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ABSTRACT
We address in this work the Multi-Vehicle Profitable Pickup and Delivery Problem

(MVPPDP), an important NP-hard problem linked with various practical applications, includ-
ing maritime transportation. This problem combines two challenging vehicle routing attributes: 1)
one-to-one pickup and delivery and 2) customers selection. Dealing with both attributes requires
advanced local-search neighborhoods and efficient exploration procedures. To solve the MVP-
PDP, we propose a heuristic algorithm (named IPPD) based on Iterated Local Search (ILS) and
Random Variable Neighborhood Descent (RVND). This method explores infeasible solutions dur-
ing the search with possible violations of duration constraints. To reduce the search space, we
use neighborhood restrictions based on granular local search. Our computational experiments on
36 classical benchmark instances from the literature demonstrate the good performance of IPPD,
which finds new best known solutions for 6 instances and also achieves 20 better or equal solutions
from methods of the literature.
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1. Introduction
The objective of the Vehicle Routing Problem (VRP) is to find the minimum total route

cost for each vehicle so that all customers are served. There are several variations of the VRP,
where this constraint of visiting all customers is relaxed. In Chao et al. [1996b], the authors pro-
posed the Team Orienteering Problem (TOP), in which the objective is to find a subset of points
(customers) for the team (vehicles) to visit and also find a route for each member of the team so that
the time limit per member is respected and the total collected profit (associated with each point) is
maximized. Later, in Archetti et al. [2009], the authors defined the Profitable Tour Problem (PTP),
changing the objective to the maximization of profit minus the minimization of the total route cost.
The combination of TOP, PTP and the one-to-one Pickup and Delivery Problem (PDP) inspired
the authors of Gansterer et al. [2017] to define the Multi-Vehicle Profitable Pickup and Delivery
Problem (MVPPDP).

The MVPPDP is a multi-level optimization problem that, firstly, requires to select a subset
of customers for the vehicles to visit. Secondly, these customers must be assigned to each vehicle
and finally, a route must be defined for each vehicle. These routes must be established in order
to maximize the total profit, which is given by the sum of all profits, obtained from serving each
customer, minus the travel costs. This problem, for example, is very relevant for maritime trans-
portation, in particular the tramp ship routing problems [Norstad et al., 2011; Vilhelmsen et al.,
2014], where cargo owners announce their transportation requests in a spot market and the shipping
company decides which request to attend, considering profits, capacity and travel time.

As the MVPPDP is a “one-to-one pickup and delivery” problem, it leads to larger neigh-
borhoods as the method for solving it must work with pairs of customers. In addition, an algorithm
for solving MVPPDP must have an efficient customer selection procedure in order to obtain good
solutions. These reasons can, partly, explain the existence of only two methods proposed for the
MVPPDP, a variable neighborhood search and a guided local search, both presented in Gansterer
et al. [2017]. The authors claimed to obtain good results by using them on generated benchmark
instances for the MVPPDP.

This work presents an efficient heuristic solution method for the MVPPDP, relying on
large-neighborhood search with efficient exploration procedures. The MVPPDP is a tightly con-
strained problem and the existing methods only accept feasible solutions during their search. This
work aims to investigate the performance of an algorithm that allows infeasible solutions, related
to the duration constraint, during its search procedure. By allowing infeasible solutions, the neigh-
borhoods become larger and can contribute to find better solutions, however it can also increase the
computational time. To counterbalance this effect, the concept of granular local search [Toth and
Vigo, 2003] is applied to reduce the computational time on large instances.

A heuristic called IPPD based on Iterated Local Search (ILS) and the Random Variable
Neighborhood Descent (RVND) is proposed. This algorithm explores classical neighborhoods for
one-to-one pickup and delivery problems and also explores specific neighborhoods for selecting
customers to be included or excluded from the solution. Moreover, this algorithm performs shaking
procedures in order to escape from local optima. Experimental analyses on benchmark instances
from the literature are also done to investigate the efficiency of the proposed methodology.

