.
2. Key Concepts and Applications

Before introducing some of the essential components of the framework, this section briefly
describe main concepts that are applied in the context of OptFrame.
2.1. Optimization Problem, Solution Space and Objective Space

An optimization problem Π is a quadruple (I,Z≺,S, z), where I is the set of instances,
Z≺ is the objective space with order relation≺, an instance π ∈ I , S(π) is the set of solutions for π,
where Sf ⊂ S(π) is the set of feasible solutions2, and objective function z : Sf 7→ Z≺.
2.1.1. Single Objective Problem

In the literature, most classical problems are single objective problems (SOP) that consi-
ders a single optimization direction. For this definition, we consider (without loss of generality) an
objective space Z≤ ⊂ R with total order3 relation ≤ (for minimization problems).

Given a solution s in space Sf with objective value z(s) ∈ R, the goal is to find an optimal
solution s∗ ∈ Sf with z(s∗) ∈ R, such that z(s∗) ≤ z(s′), ∀s′ ∈ Sf :

(SOP ) minimize z(s)

s.t. s ∈ Sf
(1)

2.1.2. Multi-objective Problem
We also consider multi-objective problems (MOP), where multiple objective functions

zk, k = 1, · · · , p, are taken into account to model the problem. Since these objectives may have
conflicts, the notion of optimal solution does not hold anymore for a MOP.

In MOP literature, the objective space Z≺ ⊂ Rp is typically defined with a partial order4

relation ≺ known as Pareto dominance, where x ≺ x′ (x dominates x′) if, and only if, zk(x) ≤
zk(x′) ∀k ∈ {1, ..., p}, and for some k the inequality is strict. We say that a solution s∗ ∈ Sf is
efficient, if there is no s′ ∈ Sf such that z(s′) ≺ z(s∗). A MOP definition from Lust e Teghem
[2010]:

(MOP ) minimize zk(s) k = 1, ..., p

s.t. s ∈ Sf
(2)

We denote z(s∗) ∈ Rp as a non-dominated point, and the collection of all efficient soluti-
ons is called efficient set P∗ ⊂ Sf , where its image in the objective space is a Pareto front.

2Note that some optimization techniques consider the exploration of a solution space S comprising both feasible and
some unfeasible solutions. On practice, most of these methods transform the original problem into a relaxed version that
allows some unfeasible solution to become feasible, by paying some extra costs. These are not covered in this work.

3A total order must fulfill the following properties: antisymmetric, transitive and connex relation.
4We assume a partial order, replacing the connex relation from a total order by an irreflexivity property (also called

strict partial order). In some works in literature, the term Weak Pareto Dominance is defined as a non-strict partial order
with reflexivity property, which is not the case here.



2.1.3. Other Order-Based Evaluations
Many works in literature deal with several objectives, however with a pre-defined priority

between them (which is not the case for general MOP). By respecting original ordering on p objec-
tives for two solutions s and s′, one can assume a total preorder5 relation .. An example of such
strategy can be seen on Sousa et al. [2015], for a TSP with Hotel Selection:

z(s) . z(s′) iff {∃k ∈ {1, ..., p} : ∀l < k, zl(s) = zl(s
′) and zk(s) < zk(s′)} (3)

A variant of . can be found on Dubois et al. [2001], where a lexicographic ordering >lex

is proposed for fuzzy optimization problems. One can also use scalarization techniques [Talbi,
2009] with weights wk ∈ R to generate a new single objective from multiple objectives, such
that, z(s) =

∑p
k wk · zk(s) (useful when no conflicts exist between objectives). Finally, decision

problems can be seen as an special case of SOP, where z(s) ∈ [0, 1] represents answers no and yes.

2.1.4. Solutions and Evaluations on OptFrame
The concepts described before are easily implemented in OptFrame, using standard fra-

mework classes. A Solution<R> implements a solution space element for any type R (being it
a permutation, binary vector, graph, etc). An objective space element Evaluation<Z>, where
type Z describes the underlying type for objective space. The class Evaluator<Z> implements
the operator ≺ as comparison methods betterThan and equals, for any given type Z (it is set
by default to C++ type double for any SOP).

