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Abstract
This work proposes a bi-objective mathematical optimization model and a two-stage
heuristic for a real-world application of the heterogeneous Dynamic Dial-a-Ride Prob-
lem with no rejects, i.e., a patient transportation system. The problem consists of
calculating route plans to meet a set of transportation requests by using a given hetero-
geneous vehicle fleet. These transportation requests can be either static or dynamic,
and all of themmust be attended to. In the first stage of the proposed heuristic, the prob-
lem’s static part is solved by applying a General Variable neighborhood Search based
algorithm. In the second stage, the dynamic requests are dealt with by implementing
a simple insertion heuristic. We create different instances based on the real data pro-
vided by a Brazilian city’s public health care system and test the proposed approach
on them. The analysis of the results shows that the higher the level of dynamism, i.e.,
the number of urgent requests on each instance, the smaller the objective function
value will be in the static part. The results also demonstrate that a higher level of
dynamism increases the chance of a time window violation happening. Besides, we
use the weighted summethod of the two conflicting objectives to analyze the trade-off
between them and create an approximation for the Pareto frontier.

Keywords Dial-a-ride problem · Vehicle routing · Dynamic DARP · General variable
neighborhood search

1 Introduction

In this work, we study a transportation problem that arises in the daily operations of a
municipal health care system in Brazil: the transportation of patients. Transportation
of patients is an essential service worldwide, especially in Brazil, where some health
treatments and services are offered only by hospitals located in large cities. In Brazil,
not only medical services but also the transportation of patients is provided by the
municipality. In the city of Ouro Preto, the transportation of patients occurs between a
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patient’s home or a public location in the city and hospitals in the metropolitan region
of Belo Horizonte and Itabirito (or vice-versa). The local public health system clas-
sifies the patients’ transportation requests according to the treatment and/or service
prescribed by the patient’s doctor. If the patient needs immediate treatment/service,
such as surgery, the request is classified as urgent, and the patientmust then be attended
on the same day (dynamic request). The request can otherwise be attended in the next
days or weeks (static request). To deal with such situation, the health system has a
heterogeneous fleet of vehicles. Not all vehicles are allocated each day. Some of them
are saved to be used for attending a possible urgent transportation request. Neverthe-
less, when there is no urgent transportation request, the same amount of vehicles are
idle and under-utilised. The public system also recognised long waiting times when
an urgent request could not be attended to, increasing the patient inconvenience. In
this way, this work’s main goal is to develop a mathematical model to improve the
transportation service provided by the municipal health care system of Ouro Preto.

The problem faced by the local health system can be classified as a variant of the
Vehicle Routing Problem (VRP). The VRP goal is to determine a set of routes to be
executed by a fleet of vehicles for serving geographically dispersed customers [2].
Several VRP variants include real-life complexities. Among this variety of classes
is the Dial-a-Ride Problem (DARP). The main difference between the DARP and
other VRP variants is the human perspective. In other words, the DARP considers the
convenience and comfort of customers. We can find several DARP classifications in
the literature. The best-known classification is based on the type of requests, and it
distinguishes the problem into two classes: static and dynamic. In the Static DARP
(SDARP), all problem inputs are known a-priori, i.e., before the construction of the
routes, whereas in the Dynamic DARP (DDARP), the route plan is updated every time
new information is revealed.

The DDARP has received less attention than the SDARP. The transportation of
patients (health care) is the major application of the DDARP [9]. Madsen et al. [12]
studied the multi-objective heterogeneous DDARP to tackle the problem faced by
the Copenhagen Fire-Fighting Service (CFFS) in transporting elderly and disabled
persons. Their objective function includes several goals, which were weighted by
parameters to reflect the decision-maker’s preferences. For solving the problem, the
authors developed an insertion algorithm. Hanne et al. [6] also studied the multi-
objective heterogeneous DDARP in which the overall objective is to minimize a
weighted sum of four objectives. Nevertheless, in Madsen et al. [12] dynamism refers
to the occurrence of a new request, whereas Hanne et al. [6] considered not only
new requests but also vehicle-related events (e.g., vehicle breakdown) and availability
of staff member as dynamic inputs. The authors developed a software for managing
all the activities related to patient transportation of a German hospital, namely travel
booking, scheduling, dispatching, monitoring, and reporting transports. The proposed
software includes a discrete-event simulation model to reproduce the behavior of the
patient transportation system and several optimization routines that can be combined
depending on the time available for planning. Similarly to Hanne et al. [6], Beaudry
et al. [1] adopted new requests and vehicle breakdowns as sources of dynamism in the
heterogeneous DDARP to solve the problem arising in the daily operation of a German
hospital. The proposed model includes a bi-objective function (minimization of fleet
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operating costs and the maximisation of patient satisfaction). The authors developed a
two-phase heuristic, which includes an insertion scheme (first phase) and a tabu search
algorithm (second phase). The work of Schilde et al. [14] differs from the above papers
concerning stochasticity and type of vehicle fleet. In the previous papers, stochastic
information about the dynamic inputs was not available, while Schilde et al. [14] used
historical data about some transportation requests to exploit stochastic information.
They called the problem the dynamic stochastic dial-a-ride problem with expected
return transports. The paper’s goal was to investigate whether using stochastic infor-
mation for calculating route plans positively affects the quality of the solution. To
reflect the problem faced by the Austrian Red Cross, the authors assumed that patients
occupy only one seat in a vehicle of the homogenous fleet. To solve the problem,
Schilde et al. [14] adopted four well-establish metaheuristics, which were modified to
consider stochastic information.