The main contributions of the work presented in this work are: a) a simple and efficient
heuristic for the MVPPDP; b) a new strategy for dealing with infeasible solutions for the MVPPDP;
c) granular local searches for the MVPPDP; d) new results for existing benchmark instances.

2. Problem statement
The multi-vehicle profitable pickup and delivery problem [Gansterer et al., 2017] is de-

fined on a graph G = (V,E), where V = P ∪ D ∪ {0, 2n + 1} is composed by the set P =
{1, 2, . . . , n}, which contains n pickup customers, the set D = {n + 1, . . . , 2n}, which contains
the n corresponding delivery customers and the vertices {0, 2n+1}, which represent the initial and
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final depots locations. For each service i ∈ V there is a pickup customer i ∈ P and the correspond-
ing delivery customer (n+ i) ∈ D. The set of edges is defined as E = {(i, j)|i, j ∈ V 2}.

To perform the services, there is also a set K = {1, . . . ,m} of m homogeneous vehicles,
in which, each vehicle k ∈ K has the same capacity limit C. Each service i has a demand qi,
which is positive (qi > 0) for the pickup customer i ∈ P and negative (qn+i = −qi) for the
delivery customer (n + i) ∈ D. As in Gansterer et al. [2017], we also assume that qi ≤ Q for
all services i ∈ V . The vehicles must depart and return from the depots without any load, that is,
q0 = q2n+1 = 0. When a vehicle arrives at a pickup customer, it must collect all available load and
when it arrives at the corresponding delivery customer, all load must be delivered. Each service i
has an associated revenue ri to be gained if this service is attended, thus, not necessarily all services
must be attended. For each edge (i, j) ∈ E, there is a distance cost cij associated and each vehicle
is constrained by a maximum travel distance T .

The objective of the MVPPDP is to find a set of routes that maximizes the total profit.
The total profit is obtained by the sum of all revenues collected minus the sum of all travel costs.
Each route of the MVPPDP must start and end at the depot, respect the distance limit, the vehicle
capacity and also the precedence of each pickup over its delivery in the same route.

Figure 1 illustrates a possible solution for an instance with ten p-d pairs and two available
vehicles with capacity C = 50 and maximum travel distance T = 5000. In this instance, the set
of pickup customers is P = {1, 2, . . . , 10} and the set of corresponding delivery customers is D =
{11, 12, . . . , 20}. The initial and final depots are at the same location, represented by 0. In this so-
lution, Route 1 = {0, 10, 20, 8, 7, 18, 4, 14, 17, 0} and Route 2 = {0, 9, 2, 3, 1, 11, 13, 12, 19, 0}.
It is noteworthy that both pair of customers (5, 15) and (6, 16) are not supplied by any vehicle. The
total distance forRoute 1 is 4792.23 with the total revenue collected of 19101 and the total distance
for Route 2 is 4892.25 with the total revenue collected of 27053, thus the total profit is calculated
by (19101 + 27053)− (4792.23 + 4892.25) = 36469.52.

Figure 1: Example of a possible solution for the MVPPDP

3. Related literature
The team orienteering problem defined in Chao et al. [1996b] was proven to be in the

NP-hard class by Laporte and Martello [1990] and Boussier et al. [2007]. As a consequence,
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many heuristics have been developed to this problem in the literature. In Labadie et al. [2012],
a LP-based granular variable neighborhood search is proposed to solve the TOP with hard Time
Window constraints. A simulated annealing is developed in Lin and Vincent [2012] and Lin [2013]
for the TOP with Time Windows. A tabu search is proposed in Tang and Miller-Hooks [2005]
for the TOP. Two variants of a generalized tabu search algorithm and a variable neighborhood
search algorithm are used by Archetti et al. [2007] to solve the TOP. In Ke et al. [2008] an ant-
colony optimization algorithm is proposed to solve the TOP. A particle swarm optimization-based
memetic algorithm is developed in Dang et al. [2011] for solving the TOP. An iterative framework
incorporating three components is developed by Hu and Lim [2014], the first two components are a
local search procedure and a simulated annealing, while the third component recombines routes to
identify high quality results. Finally, heuristics based on guided local search [Vansteenwegen et al.,
2009a], iterated local search [Vansteenwegen et al., 2009b] and path relinking [Souffriau et al.,
2010] were able to find very good solutions for the TOP in relatively short amount of time.

