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Abstract. The School Timetabling Problem is widely known and it
appears at the beginning of the school term of the institutions. Due to
its complexity, it is usually solved by heuristic methods. In this work, we
developed two algorithms based on the Variable Neighborhood Search
(VNS) metaheuristic. The first one, named Skewed General Variable
Neighborhood Search (SGVNS), uses Variable Neighborhood Descent
(VND) as local search method. The second one, so-called Adaptive VNS,
is based on VNS and probabilistically chooses the neighborhoods to do
local searches, with the probability being higher for the more successful
neighborhoods. The computational experiments show a good adherence
of these algorithms for solving the problem, especially comparing them
with previous works using the same metaheuristic, as well as with pre-
vious published results of the winning algorithm of the International
Timetabling Competition of 2011.

Keywords: School Timetabling · Variable Neighborhood Search ·
SGVNS · International Timetabling Competition

1 Introduction

The task of creating a school timetabling consists, in a very simplified way, in
determining for each class and time slot the school subject and its respective
teacher. This is a very hard activity and it may take a lot of hours or even
days depending on the amount of classes, time slots, and teachers [2]. This
combination of class, teacher, and subject follows some rules or constraints. The
compliance according to these constraints determines if a solution is feasible or
not and how good it is.
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The constraints are usually divided into two groups [20]:

(i) Hard constraints: they are mandatory constraints. If they are not met, the
solution is infeasible. For example, if one teacher is allocated to more than
one class at the same time-slot, the solution is invalid;

(ii) Soft constraints: these are non-mandatory restrictions. They should be met
only when possible but when this is not the case, the solution still remains
feasible. For example, no occurrence of idle time in a timetabling of a specific
teacher is expected, but the existence of it does not infeasible the solution.

Since the pioneer work of Gotlieb [8], many techniques have been used to
solve timetabling problems. According to [21] and [19], this interest is due to
three main points:

(i) Difficulty to find a solution: in view of the big amount of constraints, the
goal of finding a feasible solution is a hard task and it may takes many days
of manual work due to the amount of involved resources (classes, teachers,
time slots);

(ii) Practical importance: to build a timetabling is a basic necessity of all edu-
cational institutions. A good school timetabling can impact the life of a
big quantity of people, especially students and teachers. It can impact the
efficiency of the classes and student’s performance too;

(iii) Theoretical importance: school timetabling is a NP-hard problem [7]. Thus,
it is challenging to develop efficient algorithms to solve it.

The interest of the academic community in seeking more efficient solution
methods for solving the problem grew especially in the late 1990s and early
2000s. As a result, an international conference, called PATAT (Practice and
Theory on Automated Timetabling), was created. This conference originated
specific competitions called ITC (International Timetabling Competition), the
most recent of them was organized in 2011.

Besides that, specialists in the School Timetabling’s class of problem created
a standard to represent it, called XHSTT, as well as a library specialized to
manipulate their instances, called KHE.

In this paper, the school timetabling problem is approached using the
VNS metaheuristic in two variances: skewed VNS and adaptive VNS. In both
approaches, it is used the KHE library and the instances from ITC 2011. The
results were compared with the algorithm Goal Solver, winner of ITC 2011, the
last competition specialized in problems from this kind.

The paper is organized as follows: Sect. 2 presents the KHE library, the
XHSTT format and the ITC 2011; Sect. 3 presents the proposed algorithms and
Sect. 4 shows their results. Finally, on Sect. 5 the conclusions and some future
works are presented.

2 Context

The researches in school timetabling had an impulse with the organization of
specialized competitions of algorithms to solve this type of problem (such as the
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ITC, described at Sect. 2.3), as well as the creation of a standard to represent
and treat instances (the XHSTT, described at Sect. 2.1) and the creation of a
library to handle this format (the KHE, described at Sect. 2.2).

2.1 XHSTT Standard

The XHSTT format [17], an acronym to XML for High School TimeTabling, is
a format based on XML’s markup language that establishes specific structures
to treat resources, time-slots and their respective constraints.