2.2. Neighborhood Structures
The concept of neighborhood structure is central to OptFrame metaheuristics, specially

to those with any concept of local search [Talbi, 2009]. As in Hansen et al. [2017], the set N (s)
represents move operators {m1,m2, ...} capable of transforming a given solution s into neighbor
solutions s′, i.e., for a given m ∈ N (s), s′ = m(s). The move operation can be applied to
a solution, and eventually be undone by a reverse move m̄, such that, s = m̄(s′), for a given
neighbor s′. For a SOP with evaluation function z, a move m has an associated cost calculated as
m̂(s) = z(s)− z(m(s)).

The calculation of a move cost can be provided by user (in an efficient manner), or auto-
matically performed by OptFrame using a successive apply and undo operation for a given move.
If no undo operation is provided by the user for a given move, OptFrame is able to copy the so-
lution s, generate its neighbor s′ = m(s), and then compute the cost m̂(s) = z(s) − z(s′),
without destroying the original solution s (in a less efficient implementation). As discussed in
recent works [Nascimento Silva et al., 2020], we also assume that moves can be composed m3 =
m1 ◦ m2 if they are independent, i.e., their costs are kept the same when applied in any order:
m̂3(s) = m̂1(s) + m̂2(s), ∀s ∈ Sf .

2.2.1. Neighborhood Exploration Primitives
To explore a given neighborhood, some primitives are typically considered for improve-

ment (local search) heuristics. We assume N (s) behaves like a stream of moves for solution s, and
we may wish to: (a) find any improving move, findAny(s) = {m | m ∈ N (s) ∧ m̂(s) ≤ 0};
(b) find the first improving move, findF irst(s) = arg min

mk∈N (s) ∧ m̂k(s)≤0
k; (c) find the best improving

move, findBest(s) = arg min
m∈N (s) ∧ m̂(s)≤0

m̂(s). The findAny is very similar to findFirst, while the

former is assumed to be non-deterministic and the latter is expected to be deterministic.
5We assume a total preorder with the following properties: transitivity, connexity and reflexity.



2.2.2. Neighborhood Structure Applications on OptFrame
There are three types of neighborhoods in OptFrame: NS class abstraction generates a

random Move instance m, i.e., m ∈ N (s) (thus providing primitive findAny); NSSeq is a list
iterator that generates every possible Move, i.e., mk ∈ N (s), ∀k ∈ {1, 2, ...} (providing both
findFirst and findBest, besides findAny primitive); NSEnum is a random-access iterator for any h-
indexed Move, i.e., mh = N (h), h ∈ {1, 2, ...} (provides all three fundamental find primitives).

Stochastic metaheuristics such as Simulated Annealing [Kirkpatrick et al., 1983] and Late
Acceptance Hill-Climbing [Burke e Bykov, 2017] use NS to provide random moves and explore
the solution space. Metaheuristics that depend on local search [Gendreau et al., 2010], such as ILS,
VNS and Tabu Search [Glover e Laguna, 2013], typically require a NSSeq, in order to provide
systematic neighborhood exploration. This exploration can be done by varying strategies, such as
classical Best Improvement, First Improvement and Random Sampling. Another recent exploration
technique is the Multi Improvement [Rios et al., 2016; Nascimento Silva et al., 2020], that provides
combination of independent moves during exploration. Stochastic components on other metaheuris-
tics can also use the concept of NS to generate random mutations (Genetic, Memetic Algorithms and
multi-objective variants like NSGA-II [Deb et al., 2002]), perturbation/shaking (ILS and VNS), etc.

2.3. Constructive Methods and Specific Abstractions
Some abstractions are also provided for construction-based metaheuristics, such as Gre-

edy Randomized Adaptive Search Procedures (GRASP) and its variations [Gendreau et al., 2010].
Other metaheuristics, such as Genetic Algorithms and Evolutionary Algorithms on general may
require other specific abstractions (such as crossover), allowing users to configure method-specific
parameters (we refer the reader to OptFrame website for specific details of all supported methods).

3. Modern Programming Techniques
Frameworks propose abstractions that significantly reduce the burden over users to test

and experiment different algorithms. But this generalization always comes with a cost. One way
to prevent such undesired costs is to allow users to specify every component when needed: for
example, on OptFrame, one can design general neighborhood iterators and use several heuristics, or
simply code a local search heuristic “manually”. One side effect of such choice is that users tend to
be quickly satisfied with their “working version” (which is the purpose of a framework) and assume
that compiler optimizer would finish the job. But will it manage to do it? At what extent? Is there
any “inherent” overhead brought by framework abstractions?