In contrast with the several works on the TOP, there are fewer studies on the profitable tour
problem [Archetti et al., 2014]. An approximation algorithm for the asymmetric PTP is presented
by Nguyen and Nguyen [2010]. Large neighborhoods for the TOP as well as for the PTP are studied
in Vidal et al. [2015]. Three heuristics and one exact procedure for the capacitated TOP and the
capacitated PTP were proposed in Archetti et al. [2009] and Archetti et al. [2013]. In Jepsen et al.
[2014], a branch-and-cut algorithm for the capacitated PTP is presented. A rich variant of the PTP
is studied in Lahyani et al. [2013] and a variable neighborhood search embedded with an adaptive
large neighborhood search is developed.

The multi-vehicle profitable pickup and delivery problem was studied for the first time in
Gansterer et al. [2017]. The authors developed a heuristic based on a variable neighborhood search
that performs the local searches using the variable neighborhood descent. The initial solution is built
using a greedy construction heuristic based on cheapest insertion ratio (revenue/insertion cost),
calculated for each request and then, inserting into the partial solution the request with the highest
insertion ratio. The algorithm performs local searches for minimizing the total distance travelled
and for including requests that do not belong to the current solution. The shaking procedures are
chosen randomly and they either remove a single request from a route or remove 10% to 40%
of the route and then insert new requests based on cheapest insertion. The authors tested two
VNDs, the first one executes the local searches in a sequential order (GVNSseq) and the second
is based on a self-adaptive strategy that chooses the best order based on solution improvements
during the execution of the algorithm (GVNSsa). The authors also developed a guided local search
(GLS) based on the algorithm from Vansteenwegen et al. [2009a]. Computational experiments were
conducted on 36 generated instances that contain from 20 to 1000 customers. The experiments
showed that both variants of VNS outperform GLS in solution quality.

4. Methodology

Only two heuristics, one based on the variable neighborhood search (VNS) and the other
based on the guided local search (GLS), have been developed specifically for the MVPPDP. Both
algorithms explore only feasible solutions for the MVPPDP, in terms of the tour time constraint.
Because of this constraint, the search space for the MVPPDP becomes very reduced, therefore
highly efficient strategies are required to reach good solutions and also to avoid getting stuck in lo-
cal minima. This work aims to investigate the exploration of a larger search space for the MVPPDP,
providing an efficient algorithm for the MVPPDP that deals with solutions containing routes violat-
ing the duration constraint. The motivation of this relaxation is to help the algorithm to escape from
local optima, possibly reaching better solutions. In addition, as the neighborhoods become larger,
a granular search is designed to prune many unpromising moves during the search with the aim to
reduce the computational time.
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4.1. Evaluation of a solution
A solution s for the MVPPDP is evaluated using the evaluation function f(s) = p(s) −

c(s)− βd(s), which is responsible for calculating the total profit. In order to obtain the total profit,
the evaluation function f(s) subtracts the total revenue gained by s, obtained by p(s), from the
total travel costs of s, given by c(s). Let d(s) be the total tour time exceeded by the routes and β a
coefficient factor used to penalize the violation of the duration constraint.

We adopted a dynamic strategy for updating the coefficient factor β during the execution
of the proposed algorithm. This strategy widely used for similar problems [Cordeau and Laporte,
2003; Parragh et al., 2010; Vidal et al., 2012; Parragh et al., 2014; Vidal et al., 2014]. The coefficient
factor β starts with the value MAXi∈V {ri}, which represents the maximum revenue of all requests.
After each group of uMAX iterations without improvement of the proposed algorithm, the value
of β can be increased or decreased, depending on the performance of the algorithm in previous
iterations. Let nINFEASIBLE be the number of all infeasible solutions s, that is if d(s) > 0, found
by the algorithm in the last iterations and nFEASIBLE the number of all feasible solutions s, that is
d(s) = 0, obtained in the last iterations. If more infeasible solutions were produced in the last uMAX

iterations without any improvement, then the new value is updated to β = β(1 + δ). On the other
hand, if more feasible solutions were generated then β = β/(1 + δ). The value of δ is randomly
chosen in the interval {0.05 . . . 0.1} using an uniform distribution probability.