In this work, we formulated the problem faced by Ouro Preto’s health care sys-
tem as a bi-objective heterogeneous DDARP with no rejects. In this problem, urgent
transportation requests are the source of dynamism, and all dynamic and static trans-
portation requests must be served. The conflicting objectives are the minimization
of the transportation costs and minimization of user inconvenience. We propose a
two-stage heuristic to solve the problem. The first stage solves the static requests,
designing the so-called a-priori route plan. For that, we use an algorithm based on
the General Variable Neighborhood Search (GVNS) [8]. This GVNS-based algorithm
applies a variant of theVariable NeighborhoodDescent (VND) as local searchmethod.
GVNS is an algorithm that has successfully solved several other combinatorial prob-
lems, e.g., drone delivery [5], location routing [10], pollution routing [11], open-pit
mining [15], among others. In the second stage, for dealing with the dynamic trans-
portation requests, an insertion heuristic is applied. The main difference between our
work and the above-mentioned papers is that 1) we analyse the impact of the degree
of dynamism of the transportation requests on the quality of the solutions and 2) we
create an efficient frontier, i.e., an approximation to the Pareto frontier, by trading
off parameter α included in the bi-objective function. Therefore, this paper’s contri-
butions are threefold: a new two-stage heuristic for the DDARP and dynamism and
Pareto analyses. The remainder of the paper is organised as follows. In Sect. 2, the
real transportation problem is presented. This is followed in Sect. 3 by a description
of the problem formulation. We devote Sect. 4 to the proposed solution method and
definition of dynamism in the problem. The dataset created for testing our approach
is presented in Sect. 5. Dynamism and trade-off analyses are presented in the compu-
tational experiments presented in Sect. 6. Lastly, Sect. 7 concludes with a summary
and an outlook for future work.

2 Problem description

The problem considered in this work is based on a real problem faced by the public
health care system of Ouro Preto, Brazil. The problem is explained as follows. At the
beginning of a workday, the health care system’s transportation department sched-
ules transportation requests and calculates a route plan to be executed during that
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Transportation
Request

Nature of
Service

A-priori Urgent

Number of
Customers

Single Double

Pickup
Location

Home Collective Point

Delivery
Location

Belo Horizonte Itabirito

Type of
Vehicle

Ambulance Van Small Car

Fig. 1 Characteristics of the problem

day. For this, only the requests known a-priori are considered. Nonetheless, urgent
transportation request might occur throughout the day. The main characteristics of a
transportation request are presented in Fig. 1 and explained bellow.

An transportation request is classified as either a-priori known or urgent. A trans-
portation request implies either one or two passengers, i.e., either only a single patient
or one patient and one companion person (double) when the former is unable to travel
alone. If the double customer is a stretcher patient, the patient requires being trans-
ported in an ambulance together with the companion person. A transportation request
can have either of the two types of pickup locations: home or collective points. Urgent
patients and patients who cannot move have to be collected at their homes; otherwise,
they are picked up at collective points. These collective points are distributed around
the city and are characterised as something representative or important in the city,
such as big squares, old churches, and train station. The collective point in which the
patient has to be collected at is selected following the shortest distance between the
patient’s home and the collective point. A transportation request can have either Belo
Horizonte or Itabirito as delivery locations.

Figure 2 displays both pickup and delivery areas. The area contained in the blue cir-
cle comprises all the possible pickup points. In contrast, the areas contained in the two
red circles include all the possible delivery points, where hospitals and health clinics
are located. Since the treatments/services offered by hospitals located in large cities
have time-restricted work, the time windows are limited at delivery points. Finally,
regarding the type of vehicles, the transportation sector has a heterogeneous fleet of
vehicles. This fleet is composed by ambulances, vans, and small cars. Therefore, each
vehicle has a different capacity and a cost (renting cost) associated with it. Table 1
presents the characteristics of each vehicle. They are classified as A to E.

3 Mathematical formulation

The heterogeneous SDARP can be represented on a fully connected undirected graph
G = (V , A), where V = (P ∪ D) is the set of vertices, which denote patient locations
(v0 and v2n+1 represent the depot), and A is the set of edges, with |A| = a. The set
V is subdivided into two sets, where P = {1, . . . , n} and D = {n + 1, . . . , 2n} are
the sets of pickup and delivery locations, respectively. Then, |V | = 2n. Cost ci j and
travel time δi j are fixed for all (i, j) ∈ A. The fleet of vehicles is represented by K ,
and for each vehicle k ∈ K a capacity wk has to be respected. Each patient i ∈ P has
a pickup i and delivery n + i location, a load qi , a non-negative service time τi , and a
time window [ei , li ] (where ei and li are integers non-negative). A solution y, called
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Fig. 2 Pickup and delivery areas

route plan, is a set of routes. Each route is done by one vehicle which leaves the depot,
serves a subset of users whose total load and total travel time do not exceed Qk and
Tk , respectively, and returns to the depot in the interval [e0, l0]. A customer must first
be picked up and then delivered by the same vehicle. For every customer, the service
should start between [ei , li ]. That is, let Arki denote the arrival time of vehicle k at the
vertex i , the beginning of the service (Bk

i ) cannot start before the beginning of the time
window (Bk

i ≥ max {Arki , ei }). The departure time Dk
i = Bk

i +τi is the time vehicle k
departures from customer i . Vehicle k waiting time is defined by Wk

i = Bk
i − Arki .