OptFrame performs these generalizations, from a problem-specific component into a ge-
neral component, by using standard C++ object-oriented inheritance. On practice, we apply the
Liskov Substitution Principle [Liskov, 1987] to guarantee that every component sub-type behaves
correctly, given its expected interface. For this reason, OptFrame is able to provide complex me-
taheuristic strategies, by only requiring basic operations from the user, e.g, Simulated Annealing
and stochastic searches if user provides Move abstractions, and ILS/VNS searches if user provides
basic NSSeq iterators. In this direction, some handy programming techniques from the 60’s are
only becoming widespread recently, which is the case of coroutines.

3.1. Coroutines and Microbenchmarks
Coroutines are a generalization of subroutines, as they “may be coded as an autono-

mous program which communicates with adjacent modules as if they were input or output subrou-
tines” [Conway, 1963]. A coroutine can resume its own execution and transfer the processor usage
to another module, that characteristic makes it very useful when implementing non-preemptive ap-
plications, cooperative tasks, event loops, infinite iterators, pipes, and iterators (or generators).



Cooperative behavior makes a coroutine a good choice for I/O bound applications, by pro-
gramming it asynchronously it is possible to obtain multiprogramming without preemption thereby
simulating concurrent tasks with no need to lock resources. Applications in the context of operations
research are mostly CPU bound, although the recent usage of parallelization techniques naturally
creates an async environment. Applications such as the research in Araujo et al. [2018] use GPU
programming to process multiple tasks in parallel what creates an async communication between
the subprocesses. In the face of modern applications where heterogeneous and edge computations
resources are used across the network the CPU bound application increases the I/O operations due
to the network interaction [Araujo et al., 2020].

All these techniques need to be properly tested when put on practice, in order to ensure
that the expected effects are actually felt by the user of application. Some features of OptFrame
involves many calls to key operations that, although quite fast, these tiny costs may accumulate
over hundreds of thousands of iterations. Modern microbenchmarking tools allow precise timing of
small operations, and by repeating the process thousands of times, some undesired timing effects
from operating system processing components can be mitigated.

4. Computational Experiments
An empirical study was conducted with microbenchmarks in order to verify the overhead

of OptFrame structures for basic operations. The computational environment used is equipped
with an Intel(R) Core(TM) i5-7200U CPU 2.50GHz, 8 GB of RAM, and Linux kernel 4.15.0-
29deepin-generic. Applications were compiled with GCC 10.1 from the GNU Compiler Collection
and Clang 11, using flags -Ofast, -fno-rtti, -fno-exceptions, and C++20 standard. For
microbenchmarks, we used google-benchmark6 framework, with disabled CPU frequency scaling,
and using optimizing avoidance ASM volatile techniques to prevent code from being optimized
away. The study involved the investigation of 63 different modeling strategies7, applying the pro-
gramming techniques described in Section 3 with over 5000 lines of C++ code specifically designed
for these benchmarks8, on OptFrame Functional Core 4.1.

4.1. Target problem: a findBest strategy
The first experiments focused on the neighborhood abstraction, comparing a findBest pri-

mitive written in “pure” C/C++ against the equivalent OptFrame implementation. We chose a qua-
dratic neighborhood inspired by swaps in a classic Traveling Salesman Problem (TSP) [Applegate
et al., 2006]. The expected number of move operations in findBest is quadratic over a problem
with size N (number of cities in TSP). For each move, we apply it to a random initial solution
vector and then revert it to original vector (via undo operation), and ensure that operation is cor-
rectly performed and not removed during optimization phase. We considered varying sizes of the
target problem N from 10, 20, 30, 100, 200 to 1000 (since the neighborhood is quadratic, the ex-
pected number of operations ranged from 100 up to 1, 000, 000). The number of runs is defined
automatically by google-benchmark, and average results are presented in nanoseconds.

4.2. C/C++ baseline
The C/C++ baseline code is presented in Listing 1, including a C++20 coroutine co yield

counterpart. It has been designed to use only C language features to keep it as efficient as possible
(although the google-benchmark library itself is written in C++).

6Google benchmark repository is available at https://github.com/google/benchmark.
7Initially 54 for triage, then 9 final benchmark sets.
8The benchmark set is publicly available at https://github.com/optframe/optframe.