4.2. General structure of the method
The proposed algorithm for the MVPPDP combines an iterated local search with a ran-

dom variable neighborhood descent, which performs, randomly, the local searches of ILS with the
objective of finding a local optimum with respect to several neighborhoods. The pseudo code of
the Iterated local search for the Profitable Pickup and Delivery problem (named IPPD) is shown in
Algorithm 1.

Algorithm 1: IPPD
input : TMAX, pMAX, uMAX

1 β ← maxi∈V {ri};
2 s← greedyInitialSolution();
3 s← RVND(s);
4 u← 0;
5 nINFEASIBLE ← 0;
6 nFEASIBLE ← 0;
7 while time ≤ TMAX do
8 s′ ←Perturbation(s,pMAX);
9 s′ ←RVND(s′);

10 if isFeasible(s′) then nFEASIBLE ← nFEASIBLE + 1 ;
11 else nINFEASIBLE ← nINFEASIBLE + 1 ;
12 if f(s′) > f(s) and isFeasible(s′) then s← s′ ;
13 else u← u+ 1 ;
14 if u == uMAX then
15 δ ← rand(0.05, 0.1);
16 if nFEASIBLE > nINFEASIBLE then β ← β/(1 + δ) ;
17 else β ← β(1 + δ) ;
18 u← 0;
19 nINFEASIBLE ← 0;
20 nFEASIBLE ← 0;
21 end
22 end
23 Return s ;

The IPPD algorithm receives as input three parameters: the time limit TMAX for executing
the algorithm, the maximum limit of perturbations pMAX and the maximum number of iterations
without improvement uMAX. Firstly, the value of β is defined to be the maximum revenue of all
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services (line 1). Then, a solution s is built using a greedy constructive heuristic (line 2) and this
solution is improved using the RVND (line 3). Next, (lines 4 – 6), the variable that stores the
current number of iterations without improvement, u, is initialized to zero, as well as the variables
nINFEASIBLE and nFEASIBLE, responsible for counting the number of infeasible and feasible solutions,
respectively. Inside the iterative loop of the algorithm, firstly, a perturbation to escape from local
optima is applied on the current solution s, generating a new solution s′ (line 8). This new solution
s′ is improved by the RVND (line 9). If s′ is feasible, after been improved by the RVND, then
nFEASIBLE is updated, otherwise nINFEASIBLE must be updated (lines 10 – 11). The best solution s
is updated if s′ has a better evaluation function value and also s′ must be feasible, if not, then u
is incremented (lines 12 – 13). In the end of the process (lines 14 – 21), if the algorithm has not
found improvement on uMAX iterations, then the value of β is decreased if nFEASIBLE is greater than
nINFEASIBLE (line 16) or increased if nFEASIBLE is less than or equal to nINFEASIBLE (line 17). After
updating β, variables u, nINFEASIBLE and nFEASIBLE are set to zero again (lines 18 – 20). This iterative
loop continues until a termination criterion is reached, defined here by a time limit (line 7). In the
end of the execution the best solution found is returned (line 23).

The following components of the algorithm are detailed next: the construction of the
initial solution, the local search procedures and the perturbation operator.

4.3. Initial solution
The initial solution s is produced by a greedy constructive heuristic, inspired by Chao

et al. [1996b,a] and also used in Gansterer et al. [2017]. Initiallym seed p-d customers are included
into each route, which are the farthest away from the depot. Then, to fill up the routes, this heuristic
iteratively computes for each pickup customer i its best insertion ratio, which is the maximum
revenue divided by the minimum increase of distance. The pickup customer i with the maximum
insertion ratio is inserted at each iteration, together with its corresponding delivery (n + i), which
is included into its best position after i. If no more customers can be included into the solution,
because of the distance constraints, then a new solution is created and the procedure finishes.