The total duration of the route is calculated as Tk = Bk
n+1 − Bk

0 , where Bk
n+1 and Bk

0
represent when vehicle k finishes and starts its ride at the depot, respectively. xki j is a
binary variable that takes value 1 if edge (i, j) is used by vehicle k or zero otherwise.
wk
i is an integer variable that takes the number of people in vehicle k after visiting

node i or zero if the vehicle does not serve the customer i . In this work, we adapt
the formulation of the heterogeneous SDARP proposed by Cordeau [4]. Cordeau’s
SDARP mathematical model solves to optimality small and medium-size instances,
and it has been studied extensively by other authors. In Cordeau’s formulation, the
objective function only minimizes the total routing cost. In contrast, we adopt a bi-
objective function in which the first objective is to minimize transportation costs, and
the second is to minimize user inconvenience. Thus, our model distinguishes from
Cordeau’s model in that the former introduces violations of time windows and ride
time of each user as soft constraints to reject no request. Besides, when adding a parcel
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Table 1 Vehicle information

Number of users by type
Vehicle Representation Capacity Cost Non-stretcher Stretcher Companion

Small Car 1 A 4 100 2 0 2

Small Car 2 B 5 120 3 0 2

Ambulance 1 C 3 100 0 1 2

Ambulance 2 D 4 150 0 2 2

Van E 16 200 8 0 8

to dealwith user inconvenience in the objective function,we introduce n newvariables,
where n is the number of pickup requests. Then, the total number of variables in the
proposed formulation is (2n)2×|K |+n. The formulation of the SDARP is represented
as follows.

min
∑

k∈K

∑

i∈V

∑

j∈V
cki j x

k
i j (1)

min

∑
p∈P Losp

n
(2)

s.t.
∑

k∈K

∑

j∈V
xki j = 1, ∀i ∈ P, (3)

∑

k∈K

∑

j∈V
xki j = 1, ∀i ∈ P, (4)

∑

j∈V
xk0 j = 1, ∀k ∈ K , (5)

∑

i∈V
xki,2n+1 = 1, ∀k ∈ K , (6)

∑

j∈V
xki j −

∑

j∈V
xkn+i, j = 0, ∀i ∈ P,∀k ∈ K , (7)

∑

i∈V
xkil −

∑

j∈V
xkl j = 0, ∀l ∈ V ,∀k ∈ K , (8)

bkj ≥ bki + τi + δi j − M1
(
1 − xki j

)
, ∀i ∈ V ,∀ j ∈ V ,∀k ∈ K , (9)

wk
j ≥ wk

i + qi − M2
(
1 − xki j

)
, ∀i ∈ V ,∀ j ∈ V ,∀k ∈ K , (10)

bk2n+1 − bk0 ≤ Tk, ∀k ∈ K , (11)

ei ≤ bki ≤ li , ∀i ∈ V , k ∈ K , (12)

max {0, qi } ≤ wk
i ≤ min {wk, wk + qi }, ∀i ∈ V , k ∈ K , (13)

xki j ∈ {0, 1}, ∀i ∈ V , j ∈ V , k ∈ K . (14)
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Using the parameter α ∈ [0, 1], we combine the two objectives transportation costs
and user inconvenience, given by Eqs. (1) and (2), respectively, into a mono-objective
function (15), which represents the weighted sum of these two objectives.

min J (y) :=
{
α

∑

k∈K

∑

i∈V

∑

j∈V
xki j c

k
i j + (1 − α)

∑
p∈P Losp

n

}
(15)

The user inconvenience for user p ∈ P which is served by vehicle k is defined by

the expression Losp = (Arkp−Bk
p)

L(vp,vn+p,Bk
p)
, where L

(
vp, vn+p, Bk

p

)
represents the shortest

path between vp and vn+p beginning the service at p at time Bk
p. In Eq. (15), if α

is chosen large, then the model favours transportation cost by trying to include as
many as possible users in one route. On the other hand, if α is small, there will be
user discontent since few users will be served on a route. Therefore, the weight α

can be used by managers to prioritise the importance of each of the two objective
functions. Constraints (3), (4), and (5) ensure that all customers are served only once
and all routes start and end at the depot. Constraints (6) guarantees a customer is
attended by the same vehicle. Constraints (7) ensure that each costumer’s pickup
and delivery will be done by the same vehicle. Constraints (8) and (9) state that the
consistency of time variables and the vehicle capacity are respected, respectively,
where M1 ≥ max{0, li +τi +δi j −e j } and M2 ≥ min{wk, wk +qi }. Constraints (10)
ensure that the vehicles comply with the defined capacity limit imposed. The starting
time of the service at each pickup node is guaranteed by Constraints (11). The vehicles
capacity is represented by Constraints (13). Finally, Constraints (14) set the domains
of the binary decision variables.

4 Solution approach

Since the mathematical model described in the previous section cannot solve real
instances of the dynamic DARP, we developed a heuristic algorithm that includes two
stages. The first stage happens at the beginning of a workday and designs an a-priori
route plan considering the patients’ request known at that time, and the second stage
occurs at run time and deals with the dynamic patients’ requests. For each dynamic
request, an occurrence time oi is defined, and the insertion time of the dynamic request
is determined by oi < ei . The two stages of the proposed algorithm are described in
the following sections.

4.1 First stage

The a-priori solution is calculated by using a GVNS-based algorithm [8]. Algorithm 1
presents the pseudo-code of the implemented GVNS. The GVNS algorithm starts
from an initial solution and requires the determination of three components: stopping
criterion, shaking procedure, and local search procedure. For designing the initial
solution, we use a greedy function that selects each request based on the smaller
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time window. The request with the smaller time window is allocated to the vehi-
cle with traveled time closer to the request’s time window. The stopping criterion
is defined by the number of iterations without improvement in the current solution
(i terMax = 1000). The shaking procedure is applied using a set N ′ containing five
neighborhoods based on classical inter-route operators (N ′ = {Shift(1,0), Shift(2,0),
Swap(1,1), Swap(2,2), Swap(2,1)}, see [13]). If the number of iterations without
improvement (i ter ) is smaller than 25% of the number of requests, the shaking pro-
cedure is applied i ter times, each time randomly selecting one of the neighborhoods.
Thus, the shaking intensity increases as there is no improvement in the current solu-
tion. The local search procedure is made by the Randomized Variable Neighborhood
Descent (RVND) method [13,15,16].