Listing 1: C++ baseline for findBest

microbenchmark implementation

1 unsigned N = s t a t e . r a n g e ( 0 ) ;
2 unsigned s eed = s t a t e . r a n g e ( 1 ) ;
3 f o r ( auto : s t a t e ) { / / many t e s t s
4 s t a t e . PauseTiming ( ) ;
5 auto e s o l = r a n d s o l (N, seed ) ;
6 s t a t e . ResumeTiming ( ) ;
7 / / q u a d r a t i c number o f moves O(Nˆ 2 )
8 f o r ( i n t i = 0 ; i < N − 1 ; ++ i ) {
9 f o r ( i n t j = i + 1 ; j < N; ++ j ) {

10 / / swap o p e r a t i o n ( a p p l y )
11 i n t aux = e s o l [ i ] ;
12 e s o l [ i ] = e s o l [ j ] ;
13 e s o l [ j ] = aux ;
14 / / ’ asm v o l a t i l e ’ read ’ e s o l ’
15 / / undo swap
16 i n t aux2 = e s o l [ i ] ;
17 e s o l [ i ] = e s o l [ j ] ;
18 e s o l [ j ] = aux2 ;
19 }
20 }
21 }

Listing 2: C++20 coroutine co yield imple-
mentation of findBest for move generator

1 g e n e r a t o r < p a i r<i n t , i n t> > swaps ( i n t N){
2 f o r ( i n t i = 0 ; i < N − 1 ; ++ i )
3 f o r ( i n t j = i + 1 ; j < N; ++ j )
4 c o y i e l d m a k e p a i r ( i , j ) ;
5 }
6 / / . . . t h e n use ne ighborhood g e n e r a t o r
7 i n t N = s t a t e . r a n g e ( 0 ) ; / / f rom t e s t s
8 unsigned s eed = s t a t e . r a n g e ( 1 ) ;
9 auto e s o l = r a n d s o l (N, seed ) ;

10 / / q u a d r a t i c number o f moves O(Nˆ 2 )
11 auto i t e r = swaps (N ) ; / / g e t g e n e r a t o r
12 whi le ( i t e r . n e x t ( ) ) {
13 auto [ i , j ] = i t e r . g e t V a l u e ( ) ;
14 / / pe r fo rm swap o p e r a t i o n s w i t h ( i , j )
15 i n t aux = e s o l [ i ] ;
16 e s o l [ i ] = e s o l [ j ] ;
17 e s o l [ j ] = aux ;
18 / / ’ asm v o l a t i l e ’ read ’ e s o l ’
19 / / undo swap
20 i n t aux2 = e s o l [ i ] ;
21 e s o l [ i ] = e s o l [ j ] ;
22 e s o l [ j ] = aux2 ;
23 }

This proposed baseline achieved the lowest execution time, as expected, from all 63 con-
sidered configurations. Table 1 presents the C/C++ baseline results for compilers GCC and clang.

Table 1: C/C++ baseline on compilers GCC and clang
Average Time (ns) / # Tests

N 10 20 30 100 200 1000
GCC-10.1 559 / 1251606 940 / 737024 1606 / 436090 14353 / 48886 55187 / 12661 1348109 / 519
Clang-11 542 / 1303859 913 / 769006 1576 / 454071 14090 / 49808 55962 / 11966 1414863 / 495

Difference -3.14% -2.96% -1.90% -1.87% 1.40% 4.95%

From Table 1, we observe that clang is 3.14% better than GCC for smaller N , but signifi-
cantly worse for larger N . For other benchmarks, we also observed experiments around 8% slower
on clang, up to 100% on heap-allocation experiments, when compared to GCC. For this reason, we
selected GCC output binary as our C/C++ baseline.

4.3. Comparison with OptFrame FCore 4.1
The initial experiment consisted in comparing the C/C++ baseline with an equivalent im-

plementation in OptFrame Functional Core 4.1. Table 2 shows the overhead (over baseline) for
standard FCore neighborhood enumeration strategy for findBest.

As shown in Listing 2, coroutines are handy at the development of iterator-like abstrac-
tions (in a concept named generators), so we experience these newest C++20 capabilities on Opt-
Frame. We considered GCC 10.1 with same configuration as before, with flag -fcoroutines.

From Table 2, we observe that FCore 4.1 has overheads varying from 4x to 17x. Although
C++ proposes a “zero overhead” principle on general, the observed overhead was still significant
on OptFrame findBest, despite the “simplicity” of its components. Coroutine overheads were
modest, with 3.4% on average for larger instances.