4.4. Local search procedures
An important concept, center of gravity (COG) for a route k, also used in Tsiligirides

[1984], Vansteenwegen et al. [2009a] and Gansterer et al. [2017], must be defined here to understand
how the GravityCenterExchange neighborhood (Section 4.4.4) is investigated. The COG is based
on the Cartesian coordinates (xi, yi) of all customers included into the solution weighted by their
corresponding revenues ri. The Cartesian coordinates of the center of gravity (xCOG, yCOG) are
given by xCOG =

∑
i∈k

xiri/
∑
i∈k

ri and yCOG =
∑
i∈k

yiri/
∑
i∈k

ri.

By knowing the center of gravity, then the appropriateness Ai can be calculated Ai =
ri/ci,COG, where ci,COG is the distance cost between the customer i and the COG. Like in Gansterer
et al. [2017], we consider that an appropriateness for a pickup and delivery pair is given by the
sum Ai + An+i. The appropriateness is used in profit-increasing neighborhoods for inserting new
requests into the solution.

4.4.1. Random Neighborhood Variable Descent
In the random neighborhood variable descent of IPPD, just like the RVNDs in Souza et al.

[2010] and Subramanian et al. [2010], there is no predefined order for exploring neighborhoods, that
is, before every execution of the local search, a new neighborhood order is randomly chosen. Each
neighborhood is defined relatively to one type of move, which can be applied on different p-d pairs
and routes. Each neighborhood is efficiently pre-evaluated exhaustively, considering the moves in
random order of p-d pairs, and applying the best improving move. After each improvement, the
search restarts from the first neighborhood structure. Otherwise, the search continues on the next
neighborhood structure and finishes when all neighborhoods have been examined without success.

Due to the fact that the IPPD deals with infeasible solutions during its search, the search
space becomes much bigger, thus the time needed to explore efficiently the search space grows
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proportionally. To avoid spending much time on each neighborhood and to seek improvements
quickly, the IPPD follows Toth and Vigo [2003] and adopts a similar idea of the granular local
search. In the IPPD, a set of nearest neighborhoods for each pickup customer is initially defined
and, before each move is applied. It is verified if this move involves at least one customer belonging
to the set of nearest neighborhoods for this pickup customer. If this is the case, then the move is
applied, if not, then this move is rejected. In IPPD, the size of this set for each pickup customer was
set to {50, 100, 150, 200, 250, 300} and the value that provided better results was 250.

All intra-route and inter-route neighborhoods used by IPPD are defined next.

4.4.2. Intra-route neighborhood structures:
N (1) – PairSwap considers two pairs of customers (i, n + i) and (j, n + j) and swaps the pickup

customer i with the pickup customer j, as well as the delivery customer (n + i) with the
delivery customer (n+ j).

N (2) – PairShift considers a pair of customers (i, n+ i) and relocates the pickup customer i in an-
other position of the route and then finds another position to insert the corresponding delivery
customer (n+ i), after the pickup customer.

N (3) – PickShift relocates a pickup customer i in another position before the delivery customer (n+
i).

N (4) – DelShift relocates a delivery customer (n+ i) in another position after the pickup customer
i.

4.4.3. Inter-route neighborhood structures:
N (5) – InterPairSwap selects a pair of customers (i, n+i) from a route k1 and another pair (j, n+j)

from a route k2 and swaps the pickup customer i with the pickup customer j. The delivery
customer (n+ i) is swapped with the delivery customer (n+ j).

N (6) – InterPairShift takes a pair of customers (i, n + i) from a route k1 and transfer this pair
to a route k2. After defining the position to insert the pickup customer i in k2, the delivery
customer (n+ i) is inserted in a following position.

4.4.4. Profit-increasing neighborhood structures:
N (7) – Insert takes a pair of customers (i, n + i) not included in the solution and insert this pair

on a route k. The pickup customer i is inserted on a position of k and the delivery customer
(n+ i) is inserted on a following position of k.