Algorithm 1: GVNS (s, i terMax)
1 s ← ini tialSolution();
2 N = {Relocation, Swap,Crossover}
3 N ′ = {Shift(1, 0), Shift(2, 0), Swap(1, 1), Swap(2, 1), Swap(2, 2)}
4 i ter ← 0
5 while i ter ≤ i terMax do
6 s′ ← Shaking(s,N ′, i ter)
7 s′′ ← RVND(s′,N )

8 if f (s′′) < f (s) then
9 s ← s′′

10 i ter ← 1
11 else
12 i ter ← i ter + 1
13 end
14 end
15 return s

RVND is a variant of theVariableNeighborhoodDescent (VND) [7] procedurewith
random neighborhood ordering. It has the following differences concerning the Basic
VND, also known as B-VND [8]. Firstly, we randomly select a neighborhood, that is,
there is no prefixed neighborhood order. Secondly, whenever there is an improvement
in the current solution, we rebuild the set of neighborhoods, and the search restarts
from a randomly selected neighborhood. Like the B-VND procedure, RVND ends
when the current solution cannot be improved concerning all the neighborhoods used.
According to [16], RVND avoids looking for the best order, which may be highly
dependent on the instance. Algorithm 2 shows the pseudo-code of RVND. It works in
the following way. Initially, a neighborhood Nk is chosen randomly from the set N
of neighborhoods (line 2). Then, the current solution s is submitted to a local search
in this neighborhood Nk with the first improvement strategy (line 3). We follow the
first improvement search strategy because this strategy requires lower computational
time than the best improvement strategy while maintaining the same solution’s quality
compared to the best improvement strategy. If the resulting solution s′ from the local
search is better than the current solution s, then s is updated, and a new order of
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neighborhoods is established (lines 5-6). Otherwise, we remove the neighborhoodNk

from N .

Algorithm 2: RVND(s, N )

1 while (N 	= ∅) do
2 Nk ← random neighborhood of N
3 s′ ← FirstImprovement(s,Nk )

4 if f (s′) < f (s) then
5 s ← s′
6 rebuild N
7 else
8 N ← N \{Nk }
9 end

10 end
11 return s

4.2 Second stage

In the second stage, we use an insertion heuristic based on the heuristic proposed by
Campbell and Savelsbergh [3]. This insertion heuristic works as follows. When one
dynamic request arrives at time T = oi , the closest available vehicle is allocated to this
request. While the transportation requests served before T = oi cannot be changed,
the others can. This means that the remaining sequence of customers to be attended
according to the a-priori route plan at T = oi may be modified if savings can be
achieved. Although the emergency request has priority in the allocated vehicle, any
request in this vehicle that has a delivery point between the pickup and delivery location
of the emergency request should be delivered before the urgent request. For instance,
an emergency patient is allocated to car z, and the pickup and delivery location of
this patient are points A and C. One of the customers in car z has to be dropped off at
hospital B. This hospital is situated between A andC, this patient will thus be delivered
before the emergency patient. Figure 3 illustrates the situation described above. In this
figure, the black dots represent the pickup points - either home or collective point -
and the gray dots represent the delivery locations. At the beginning of the time horizon
(T = 0) the a-priori route plan calculated by the proposed GVNS is shown in dashed
line. After that, the urgent request appears at T = oi . The part of the a-priori route
plan that has already been executed by the vehicle z when the urgent request occurs
is shown as a continuous line. The emergency pickup A and delivery C points are
displayed in orange. After the emergency request is delivered, the remaining route is
recalculated by prioritizing a shorter time window. The final route plan, which is the
route plan after the execution of all transportation requests, is exhibited at T = T f .
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B

A

C

moment when urgent request appears route recalculated/final route

depot depot

z

z

depot

z

a-priori route plan

T = 0 T = Tn T = Tf

Fig. 3 Inclusion of emergency request in a route

5 Dataset

Since we want to tackle the real transportation problem faced by the health system of
Ouro Preto, we developed a set of test problems based on real data to evaluate the pro-
posed solution approach. The provided data show a schedule of some requests served
by the transportation sector. These requests are related to non-sequential workdays
that occurred between March and October 2019. Each transportation request includes
the nature of service, the number of customers, pickup and delivery locations (see
Fig. 1), and time windows.

We create four instances to test our proposal. Two instances, named a9-21 and a9-
24, were designed based on information from two working days. Instance a9-21 has
21 transportation requests, and out of these 15 are single patients and 6 are double
patients (patients with a companion). Instance a9-24 has 24 transportation requests,
and out of these 11 are single patients, and 13 are double patients. The third instance,
called a9-34, was created by joining four working days, computing 34 requests (12
single patients plus 22 double patients). The largest instance with 48 requests, named
a9-48, was designed to simulate a really busy working day and contains 17 single
patients and 31 double patients. To create Instance a9-48, we assume that half of the
pickup locations were patients’ homes, and the other half were collective points. To
generate these homes’ location, we randomly selected points in the area of the city
(area contained in the blue circle in Fig. 2). To generate each one of the collective
points’ locations, we randomly selected one of the six collective points provided by
the transportation sector.
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Table 2 Results obtained with the proposed algorithm for Scenario 1