This format is divided in three basic entities:

(i) Time and resource: the time entity consists of a time-slot or a set of time-
slots and the resources are subdivided into three subcategories: students,
teachers, and rooms;

(ii) Events: an event is the basic unit of assignment, representing a simple lesson;
(iii) Constraints: it is responsible to determine the distribution of resources in

the events. It can be defined by hard or soft constraints, according to the
criteria expected for a specific solution to be feasible or infeasible. Besides,
it is subdivided into three subcategories: (i) basic constraints of schedule;
(ii) constraints of events; and (iii) constraints of resources.

From the creation of this standard, emerged a lot of research from many
countries around the world that created instances of all kind of types, some
representing real cases from several countries, for example, England [26], Finland
[16], Greek [25], Netherlands [6] and Brazil [22,23]. All these instances were
published in a global and free public repository, to be used as benchmarking for
other studies, such as the one conducted in this paper.

2.2 KHE Library

In 2006, [11] presented a library, called KHE (Kingston High School Timetabling

Engine). This library was created exclusively for school timetabling problems,
with the objective of facilitating and optimizing the management of the instances
and their solutions. Completely integrated with the XHSTT standard, the main
points of the use of this library are the data structures available and the possibil-
ity of using the function of generating initial solutions, called KheGeneralSolve.
This routine generates an initial solution in a fast and easy fashion, even in large
and complex instances. This library is available on the Internet and can be used
freely for studies and researches in this area. Its creator also provides a service to
evaluate solutions, called HsEval, available at http://www.it.usyd.edu.au/∼jeff/
cgi-bin/hseval.cgi.

2.3 ITC 2011

With this standards and variety of libraries for handling them, the PATAT mem-
bers launched the third edition of an International Timetabling Competition -
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ITC, dedicated to High School timetabling problems, in 2011. This was the last
and most recent competition in this area. The two previous ones were organized
in 2002 and 2007, with others specific themes of timetabling.

The ITC 2011 was composed by three phases:

– Phase 1: the instances were published and the competitors were responsible
to generate the best solutions without restrictions of time and computational
resources;

– Phase 2: the organizers were responsible for executing each algorithm under
the same conditions, using instances not previously known and having a time
limit of 1000 s of processing;

– Phase 3: the competitors generated the solutions in a set of hidden instances
and, as in the phase one, it was not defined time and technology restrictions.
Only the top five competitors of Phase 2 participated of this phase.

3 Proposed Approaches

In order to solve the School Timetabling Problem, in the current article we pro-
pose two algorithms for solving it, both of them based on the Variable Neigh-
borhood Search (VNS) metaheuristic [13].

The first one, called Adaptive VNS, is described in Subsect. 3.1, and the
second one, named SGVNS, is presented in Subsect. 3.2. Finally, in Subsect. 3.3,
the types of moves used to explore the solution space of the problem are detailed.

3.1 Adaptive VNS

The proposed Adaptive VNS algorithm is a variant of the classic VNS meta-
heuristic, in which the used neighborhoods for local searches are chosen accord-
ing to evolving probabilities.

This approach is similar to that presented in [1]. The basic principle is that
the neighborhoods that generate better solutions should have probabilities higher
than the other ones that are not generating good solutions at that moment. In
order to avoid premature convergence of the algorithm, and avoiding getting
biased to some neighborhoods, whenever a better solution is found, the proba-
bilities are periodically reset.

The implementation follows the pseudo-code presented at Algorithm1. Ini-
tially, in line 10, all |N | neighborhoods used for local searches have the same
probability of being chosen, that is, the parameter probneighborhood(N l) is set
to 1/|N | (0.2 in our case). On the loop started at line 14 a shaking move using
Kempe’s chain neighborhood is applied during kcurrent times. The neighborhood
used to perform local search according to the current probabilities is chosen at
line 18. As in timetabling problems there are many plateaus, solutions with an
evaluation less than or equal to that of the current solution are accepted (line 20
of Algorithm1). The probabilities of all neighborhoods are recalculated every
itercalc iterations (line 40 of Algorithm1).
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Algorithm 1. Adaptive VNS

1 Input: Initial solution s0; Maximum runtime (MaxTime); Maximum
number of moves of the Kempe’s Chain; Iterations for recalculating the
probabilities (itercalc); set of |N | neighborhoods N ; Number of
recalculating probabilities without improvement to restart probabilities
(IterRestart).