N (8) – Replace takes a pair of customers (i, n + i) not included in the solution and a pair of
customers (j, n+ j) that belongs to the solution and swaps them.

N (9) – GravityCenterExchange removes the farthest pair (i, n+ i) from the center of gravity from
a route k and inserts non-included pairs into k as long as the duration constraints are met.
New requests are inserted by considering a descending order of appropriateness.

4.4.5. Repairing neighborhood structure:
N (10) – Remove takes a pair of customers (i, n+ i) and removes it from the solution.

4.5. Perturbation operator
The perturbation operator of the IPPD algorithm is based on the Remove neighborhood

and consists in removing nPERT random p-d pairs from the solution. The number of pairs nPERT to be
removed is randomly selected in {1, 2, ..., pMAX} using an uniform distribution probability. Thus,
pMAX is a parameter of IPPD that limits the number of perturbation moves.
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5. Computational results
The set of instances from Gansterer et al. [2017] was used in order to attest the perfor-

mance of the IPPD algorithm. This set contains 36 instances divided in six subsets of six instances
each. These subsets have 10, 25, 50, 125, 250 and 500 pickup and delivery pairs, thus correspond-
ing to 20, 50, 100, 250, 500 and 1000 customers. They are subdivided into groups called: small
(20 and 50 customers), medium (100 and 250 customers) and large (500 and 1000 customers). The
customer locations were randomly generated on a bi-dimensional plane (x, y), in which both x and
y are in the interval [−1000, 1000] and both depots are located at (0, 0). Each pair has an integer
demand between [1, 50]. The revenues were generated using three strategies: i) equal for all pairs
(F); ii) proportional to the demands (P); and iii) randomly distributed (R). The distance constraint
can be tight (S) or relaxed (L) and the vehicle numbers vary from 2 to 8.

The IPPD algorithm was developed in C++ using OptFrame [Coelho et al., 2011]. Each
test was performed on a single core of a Intel Core i7 3.4 GHz, 16 GB of RAM using Ubuntu
14.04. It is noteworthy that the computer used is similar to the one used in Gansterer et al. [2017].
Moreover, the IPPD uses three main parameters: the strength of the perturbation operator pMAX,
which has been set to maxk∈K |k|, representing the maximum route size of the current solution
(this value is a solution-dependent parameter and provided good solutions during our preliminary
experiments), uMAX, the maximum number of iterations without improvement to update the coef-
ficient factor β, which has been set to 5 iterations at most and finally, the stopping criterion TMAX,
which has been set for each group of instances to the same CPU time of the current state-of-the-art
methods from Gansterer et al. [2017]: 1 second per run for each instance with 20 and 50 customers,
10 seconds for each instance with 100 and 250 customers, and 100 seconds for each instance with
500 and 1000 customers.

Previous authors have reported results over 5 runs, thus we also report the results on 5 runs
of the algorithm. For each instance, we obtain a solution using IPPD, zIPPD. The percentage gap
relative to the best known solution (BKS), zBKS is computed as Gap = 100× (zIPPD − zBKS)/zIPPD.
All best known solutions were collected from Gansterer et al. [2017] after 20 hours executing their
algorithms on each instance.

The objective in MVPPDP is to maximize the total profit, thus if a negative gap is found,
it means that this solution has a lower value compared to the best known solution, therefore worst
quality. On the other hand, if a positive value is found, it means that the solution obtained has a
greater value than the best known solution, hence a new best known solution is found.

5.1. Performance comparisons on MVPPDP instances
Tables 1, 2 and 3 display the GapBKS and the GapAvg obtained after 5 runs for each algo-

rithm on each instance from Gansterer et al. [2017]. The GapBKS represents the relative percentage
deviation given by the best solution obtained on each algorithm (5 runs) and the BKS obtained in
Gansterer et al. [2017] after 20 hours running their algorithms for each instance. The GapAvg is
the relative percentage deviation calculated with the average solutions on 5 runs and the BKS. The
algorithms GVNSseq, GVNSsa and GLS were all implemented in Gansterer et al. [2017] and the
IPPD corresponds to our algorithm. For each instance, the best result considering all methods is
highlighted in boldface.