Instance Sol RC VC Vehicle qV

Best Avg Best Avg Best Avg Best Avg Time (s)

a9-21 1019.51 1072.49 469.51 535.49 550 537 B1,C1, D1, E1 4 4 5.87

a9-24 1815.07 1820.61 845.07 850.61 970 970 A4, B1,C1, D1, E1 8 8 8.77

a9-34 1443.31 1522.96 773.31 835.96 670 687 A2, B1, D1, E1 5 5.4 43.97

a9-48 2037.60 2088.84 1167.60 1228.84 870 860 A3, B1,C1, D1, E1 7 7 147.08

6 Computational experiments

In this section, we investigate the impact that the level of dynamism has on the
solutions’ quality. For that, we created two scenarios: Scenario 1 and Scenario 2.
These scenarios and the results obtained for each scenario are described in the fol-
lowing. Our implementations of the proposed solution method described in Sect. 4
were coded in C/C++. All experiments were performed on an Intel Core i7-5500U
CPU@ 2.40 GHz × 4 with 8GB RAM, Ubuntu 16.04.5 LTS 64 bits. The code details
and the designed instances are available at https://gitlab.com/AndreLuyde/dynamic-
heterogeneous-darp/tree/master/Instances.

6.1 Scenario 1

In Scenario 1, we assumed that no urgent patient occurs in the problem, that is no
dynamic request. That is to say that in Scenario 1 all transportation requests are before-
hand known. Since there is no dynamic request, user inconvenience is not considered
in this scenario, i.e., α = 1 in Eq. (15). Therefore, in this scenario, the problem is
treated as a static DARP.

Wesolved every instance10 times, computing10 solutions for each instance.Table 2
shows the results obtained by our solution approach considering Scenario 1. The
second and third columns (Sol: Best and Avg) display the best and average values of
the objective function, respectively. The objective function value is the sum of routing
(RC) and vehicle (VC) costs, which have their best and average values shown from the
fourth to the seventh columns. The column Vehicle shows which vehicles were used
in the best solution (for information on vehicle types, see Table 1). The subscription
of each letter represents the number of used vehicles of that type. The columns under
qV display the number of vehicles used in the best solution and the average number
of used vehicles, respectively. Finally, the last column presents the average time in
seconds spent by our algorithm to calculate a route plan.

We noted that although Instance a9-24 is smaller than Instance a9-34, the solution
calculated for Instance a9-24 had a higher objective function value and vehicle and
routing costs than the route plan designed for Instance a9-34. This occurred because
the time window of the transportation requests in Instance a9-24 is more distant than
the ones in Instance a9-34. Thus, the route plan designed for Instance a9-24 required
more vehicles and longer routes, increasing the objective function value. Actually,
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the route plan for Instance a9-24 presented the highest number of vehicles among all
the solutions, followed by the solution for Instance a9-48. As expected, the solution
calculated for Instance a9-48 had the highest objective function value and routing and
vehicle costs. It can also be seen that the small vehicle B, ambulance D, and van E were
used in all solutions since these vehicles can visit more patients at a lower cost than
vehicle A. Lastly, regards to computational time, the execution time grew according to
the size of the instances. Nevertheless, Instance a9-48 required an unexpected higher
computational time.

6.2 Scenario 2

In Scenario 2, we adopted the occurrence of emergency requests. For constructing
this scenario, we created a variable γ that exhibits the instance’s dynamism. This
dynamism displays the number of emergency requests that can happen during a day.
Emergency requests can appear at any time of day, have priority to be served, and their
pickup location is always the patient’s home. We randomly generated γ so that every
instance has up to 40% of dynamic requests, i.e., γ ∈ [0; 40]. Among the emergency
requests, there are inactive requests, represented by ι. These requests are patients that
may not appear in the system. For each instance this can be ι ∈ [0; 20]. Since instances
a9-21 and a9-24 have just a few pickup points, which are patient’s home, the degree
of dynamism for these instances is reduced.

In this scenario, it is meaningful to perform a trade-off analysis between the two
conflicting objectives, minimization of the transportation cost and minimization of the
patient inconvenience. A common procedure for bi-objective optimization problems
is the weighted summethod.We discretised the parameter α of Eq. (15) in nine weight
combinations, from 0.1 to 0.9. So, the weights α and 1 − α of the transportation cost
and user inconvenience objective functions, respectively, vary as follows: (α, (1 −
α)) ∈ {(0.1, 0.9), (0.2, 0.8), . . . , (0.9, 0.1)}. For each combination of weights, the
Eq. (15) was solved by the proposed algorithm.We thus computed nine route plans for
each instance, and every solution displayed an objective function value that balances
transportation costs and user inconvenience. It is worth mentioning that to trade-off
transportation cost anduser inconvenience,weonly considered the static transportation
requests since the dynamic requests have priority, and their delivery is, therefore, done
as soon as possible. In this way, the time windows become a flexible constraint, that
is, a-priori known requests may arrive late at the delivery place.

Tables 3a–d present the results obtained for Scenario 2. In these tables, the first
column indicates the weight α given to the first term of Eq. (15). The second column
presents the degree γ of dynamism. The third column exhibits the objective function
value, which is the sum of transportation cost (TC) plus user inconvenience (Los).
The fourth column shows the transportation costs multiplied by the factor α. The fifth
column shows the user inconvenience multiplied by (1 − α). The column Vehicle
displays the type and quantity of vehicles used in the solution. The column Time (s)
presents the computational time, in seconds, spent by the solution approach to find
each solution. Lastly, the column DSCV displays which solutions had time window
violations after the dynamic requests were served.
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Table 3 Results obtained with the proposed heuristic for Scenario 2

α γ Sol TC × α Los ×
(1 − α)