2 Output: Best solution s.
3 begin

4 s ← s0;
5 s′ ← s0;
6 improvement ← 0;
7 kcurrent ← 1;
8 numberitercalc ← 1;
9 for each neighborhood N l of N do

10 probneighborhood(N l) ← 1/|N |;
11 end

12 iter ← 1;
13 while time ≤ MaxTime do

14 for k = 0; k < kcurrent do

15 s′ ← neighbor of s′ built by applying the Kempe’s Chain
move;

16 end

17 prob ← random number between 0 and 1;
18 l ← chosen neighborhood N l according to the probability

probneighborhood(N l) and random number prob;
19 s′ ← Local Search using neighborhood N l(s′) ;
20 if f(s′) ≤ f(s) then

21 s ← s′;
22 kcurrent ← 1; improvement ← 1;

23 end

24 else

25 s′ ← s;
26 if kcurrent ≤ Kempe

max
then

27 kcurrent ← kcurrent + 1;
28 end

29 end

30 if rest of division of iter by itercalc is 0 then

31 numberitercalc ← numberitercalc + 1;
32 if numberitercalc ≥ IterRestart and improvement = 0 then

33 for each neighborhood N l of N do

34 probneighborhood(N l) ← 1/|N |;
35 end

36 numberitercalc ← 1;

37 end

38 else

39 for each neighborhood N l of N do

40 update probneighborhood(N l)
41 end

42 end

43 improvement ← 0;
44 iter ← iter +1;

45 end

46 end

47 end

48 return s
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3.2 Skewed GVNS (SGVNS)

This algorithm was built by merging two variations of VNS metaheuristics:
Skewed VNS (SVNS) and General VNS (GVNS).

The SVNS is a variation of VNS proposed by [13]. It uses a parameter α to
accept solutions that are worse than the current solution. The concept involved is
that better solutions can be far away from the current solution, so it is necessary
to go through intermediate (and worse) steps to reach them.

On the other hand, the GVNS algorithm, proposed in [14], uses Variable
Neighborhood Descent (VND) algorithm to perform local searches. VND [9] is
a descent method that uses systematic changes of neighborhoods to explore the
space solution. It returns a local optimum among all the used neighborhoods.

The proposed SGVNS uses also VND as a local search method. In addition,
as in the SVNS algorithm, a parameter α is used to accept intermediate solutions
that are worse than the current solution.

Algorithms that accept worse solutions can bring a problem of execution,
called cycling. It occurs when the algorithm remains stuck in the same sequence
of solutions. To avoid this behavior, a Tabu List was implemented in a way that
a short time list stores the values of solutions already visited. In consequence,
the algorithm prevents the same sequence of solutions from being generated
again. This Tabu List has a length defined by a parameter and works with FIFO
protocol (First In First Out) that means that when the length is achieved the
first value is overwritten by the next and so on.

The pseudo-code of SGVNS is described in Algorithm2. At line 14 it is
verified if the new solution will be considered or not according to the parameter
α and the list of solution values already generated. As in the Adaptive VNS
algorithm, solutions with evaluation less than or equal to the current solution
are accepted (line 18 of the SGVNS Algorithm).

3.3 Moves

Both algorithms use the Kempe’s Chain move for shaking the current solution.
This move was proposed in [10] to the graph coloring problem. It is based on the
concept that some changes in the solution can generate infeasible solutions, cre-
ating conflicts and in order to remove them it is necessary to perform a sequence
of other moves. These modifications in sequence applied to a determined solution
are called Kempe’s Chain.