Table 2: Overhead over baseline for FCore default neighborhood enumeration
Average Time (ns) / Overhead over baseline (%) / Coroutine overhead (%)

N 10 20 100 200
baseline 559 / 0 / 0 940 / 0 / 0 14353 / 0 / 0 55187 / 0 / 0

FCore 4.1 2825 / 405.4 / 0 10262 / 991.7 / 0 250624 / 1646.1 / 0 1001241 / 1714.3 / 0
coroutine 3026 / 441.3 / 7.1 10786 / 1047.4 / 5.1 259298 / 1706.6 / 3.5 1035705 / 1776.7 / 3.4

It is worth mentioning that such overheads may not be so evident when the findBest
cost calculation is more expensive, a common case for practical problems, as this would likely
mitigate most of the iterative overhead. On the other hand, it is challenging to develop “pure” C/C++
baselines for comparison on complex problems, as the purpose of a framework is the simplification
of the implementations, even if some overhead is incurred. In order to discover the origin of these
overheads, and to propose solutions for them, we conducted deeper analysis on the generated code.

4.4. Reducing the overheads: from 1700% to “zero”
The iterative structure on FCore 4.1 consists of an iterator that generates heap-allocated

Move instances (described on Section 2.2). To handle these instances, OptFrame uses ownership
managed memory by C++11 standard std::unique ptr, considered to be the closest approach
to a zero-overhead abstraction over general pointers [Meredith, 2009].

In order to cancel the 1700% overhead, we needed to change some abstractions. The first
change was to completely avoid heap allocations, only using stacked objects. Dozens of proposals
were developed and tested, until we finally found solutions that managed to reduce the overhead.
Table 3 presents the specific strategies (with partially hardcoded loops) explored in this work.

Table 3: Specific strategies and their respective times (in ns) and overheads (in %) over baseline
Average Time (ns) / Overhead over baseline (%)

N 10 20 30 100 200
baseline 559 / 0.00 940 / 0.00 1606 / 0.00 14353 / 0.00 55187 / 0.00

unique move 1343 / 140.25 4151 / 341.60 8550 / 432.38 89886 / 526.25 374217 / 578.09
multi capture 1131 / 102.33 3124 / 232.34 6575 / 309.40 67846 / 372.70 266345 / 382.62
single capture 723 / 29.34 1704 / 81.28 3161 / 96.82 31978 / 122.80 119703 / 116.90
single static 606 / 8.41 1115 / 18.62 1923 / 19.74 17627 / 22.81 70163 / 27.14

Strategy unique move reduces the global overhead by four times (from 4x-17x to 1.4x-
5.7x), by allocating an unique global state for a stack-based Move object abstraction (polynomial
reduction on memory). The downside of such approach is that the instances behave like a single-
ton, limiting more complex move composition strategies, such as the Multi Improvement [Nasci-
mento Silva et al., 2020]. After that, we observed that overheads were reduced to 1x-3.8x when
class functions are hardcoded as capture lambdas (on multi capture approach), instead of an inhe-
rited instance. The type erasure costs from each of these capture lambdas seemed to accumulate
quickly, so we moved to a strategy where only a single capture function was “shared” as reference
among all Move objects, reducing overheads to 0.29x-1.2x. At this point, we have realized that any
tiny overhead on the Move abstraction could have significant implications during neighborhood
exploration (since the operation is repeated thousands of times).

One interesting approach is presented on the last line of Table 3, where we observe that
a single non-stack access (even by global/static methods) already incur in some minimal overhead
(from 8% to 27%). So, by allocating even a tiny amount of space in global scope, it generates some



overhead to read and update them (during iterative process). Although we did not verify assembly
code (using perf tools), it could be that this tiny difference (in nanosecs) represents some extra
costs related to typical data segment access/allocation (for global variables), when compared to
local variables (typically put on local stack). So, single static approach acted as a lower bound into
our overhead-reducing capabilities.

Table 4 describes the final (fine-tuning) improvements on Move function allocation on
generic strategies (by using C++ std::function techniques without any hardcoded parts) and
their respective overheads (these generic strategies were directly tested on OptFrame9).