Looking at these tables, it is evident the good performance of the IPPD algorithm on small
and medium-sized instances, as the average gaps are greater than gaps from the other algorithms:
−0.43% for the small set and −3.58% for the medium set. For the large set, the best performance
observed is for the GVNS with the self-adaptive VND (GVNSsa). It seems that the IPPD did not
have enough time to explore the search space of feasible and infeasible solutions, even adopting
the concept of granular local search. Still, it could achieve better solutions, on average, on two
instances of 500 customers and one of 1000 customers. By working with infeasible solutions, the
IPPD was able to reach new better solutions for the instances 16PL, 4PL, 6RL, 27PS, 28PL and
33PS, because the gaps found are greater than zero. To sum up, the IPPD achieved greater or equal
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Table 1: Results for the MVPPDP with 20 and 50 customers on 5 runs for each instance. Time limit set to 1
second per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

1FS 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2FL 20 -3.38 -3.38 -3.38 -3.38 -3.15 -3.15 -0.41 -0.41
3PS 20 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55
4PL 20 0.00 0.00 0.00 0.00 -1.14 -1.14 0.70 0.70
5RS 20 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00
6RL 20 -2.63 -2.63 -2.63 -2.63 -2.43 -2.43 0.04 0.04
7FS 50 -0.60 -0.60 -0.60 -0.60 -7.83 -7.83 -0.60 -0.60
8FL 50 0.00 -0.37 0.00 -0.66 -1.24 -3.89 0.00 0.00
9PS 50 -4.27 -5.69 0.00 0.00 0.00 0.00 0.00 0.00

10PL 50 0.00 -0.77 0.00 -3.76 -5.31 -7.69 0.00 -2.32
11RS 50 0.00 0.00 0.00 0.00 -0.52 -0.89 0.00 0.00
12RL 50 0.00 -0.03 0.00 -2.01 -4.14 -5.22 -1.95 -1.95

Avg -0.95 -1.17 -0.60 -1.13 -2.19 -2.74 -0.23 -0.43

Table 2: Results for the MVPPDP with 100 and 250 customers on 5 runs for each instance. Time limit set
to 10 seconds per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

13FS 100 -5.02 -5.22 -5.02 -5.46 -6.75 -6.98 -5.83 -5.98
14FL 100 0.00 -0.12 -0.18 -4.22 -0.89 -3.04 0.00 -3.17
15PS 100 -0.95 -3.46 -4.20 -7.22 -1.21 -3.80 -0.39 -2.99
16PL 100 -0.61 -2.59 -3.15 -3.41 -4.83 -7.60 0.60 0.02
17RS 100 -5.99 -5.99 -5.99 -5.99 -3.68 -6.05 0.00 -5.02
18RL 100 -0.28 -1.10 -1.44 -2.07 -2.84 -5.01 0.00 -0.60
19FS 250 -4.37 -5.15 -4.45 -5.89 -7.96 -12.15 -4.54 -6.37
20FL 250 -1.40 -4.35 -2.98 -4.84 -5.10 -5.57 -4.26 -5.49
21PS 250 -3.84 -4.94 -2.77 -4.42 -5.82 -9.91 -1.01 -3.59
22PL 250 -3.30 -4.35 -2.40 -3.32 -7.11 -9.42 -1.09 -3.12
23RS 250 -2.04 -3.15 -1.11 -2.03 -5.11 -7.69 -1.40 -3.57
24RL 250 -3.30 -4.06 -3.22 -5.07 -6.88 -9.14 -1.79 -3.14

Avg -2.59 -3.71 -3.08 -4.50 -4.85 -7.20 -1.64 -3.58

average gaps on 20 instances, the GVNSsa obtained 14 better or equal average gaps, the GVNSseq
found 13 greater or equal average gaps and the GLS was not able to find better gaps, only the same
values for just 3 instances.