When the solution does not improve, both algorithms increase the number
of times that the Kempe’s Chain move is executed until a limit value defined
by the parameter Kempemax. When an improved solution is found, each algo-
rithm returns to its initial configuration and only one Kempe’s Chain move is
performed. This strategy has the objective to search better solutions and not
get stuck in local optimums.

The SGVNS algorithm uses the classic VND algorithm to perform local
searches and it returns the optimum in relation to all neighborhoods. The VND
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Algorithm 2. SGVNS

1 Input: Initial solution (s0); Maximum runtime (MaxTime); Maximum
number of Kempe’s Chain move (Kempe

max
); percentage to accept worse

solutions (α); Length of the Tabu List.
2 Output: Improved solution s found.
3 begin
4 s ← s0;
5 s′ ← s0;
6 stemp ← s;
7 kcurrent ← 1;
8 Insert f(s) in Tabu List ;
9 while time ≤ MaxTime do

10 for k = 0; k < kcurrent do
11 s′ ← neighbor of s′ using Kempe’s Chain move;
12 end
13 s′ ← Local search using VND algorithm(s′);
14 if ((f(s′) ≤ ((1 + α) × f(s))) and (f(s′) �∈ Tabu List)) then
15 stemp ← s′;
16 kcurrent ← 1;
17 Insert f(s′) in Tabu List ;
18 if (f(s′) ≤ f(s)) then
19 s ← s′;
20 end

21 end
22 else
23 s′ ← stemp;
24 if kcurrent ≤ Kempe

max
then

25 kcurrent ← kcurrent + 1;
26 end

27 end

28 end

29 end
30 return s

algorithm is described in the literature, so it is not presented in this article. The
neighborhoods are generated with one of the moves described below:

Event Swap: this move consists in selecting two lessons and changing the time
slots between them;

Event Move: this move consists in choosing one lesson and moving it to another
time slot that is empty;

Event Block Swap: like to the Event Swap, it consists in swapping the time
slot of two lessons. However, if the lessons have different durations, one lesson
is moved to the last time slot occupied by the other lesson. That is, if one
of the selected lessons has another lesson in a time slot adjacent to it, the
change involves both lessons, not only the selected one. This move allows
contiguous time slots to be exchanged;
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Move Time: in this move, two classes are chosen and exchanged;
Change Time: this move consists in choosing one class and changing its

resource with another resource that is current available.

On the other hand, the Adaptive VNS algorithm chooses, in a probabilistic
fashion, only one of these moves described above to perform only one local
search.

4 Computational Experiments

Both algorithms were implemented in C++ using the IDE Code::Blocks. All
tests were done in a notebook with Intel Core i5 processor, 4 GB RAM memory
running Windows 10.

In order to test the algorithms, instances from ITC 2011 were used. Among
the twenty-one instances presented in that event, five of them already were
in local optimum since the initial solution, so it was not necessary to work
with them. In the first phase of ITC 2011, although there were no processing
time restrictions, the computational time limit for each instance used by Goal
Solver algorithm [5] (the winner of the competition) was 1000 s. In the cur-
rent experiments, the same value of computational time limit to each instance
was considered. The initial solutions were provided by the organizers and they
were made available together with the instances, in the same XHSTT file. The
three instances from Australia (AustraliaBGHS98, AustraliaSAHS96 and Aus-
traliaTES99) presented worse initial solutions compared with that generated by
KHE library. Thus, in these instances, we used the solutions generated by KHE.

4.1 Parameter Tuning

Several distinct experiments were conducted to find the best set of parameter
configurations for each algorithm. The iRace package (http://iridia.ulb.ac.be/
irace/) was used for the accomplishment of this task. This tool implements the
iterated racing procedure [12] and it is an extension of the iterated F-race (I/F-
Race) proposed by [4]. The main function of iRace is the automatic configuration
of optimization algorithms in order to determine the most appropriate parameter
settings for an optimization method. The iRace framework is implemented as an
R package [18] and builds upon the race package.