Vehicles Time (s) DSCVa

(a) Instance a9-21

0.9 0.1 104.14 99.33 4.81 A4 7.13

0.8 0.1 207.29 202.82 4.47 A2, B1, E1 8.82

0.7 0.1 308.07 304.22 3.86 A2,C1, D1 5.91 *

0.6 0.1 388.93 385.63 3.30 A3,C1 7.17

0.5 0.1 468.61 465.91 2.69 A2, B1,C1 12.57

0.4 0.1 580.64 578.44 2.20 A4 10.51

0.3 0.1 688.98 687.41 1.58 A2, B1, D1 7.52

0.2 0.1 812.67 811.65 1.02 A2, B1,C1 8.07

0.1 0.1 913.21 912.66 0.55 A2,C1, D1 5.51 *

0.9 0.2 101.59 96.79 4.79 A2,C1, D1 3.89 *

0.8 0.2 190.38 186.00 4.38 A1, B1,C1, E1 7.70

0.7 0.2 262.95 259.27 3.69 A2, B1,C1 7.07

0.6 0.2 428.85 425.69 3.16 A2,C1, E1 5.23

0.5 0.2 461.29 458.51 2.78 A3,C1 3.34

0.4 0.2 582.44 580.21 2.22 A2,C1, D1 4.21 *

0.3 0.2 606.53 604.95 1.58 A2, B1,C1 6.16

0.2 0.2 756.43 755.38 1.05 A3, E1 4.51

0.1 0.2 828.47 827.94 0.53 A2, B1,C1 7.59

0.9 0.3 96.75 91.99 4.76 A2, B1,C1 9.99

0.8 0.3 197.84 193.58 4.26 A2,C1, D1 7.55 *

0.7 0.3 286.95 283.27 3.69 A2,C1, E1 8.66

0.6 0.3 387.78 384.52 3.26 A2,C1, E1 7.92

0.5 0.3 461.29 458.51 2.78 A3,C1 5.59

0.4 0.3 560.96 558.79 2.17 A1, B1,C1, D1 6.37

0.3 0.3 680.57 678.95 1.61 A1, B1,C1, D1 6.88 *

0.2 0.3 750.73 749.62 1.11 A2, B1,C1 4.59

0.1 0.3 778.32 777.80 0.53 A2, B1,C1 6.92

0.9 0.4 96.75 91.99 4.76 A2, B1,C1 9.88

0.8 0.4 204.22 199.99 4.23 A2,C1, E1 5.66

0.7 0.4 268.19 264.39 3.80 A2, B1,C1 10.37

0.6 0.4 391.15 387.97 3.17 A1, B1,C1, D1 4.95

0.5 0.4 474.74 472.11 2.63 A3, E1 7.27

0.4 0.4 554.07 551.96 2.11 A2, B1,C1 7.29

0.3 0.4 618.55 616.92 1.63 A2, B1,C1 10.34

0.2 0.4 774.73 773.62 1.11 A2,C1, D1 5.15 *

0.1 0.4 870.88 870.32 0.55 A2,C1, D1 7.31 *
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Table 3 continued

α γ Sol TC × α Los ×
(1 − α)

Vehicles Time (s) DSCVa

(b) Instance a9–24

0.9 0.1 187.14 177.69 9.44 A4, B2,C1, E1 7.13

0.8 0.1 363.78 355.38 8.39 A4, B2,C1, E1 8.82

0.7 0.1 540.42 533.08 7.34 A4, B2,C1, E1 5.91

0.6 0.1 669.57 663.25 6.32 A4, B2,C1, E1 7.17

0.5 0.1 893.71 888.46 5.25 A4, B2,C1, E1 12.57

0.4 0.1 993.42 989.23 4.19 A4, B2,C1, E1 10.51 *

0.3 0.1 1247.85 1244.69 3.16 A4, B2,C1, E1 7.52

0.2 0.1 1344.61 1342.50 2.11 A4, B2,C1, E1 8.07

0.1 0.1 1600.28 1599.23 1.05 A4, B2,C1, E1 5.51

0.9 0.2 173.74 164.11 9.63 A4, B2,C1, E1 3.89 *

0.8 0.2 356.84 348.22 8.61 A4, B2,C1, E1 7.70 *

0.7 0.2 508.87 501.33 7.54 A4, B1,C1, D1, E1 7.07 *

0.6 0.2 658.11 652.00 6.11 A4, B2,C1, E1 5.23 *

0.5 0.2 830.10 825.00 5.09 A4, B2,C1, E1 3.34 *

0.4 0.2 1048.94 1044.66 4.28 A4, B2,C1, E1 4.21 *

0.3 0.2 1144.06 1141.00 3.06 A4, B2,C1, E1 6.16 *

0.2 0.2 1306.04 1304.00 2.04 A4, B2,C1, E1 4.51 *

0.1 0.2 1460.07 1458.99 1.08 A4, B2,C1, E1 7.59 *

0.9 0.3 171.80 162.11 9.69 A4, B1,C1, D1, E1 9.99 *

0.8 0.3 334.15 326.00 8.15 A4, B2,C1, E1 7.55 *

0.7 0.3 493.87 486.33 7.54 A4, B1,C1, D1, E1 8.66 *

0.6 0.3 678.11 672.00 6.11 A4, B2,C1, E1 7.92 *

0.5 0.3 880.10 875.00 5.10 A4, B2,C1, E1 5.59 *

0.4 0.3 1006.97 1002.66 4.31 A4, B1,C1, D1, E1 6.37 *

0.3 0.3 1221.98 1218.77 3.21 A4, B2,C1, E1 6.88

0.2 0.3 1315.02 1312.88 2.14 A4, B2,C1, E1 4.59

0.1 0.3 1460.07 1458.99 1.08 A4, B2,C1, E1 6.92

0.9 0.4 184.57 175.41 9.16 A4, B2,C1, E1 9.88 *

0.8 0.4 333.41 325.18 8.23 A4, B2,C1, E1 5.66 *

0.7 0.4 497.35 490.23 7.12 A4, B2,C1, E1 10.37 *

0.6 0.4 676.54 670.36 6.17 A4, B1,C1, D1, E1 4.95 *

0.5 0.4 832.14 827.05 5.09 A4, B2,C1, E1 7.27 *

0.4 0.4 1056.54 1052.47 4.07 A4, B2,C1, E1 7.29 *

0.3 0.4 1230.93 1227.88 3.05 A4, B2,C1, E1 10.34 *

0.2 0.4 1398.79 1396.73 2.06 A4, B2,C1, E1 5.15 *

0.1 0.4 1579.72 1578.70 1.02 A4, B2,C1, E1 7.31 *
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Table 3 continued