The statistical significance of these results is investigated by performing a Friedman test
to compare the average gap values obtained for each algorithm on each instance. The Friedman test
returned a value p < 4.5× 10−8, which means that there is a significant difference of performance.
Pairwise Wilcoxon tests were also performed to locate these differences and the tests returned:
IPPD–GLS = 0.00, IPPD–GVNSseq = 0.60 and IPPD–GVNSsa = 0.41. Thus, these tests confirmed
that IPPD is significantly better than the GLS, but it does not differ from the GVNSseq and the
GVNSsa, probably because of the performance presented on large instances. Nevertheless, because
of its good performance on small and medium-size instances, the IPPD still can be considered a
good choice for solving the MVPPDP, as it can achieve good solutions by exploring larger and
infeasible neighborhoods.
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Table 3: Results for the MVPPDP with 500 and 1000 customers on 5 runs for each instance. Time limit set
to 100 seconds per run.

GVNSseq GVNSsa GLS IPPD
Inst Req GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg GapBKS GapAvg

25FS 500 -2.46 -3.86 -3.23 -4.22 -8.83 -11.69 -4.04 -7.32
26FL 500 -3.64 -4.23 -2.67 -3.92 -3.39 -6.00 -4.10 -7.08
27PS 500 -1.02 -2.52 -1.37 -2.99 -9.19 -11.99 0.72 -1.40
28PL 500 -2.54 -2.99 -2.74 -3.33 -7.52 -8.71 1.82 -0.50
29RS 500 0.00 -2.74 -1.95 -2.65 -12.04 -14.38 -6.29 -8.14
30RL 500 -1.35 -1.95 -0.98 -2.06 -6.73 -9.72 -1.29 -2.07
31FS 1000 -7.25 -9.96 -8.48 -9.27 -8.31 -11.02 -11.80 -14.09
32FL 1000 -5.39 -6.50 -3.80 -5.26 -4.07 -6.52 -10.12 -11.39
33PS 1000 -5.16 -6.13 -4.31 -5.18 -6.83 -7.90 1.47 -1.49
34PL 1000 -3.12 -4.85 -2.55 -3.79 -4.92 -6.23 -3.26 -4.63
35RS 1000 -4.83 -5.54 -3.59 -4.63 -9.25 -12.23 -4.90 -6.53
36RL 1000 -3.20 -4.12 -3.06 -4.03 -5.56 -6.83 -2.90 -4.29

Avg -3.33 -4.62 -3.23 -4.28 -7.22 -9.44 -3.72 -5.75

6. Conclusions
The study of the multi-vehicle profitable pickup and delivery problem has been conducted

in this work. A solution for the MVPPDP is not so trivial to find, because firstly, a good selection
of a subset of customer requests is needed, next an efficient decision of defining the routes for
each vehicle, considering a maximum travel time, the capacity of the vehicle and the precedence
of a pickup over the delivery for each request. These characteristics lead the search space of the
MVPPDP to have many basins of attractions. Thus, an efficient method for solving the MVPPDP
must have good techniques to avoid getting trapped in these basins.

We designed an algorithm with the objective of escaping from these basins of attractions,
by allowing it to work with infeasible solutions. This algorithm, called IPPD, is based on the iter-
ated local search and applies, successively, local searches using the random variable neighborhood
descent. The local searches explore neighborhoods for optimizing the order of visits for each ve-
hicle and also for increasing the total profits. In order to reduce the computational time for all
neighborhoods, because the search space is increased when dealing with infeasible solutions, the
idea of granular local search was applied in the IPPD.

The proposed algorithm was tested on benchmark instances and the results obtained were
compared to three algorithms (GLS, GVNSsa and GVNSseq) from literature and the IPPD produced
the best results on small and medium-size instances within the same time limits. It was even able to
find new best solutions on 6 instances. However, probably because of the time limits, the IPPD did
not achieve the best solutions for large instances, but its performance was not so far from the other
two algorithms (GVNSsa and GVNSseq), because no statistical difference was found, considering
the GAPs found by the algorithms. Thus, the IPPD has potential to be adapted to quickly produce
better solutions for the large set of instances of the MVPPDP.
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