The iRace analysis was done on a budget of 3,000 runs for each algorithm
(Adaptive VNS and SGVNS). Due to the high duration of the tests, we do not
use 1,000 s as a stopping criterion in this phase. Three different times were used
as stopping criterion for each algorithm applied in each instance: 10 s, 30 s and
60 s. Tables 1 and 2 show the parameters tested by iRace for both the SGVNS
and the Adaptive VNS algorithms, respectively.

As a result, the iRace indicated the best parameters for each method, as
shown in the values depicted at Table 3. In addition to the parameter calibration,
the iRace gave us the feedback that the performance of both algorithms improved
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Table 1. The parameters tested by iRace in SGVNS algorithm.

Parameter Values

α 0.001 0.01 0.025 0.05 0.075

Kempe
max

1 5 10 - -

Length of the Tabu List 5 7 10 15 -

Table 2. The parameters tested by iRace in Adaptive VNS algorithm.

Parameter Values

Iterations to restart probabilities 5 10 15 20

Kempe
max

1 5 10 -

itercalc 100 250 500 750

from 10 s to 60 s. In this sense, the best parameters were picked from executions
with 60 s, which are the ones that provide more liberty to the methods to play
with exploration-exploitation concepts.

4.2 Results

The same set of neighborhoods N = {Event Swap, Event Move, Event Block
Swap, Move Time and Change Time} was used for both algorithms.

Table 4 shows the best results obtained by the algorithms Goal Solver of [5],
GVNS of [24] and the proposed SGVNS and Adaptive VNS algorithms. In addi-
tion, Table 5 shows the average results also obtained by these same algorithms.
In both tables, the first column shows the tested instances and the second one,
the value of the initial solutions provided by the organizers of ITC 2011, except
for instances AustraliaBGHS98, AustraliaSAHS96 and AustraliaTES99, whose
initial solutions were generated by the KHE algorithm of [11]. The following
columns present the values of Goal Solver, GVNS, SGVNS e Adaptive VNS
algorithms, respectively.

Each instance was executed 30 times for each algorithm. It is noteworthy
that all algorithms were executed on the same machine, and the Goal Solver
code was provided by its developers.

The values presented in each cell of Tables 4 and 5 are pairs x/y, where
x means the sum of penalties for hard constraints not met and y the sum of
penalties for soft constraints not met. In case of a tie in the penalties for hard
constraints not met, the solutions that have smallest soft constraints not met are
considered the best ones. A value highlighted in bold means that is considered
to be the best result produced among all the algorithms.

Analyzing the best results as presented in Table 4, it is verified that SGVNS
outperforms the other algorithms in most instances. On the other hand, the
Adaptive VNS algorithm did not outperform the other algorithms in any
instance, although it has produced good results as well. Considering the sixteen
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Table 3. Best parameters indicated by iRace.

SGVNS α Kempe
max

Length of the Tabu
List

Execution time

0.025 5 10 60

Adaptive VNS itercalc Kempe
max

Iterations to restart
probabilities

Execution time

500 1 5 60

Table 4. Best results of the algorithms.

Instance KHE
(Initial
Solution)

Goal Solver
(SA + ILS)

GVNS SGVNS Adaptive
VNS

AustraliaBGHS98 6/450 6/450 4/370 1/401 7/431

AustraliaSAHS96 17/55 14/50 12/51 13/46 17/52

AustraliaTES99 7/163 7/161 7/151 7/163 7/163

BrazilInstance1 0/24 0/12 0/11 0/11 0/12

BrazilInstance4 0/112 0/91 0/94 0/90 0/94

BrazilInstance5 0/225 0/164 0/158 0/149 0/165

BrazilInstance6 0/209 0/149 0/148 0/131 0/163

BrazilInstance7 0/330 0/264 0/249 0/248 0/282

EnglandStPaul 0/18,444 0/18,092 0/12,542 0/12,466 0/18,418

FinlandHighSchool 0/1 0/1 0/1 0/1 0/1

FinlandSecondarySchool 0/106 0/86 0/87 0/88 0/87

ItalyInstance1 0/28 0/19 0/18 0/18 0/18

NetherlandsGEPRO 1/566 1/566 1/434 1/441 1/532

NetherlandsKottenpark2003 0/1,410 0/1,409 0/1,216 0/1,281 0/1,372

NetherlandsKottenpark2005 0/1,078 0/1,078 0/881 0/877 0/1,078

SouthAfricaLewitt2009 0/58 0/22 0/24 0/24 0/42

instances, SGVNS algorithm reached the best results in ten ones and GVNS
in seven ones. Goal algorithm, in turn, reached the best results only in three
instances.