α γ Sol TC × α Los ×
(1 − α)

Vehicles Time (s) DSCVa

(c) Instance a9-34

0.9 0.1 134.59 128.53 6.06 A2,C1, D1, E1 60.91

0.8 0.1 258.87 252.48 6.39 A2, B1,C1, D1, E1 123.79

0.7 0.1 398.81 393.61 5.20 A2,C1, D1, E1 69.98

0.6 0.1 508.02 503.82 4.20 A2,C1, D1, E1 93.09

0.5 0.1 623.75 619.93 3.82 A3, D1, E1 58.69

0.4 0.1 702.42 699.81 2.61 A2, D1, E1 60.28

0.3 0.1 867.22 864.82 2.40 A3, D1, E1 54.47

0.2 0.1 1004.14 1002.78 1.36 A1, B1, D1, E1 101.48

0.1 0.1 1158.72 1157.75 0.97 A2, B1, D1, E1 28.29

0.9 0.2 135.86 128.86 6.99 A2,C1, D1, E1 27.72

0.8 0.2 228.28 223.06 5.23 A2, D1, E1 45.41 *

0.7 0.2 337.61 332.84 4.77 A2, D1, E1 38.17 *

0.6 0.2 447.87 443.78 4.09 A2, D1, E1 35.21 *

0.5 0.2 636.73 632.65 4.07 A2,C1, D1, E1 21.90

0.4 0.2 681.34 678.61 2.73 A1, B1, D1, E1 39.65 *

0.3 0.2 905.16 902.81 2.35 A2,C1, D1, E1 36.28

0.2 0.2 954.02 952.72 1.31 A1, B1, D1, E1 28.16 *

0.1 0.2 1130.77 1129.96 0.81 A2,C1, D1, E1 36.30 *

0.9 0.3 113.48 107.57 5.91 A2, D1, E1 48.00 *

0.8 0.3 217.15 211.84 5.31 A2, D1, E1 24.01 *

0.7 0.3 335.21 330.52 4.69 A2, D1, E1 18.55 *

0.6 0.3 444.71 440.69 4.02 A2, D1, E1 25.12 *

0.5 0.3 604.76 601.51 3.24 A2, D1, E1 12.43 *

0.4 0.3 656.13 653.45 2.68 A2, D1, E1 29.66

0.3 0.3 771.58 769.57 2.01 A2, D1, E1 19.97 *

0.2 0.3 861.83 860.52 1.31 A2, D1, E1 25.99 *

0.1 0.3 999.11 998.43 0.68 A2, D1, E1 20.18

0.9 0.4 103.70 98.49 5.21 A2, B1, D1 12.14 *

0.8 0.4 203.33 197.88 5.45 A2, D1, E1 29.49 *

0.7 0.4 286.59 281.83 4.76 A3, E1 18.63 *

0.6 0.4 385.91 381.55 4.36 A2, B1, E1 20.47 *

0.5 0.4 494.83 491.76 3.07 A2, B1, D1 9.64 *

0.4 0.4 593.12 590.75 2.36 A2, B1, D1 12.60 *

0.3 0.4 674.02 671.79 2.23 A3, B1 16.21 *

0.2 0.4 738.43 736.96 1.46 A3, B1 18.58 *

0.1 0.4 871.85 871.13 0.72 A2, B1, D1 11.02 *
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Table 3 continued

α γ Sol TC × α Los ×
(1 − α)