Table 4: Fine tuning function storage types for generic move operations: performance analysis
Average Time (ns) / Overhead over baseline (%)

N 10 20 100 200 1000 ×O(N2)
baseline 559 / 0 940 / 0 14353 / 0 55187 / 0 1348109 / 0 1.3

Func. Cpy. 1048 / 87.5 3142 / 234.3 71286 / 396.7 287172 / 420.4 7309379 / 442.2 6.1
Func. Ref. 658 / 17.7 1649 / 75.4 30446 / 112.1 129101 / 133.9 3065785 / 127.4 2.4
Func. Ptr. 606 / 8.4 1113 / 18.4 18014 / 27.5 70248 / 27.3 1813828 / 34.5 1.7

From Table 4, strategy Function Copy provides a stateful strategy where each move ope-
ration has its own state, and this fact implies much higher overheads over baseline. We observe that
strategy Function Reference has overheads reduced to 0.17x-1.2x, by completely removing the lo-
cal state abstraction (with a move data structure uniquely allocated in memory), and only providing
references to methods allocated statically (Move “class” has no methods or fields at this point, only
references to stateless lambdas). However, even these references seemed to imply some costs, so
strategy Function Pointer finally is able to achieve expected lower bound overheads of 8%-34%, by
providing only copies of pointers to method functions (for some unknown reason, these operated
faster than C++ references). By default, google-benchmark tries to estimate the complexity of the
benchmark in Big-O notation (by the Complexity() benchmark parameter) for the following
classic growth functions: O(1), O(N), O(N2), O(N3), O(logN) and O(NlogN). As expected,
google-benchmark automatically detected the baseline code as being a O(N2) function, and gave
estimation parameters for it: 1.3 O(N2).

Finally, Table 5 describes the state characteristics of each function allocation strategy:
from stateful Function Copy to stateless Function Pointer.

Table 5: Fine tuning function storage types on C/C++ and feature details
Strategy Stateful Closure C/C++ Function Storage Type
Function Copy yes yes std::function<bool(solution type&)>
Function Reference no (shared) yes std::function<bool(solution type&)>&
Function Pointer no (unknown) no bool(*func)(solution type&)

It is worth mentioning that all these strategies can be transparently provided to the user,
since FCore 4.1 already deals with a functional programming abstraction in C++ (user only pro-
vides the functions, no matter how these are “glued” into OptFrame classes). Also, users are also
capable of overwriting any implementation (for project-specific abstractions since early versions of
OptFrame), so these guidelines serve as a path for users achieving this 1700% reduction in overhe-
ads, even when default implementations does not explore them (being also applicable to any other
object-oriented C++ optimization solver in literature).

9On practice, these were tested on an alternative “experimental fork” called AltFrame (inside OptFrame repo tests).



5. Conclusions and Future Works
In this work, we celebrate the 10-year anniversary of OptFrame first publication in SBPO

XLII. As a framework aiming meta-heuristics and optimization techniques, we cover its recent
improvements with latest C++ features (such as coroutines). We evaluate the overhead caused
by framework abstractions using a microbenchmark perspective, and compared to a pure C/C++
baseline implementation of a findBest neighborhood exploration primitive. During our research
experimentation, we discovered that there may be some inherent overhead, even if it is very small,
in abstracting neighborhood iterative processes. A standard object-oriented implementation have
presented a 1700% overhead over baseline, while C++ coroutines increased extra 3.4%. Using
advanced type erasure techniques, it was possible to reduce these overheads to 8%-34%.

It is worth mentioning that, from our experiments, this 8%-34% overhead is naturally in-
troduced in any C/C++ reference code, as long a global/static variable is used (which is a common
practice for C/C++ programmers). So, we strongly believe that for any realistic implementation,
even with the simplest programming features, it is very likely to suffer the same overhead (pro-
grammers typically will not be able to put all variables in stack/registers). For this reason, we
consider this 8%-34% overhead acceptable as part of OptFrame neighborhood iteration structures
(although it could be theoretically eliminated if user directly coded and integrated the intended
algorithm without any given abstraction).

For the future, OptFrame should continue to efficiently incorporate novel techniques and
abstractions, while taking advantage of the concepts described in this paper (from a microbench-
mark perspective). More documentation and examples is also welcome, in order to attract new
users and to soften the learning curve. Specially, from a hybrid-metaheuristics and hyper-heuristics
perspective, the OptFrame looks promising, as the user only needs to fine-tune parameters from a
wide range of available components, without needing to coding and testing them. All the techniques
described can also be used in any other framework in literature, including the microbenchmarking
and coroutine generator. So, from our perspective, this is a very fortunate contribution of this work.
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