In another analysis, focusing in the average of the results, as presented
in Table 5, SGVNS algorithm reached the best results in six instances and GVNS
in eight ones. Goal algorithm reached the best results in five instances and the
adaptive VNS in only one instance.

In order to evaluate if there were significant differences among the algorithms,
the R Studio tool was used to perform the statistical analyzes of the results. For
this analysis all samples were used and it was concluded that the samples did not
present normal distribution applying the Shapiro-Wilk test [15]. Then, a non-
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Table 5. Average results of the algorithms.

Instance KHE
(Initial
Solution)

Goal Solver
(SA + ILS)

GVNS SGVNS Adaptive
VNS

AustraliaBGHS98 6/450 6/450 5/450 3/514 7/431

AustraliaSAHS96 17/55 16/20 16/30 16/91 17/53

AustraliaTES99 7/163 7/162 7/162 7/163 7/163

BrazilInstance1 0/24 0/14 0/11 0/11 0/13

BrazilInstance4 0/112 0/98 0/100 0/100 0/099

BrazilInstance5 0/225 0/181 0/178 0/177 0/188

BrazilInstance6 0/209 0/168 0/160 0/170 0/175

BrazilInstance7 0/330 0/280 0/276 0/289 0/300

EnglandStPaul 0/18,444 0/18,444 0/14,217 0/14,442 0/18,418

FinlandHighSchool 0/1 0/1 0/1 0/1 0/1

FinlandSecondarySchool 0/106 0/89 0/92 0/93 0/90

ItalyInstance1 0/28 0/21 0/21 0/19 0/24

NetherlandsGEPRO 1/566 1/566 1/446 1/484 1/551

NetherlandsKottenpark2003 0/1,410 0/1,409 0/1,290 0/1,387 0/1,377

NetherlandsKottenpark2005 0/1,078 0/1,078 0/956 0/1,056 1/1,078

SouthAfricaLewitt2009 0/58 0/30 0/30 0/28 0/48

parametric test was used, the Friedman test [15], with the goal of verifying if the
algorithms had significant differences among them. The test returned a p-value
of 0.0003287. Thus, considering a significance level of 95%, the algorithms had
statistically significant differences among them.

From this result, we proceed the pairwise Wilcoxon test [15] to evaluate if
there is statistical difference between each pair of algorithms. The results indi-
cated that the SGVNS is statistically different from all others algorithms. The
GVNS is also statistically different from Adaptive VNS. The other comparisons
are statistically equivalent. It was used the BH p-value adjustment method [3].

5 Conclusions

This paper proposed two metaheuristic approaches for solving the School Time-
tabling problem, both based on the VNS metaheuristic. The first algorithm
represents a combination between GVNS and SVNS metaheuristics and it was
called SGVNS or Skewed GVNS. The second one, named Adaptive VNS, is an
adaptive approach based on VNS that defines the neighborhood to perform local
searches by means of probabilities, and prioritizes the neighborhoods that have
obtained the best results in past iterations.
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Both algorithms produced good solutions to this problem with an advantage
of the SGVNS algorithm that is statistically different from all other algorithms.
In turn, the Adaptive VNS is equivalent to the Goal Solver of [5]. Considering
the best results, SGVNS performed equal or better than the Goal Solver and
the GVNS algorithm of [24] in ten from sixteen instances.

As future work, we suggest:

– optimize the calculation of the probabilities of the Adaptive VNS algorithm;
– Evaluate both algorithms in other instances, such as those used in the second

phase of ITC 2011.
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