Vehicles Time (s) DSCVa

(d) Instance a9-48

0.9 0.1 193.54 185.65 7.89 A4, B1, D1, E1 307.86 *

0.8 0.1 386.99 379.67 7.31 A3, B1,C1, D1, E1 169.86 *

0.7 0.1 546.84 541.43 5.41 A2, B2, D1, E1 132.84 *

0.6 0.1 774.81 769.55 5.26 A4, B1, D1, E1 142.75 *

0.5 0.1 929.56 925.29 4.27 A4, B1, D1, E1 236.38 *

0.4 0.1 1143.89 1140.36 3.53 A4,C1, D1, E1 81.47 *

0.3 0.1 1337.35 1334.94 2.41 A4, D1, E1 125.41 *

0.2 0.1 1481.33 1479.08 2.25 A4,C1, D1, E1 133.25

0.1 0.1 1649.82 1648.90 0.92 A4,C1, D1, E1 155.19 *

0.9 0.2 175.10 168.57 6.53 A3,C1, D1, E1 165.68 *

0.8 0.2 348.03 341.77 6.26 A3,C1, D1, E1 93.12 *

0.7 0.2 500.93 495.56 5.37 A3,C1, D1, E1 164.11 *

0.6 0.2 661.91 657.25 4.66 A3,C1, D1, E1 70.64 *

0.5 0.2 846.20 842.50 3.70 A3,C1, D1, E1 61.88 *

0.4 0.2 999.97 996.92 3.05 A2, B1,C1, D1, E1 96.12 *

0.3 0.2 1151.72 1149.44 2.28 A2, B1,C1, D1, E1 51.44 *

0.2 0.2 2827.00 1348.00 1.48 A3,C1, D1, E1 107.39 *

0.1 0.2 1505.42 1504.65 0.77 A2, B1,C1, D1, E1 95.47 *

0.9 0.3 154.74 147.93 6.81 A2,C1, D1, E1 115.34 *

0.8 0.3 288.53 283.51 5.02 A2,C1, D1, E1 62.70 *

0.7 0.3 452.79 447.61 5.18 A3,C1, D1, E1 63.38 *

0.6 0.3 570.94 567.15 3.79 A2,C1, D1, E1 39.10 *

0.5 0.3 737.31 733.99 3.32 A2,C1, D1, E1 127.30 *

0.4 0.3 863.69 861.16 2.53 A1, B1,C1, D1, E1 65.40 *

0.3 0.3 994.52 992.62 1.90 A2,C1, D1, E1 64.00 *

0.2 0.3 1159.17 1157.94 1.23 A2, B1,C1, D1 39.37 *

0.1 0.3 1343.53 1342.90 0.63 A2,C1, D1, E1 39.64 *

0.9 0.4 147.10 141.56 5.54 A2,C1, D1, E1 67.86 *

0.8 0.4 284.40 279.45 4.95 A2, B1,C1, D1 36.36 *

0.7 0.4 421.06 414.76 6.30 A4, D1 17.28 *

0.6 0.4 565.69 561.32 4.37 A3, D1, E1 33.47 *

0.5 0.4 710.43 707.36 3.07 A2,C1, D1, E1 31.24 *

0.4 0.4 846.01 843.51 2.50 A4, D1 31.53 *

0.3 0.4 987.06 984.71 2.35 A2, B1,C1, D1 28.90 *

0.2 0.4 1076.28 1075.04 1.24 A3, B1, D1 37.31 *

0.1 0.4 1269.22 1268.57 0.65 A3, D1, E1 18.00 *

a Dynamic solution with constraint violation
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Fig. 4 Approximation to the pareto frontier of transportation costs and user inconvenience with 10% of
dynamism for all instances

We also note that the worst of the violations occurs in the instance a9-48 (Table 3d).
In this instance, the total waiting for patients is equal to 6.80 minutes, and the sum of
delays concerning the time window is 51.02 minutes. As can be seen, this time may
not be significant to justify the rejection of the requests, as in the HHDARP model.

From the results,we can see that asα decreased, the transportation cost grew, and the
user inconvenience declined in all instances. To better visualize the trade-off between
the two conflicting objectives, transportation cost and user inconvenience, we plotted
(TC) and (Los) for all instances and γ = 0.1 (see Fig. 4). We can also observe that the
objective function value grew when α decreased, whereas the objective function value
lowered when γ increased. This occurs because α is the weight associated with TC
and TC is the parcel that contributes most to the objective function. On the other hand,
an increment in γ means that the instance has fewer static requests to be attended in
the first stage, lowering the sol value. As expected, increasing γ also caused a higher
number of time window violations. It is more difficult to respect the time window
constraints when there are more dynamic requests. We can notice that the number
of solutions with violations was larger in instances a9-24, a9-34, and a9-48, with γ

values 0.3 and 0.4.

6.3 Comparison between Scenario 1 and Scenario 2

Comparing the results obtained in Scenario 1 and 2, we noticed that although the
number of a-priori known (static) transportation requests in Scenario 2 is smaller than
that in Scenario 1, the number of vehicles used in the route plan is almost the same.
This occurs due to the different nature of services and different vehicle types (see
Fig. 1). Therefore, in most of the solutions more than one type of vehicle was used in a
route plan (see column Vehicle in Table 2 and Tables 3a–d). We also conclude that by
including the dynamism in the designed instances, solutions presented violations. In
Scenario 2, some route plans had timewindow violations compared to no solutionwith
time window violations in Scenario 1. Therefore, the presence of urgent transportation
requests caused violations in the solutions. In this way, we can infer that the higher
the dynamism is, the higher the probability of a violation occurring in a solution is.
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7 Conclusions

In this paper, we proposed the bi-objective heterogeneous dynamic dial-a-ride problem
with no rejection for the real problem faced by a patient transportation request system
in Brazil. In this problem, all transportation requests must be attended and there are
two conflicting goals: the minimization of the transportation costs, which consists
of routing and vehicle costs, and the minimization of user inconvenience. Therefore,
time window constraints are relaxed, and if a user cannot be delivered within the time
window, we penalize the objective function value by increasing user inconvenience.
To validate our model, we built a two-phase heuristic algorithm. The first phase uses
a GVNS algorithm with RVND as the local search procedure. This phase solves the
static part of the problem. To solve the dynamic part of the problem, we use a simple
insertion heuristic. For analyzing the effect of dynamism in the problem, we create
two scenarios, one with no dynamic requests and the other with a certain amount of
dynamic requests (Scenarios 1 and 2). From our experiments, we concluded that by
including the dynamism, i.e., increasing the number of dynamic requests, the number
of vehicles adopted in a route plan increases. Attending only the static customers in
Scenario 2 required the same number of vehicles than attending all the customers
in Scenario 1 for most of the instances. We can also infer that an increment in the
number of dynamic requests causes a higher probability of time window violation
occurrences. The solution provided by the heuristic algorithm requires fewer vehicles
than the route plan currently adopted by the transportation sector of the Ouro Preto’
health care system. The algorithm also calculated route plans with lower traveled time
and user waiting time. Moreover, we built an approximation to the Pareto frontier for
each instance. In this way, the transportation sector can select the best route plan based
on their preferences (e.g., favoring the minimization of user inconvenience).
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